
Lobachevskii Journal of Mathematics

http://ljm.ksu.ru

Vol. 15, 2004, 3–10

c© Liu Changchun

Liu Changchun

SOME PROPERTIES OF SOLUTIONS OF THE

PSEUDO-PARABOLIC EQUATION

(submitted by F.Avkhadiev)

Abstract. In this paper we discuss properties of solutions for a class

of pseudo-parabolic equation. Some results on the asymptotic behavior

and monotonicity of support are established.

1. Introduction

In this paper, we investigate the pseudo-parabolic equation

∂u

∂t
− k

∂∆u

∂t
= div(|∇u|p−2∇u), x ∈ Ω, p > 2, (1.1)

with boundary condition

u
∣

∣

∂Ω
= 0, (1.2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω. (1.3)

Here Ω is a bounded domain in RN , k > 0 is the viscosity coefficient.

The term k ∂∆u
∂t

in (1.1) is interpreted as due to viscous relaxation effects,

or viscosity; the well-known p-Laplacian equation is obtained by setting

k = 0.
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Equation (1.1) arises as a regularization of the pseudo-parabolic equa-

tion
∂u

∂t
− k

∂∆u

∂t
= ∆u, (1.4)

which arises in various physical phenomena. (1.4) can be assumed as

a model for diffusion of fluids in fractured porous media [1, 2, 3], or

as a model for heat conduction involving a thermodynamic temperature

θ = u − k∆u and a conductive temperature u [4, 5].

To derive (1.4), B. D. Coleman, R. J. Duffin and V. J. Mizel considered

a special kinematical situation, of nonsteady simple shearing flow [2]. In

fact, when the influence of many factors, such as the molecular and ion

effects, are considered, one has the nonlinear relation div(|∇u|p−2∇u)

instead of ∆u in the right-hand side of (1.4). Hence, we obtain (1.1).

During the past years, many authors have paid much attention to the

equation (1.4), see [2, 3, 6, 7, 8, 9]. However, only a few papers are

devoted to the pseudo-parabolic equation (1.1). It was Liu [10] who first

studied the equation (1.1). With the use of the time discrete method, he

proved the existence of weak solutions.

This paper is a further step in the study of the properties of solutions,

we discuss asymptotic behavior of weak solutions and monotonicity of

support of weak solutions. Our approach is based on the energy equality

and comparison principle. For simplicity we set k = 1 in this paper.

2. Asymptotic Behavior

To investigate the asymptotic behavior of weak solutions, we need the

following lemmas

Lemma 2.1. The weak solutions u of the problem (1.1)-(1.3), satisfy

1

2

∫

Ω

|∇u(x, t)|2dx +1
2

∫

Ω
|u(x, t)|2dx−

−1
2

∫

Ω
|∇u0(x)|2dx − 1

2

∫

Ω
|u0(x)|2dx =

= −

∫∫

Qt

|∇u(x, t)|pdx,

(2.1)

where Qt = Ω × (0, t).

Proof. In the proof of Theorem 2.1 ([10]), we have

f(t) =
1

2

∫

Ω

|∇u(x, t)|2dx +
1

2

∫

Ω

|u(x, t)|2dx ∈ C([0, T ]).
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We consider the functionals

Φ[v] =
1

2

∫

Ω

|∇v|2dx +
1

2

∫

Ω

|v|2dx,

it is easily seen that Φ[v] is convex functionals on H1
0 (Ω).

Hence, for any τ ∈ (0, T ) and h > 0, we have

Φ[u(τ + h)] − Φ[u(τ)] ≥ 〈u(τ + h) − u(τ),−∆u(x, τ) + u(x, τ)〉,

where 〈·, ·〉 denotes inner product, and we used δΦ[v]
δv

= −∆v+v. For any

fixed t1, t2 ∈ [0, T ], t1 < t2, integrating the above inequality with respect

to τ over (t1, t2), we have
∫ t2+h

t2

Φ[u(τ)]dτ −

∫ t1+h

t1

Φ[u(τ)]dτ

≥

∫ t2

t1

〈u(τ + h) − u(τ),−∆u + u〉dτ.

Multiply the both side of above equality by 1
h
, letting h → 0, then

Φ[u(t2)] − Φ[u(t1)] ≥

∫ t2

t1

〈
∂u

∂t
,−∆u + u〉dτ.

Similarly, we have

Φ[u(τ)] − Φ[u(τ − h)] ≤ 〈(u(τ) − u(τ − h)),−∆u + u〉.

Thus

Φ[u(t2)] − Φ[u(t1)] ≤

∫ t2

t1

〈
∂u

∂t
,−∆u + u〉dτ.

Hence

Φ[u(t2)] − Φ[u(t1)] =

∫ t2

t1

〈
∂u

∂t
,−∆u + u〉dτ.

Take t1 = 0, t2 = t. Since u satisfies the equation in the sense of distri-

butions, we get

Φ[u(t)] − Φ[u(0)] =

∫ t

0

〈
∂u

∂t
−

∂∆u

∂t
, u(τ)〉dτ

=

∫ t

0

〈div(|∇u|p−2∇u), u(τ)〉dτ

= −

∫ t

0

〈|∇u|p−2∇u,∇u(τ)〉dτ.

The proof is complete.

We are now in a position to demonstrate the following theorem.
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Theorem 2.1. If u is a weak solution of the problem (1.1)-(1.3), and

p > 2, then we have
∫

Ω

|u(x, t)|2dx ≤
1

(C1t + C2)α
,

where C1, C2, α > 0.

Proof. In (2.1), we have

1

2

∫

Ω

|∇u(x, t)|2dx+ 1
2

∫

Ω
|u(x, t)|2dx−

−1
2

∫

Ω
|∇u0(x)|2dx − 1

2

∫

Ω
|u0(x)|2dx =

= −

∫ t

0

∫

Ω

|∇u(x, t)|pdxdt.

(2.2)

Let f(t) =
1

2

∫

Ω

|∇u(x, t)|2dx +
1

2

∫

Ω

|u(x, t)|2dx, then by (2.2) we have

f ′(t) = −

∫

Ω

|∇u(x, t)|pdx ≤ 0.

By the Poincaré inequality, we get
∫

Ω

|u|2dx ≤ C

∫

Ω

|∇u|2dx.

By the Hölder inequality and u ∈ W 1,p
0 (Ω), we obtain

∫

Ω

|∇u(x, t)|2dx +

∫

Ω

|u(x, t)|2dx ≤ C

(
∫

Ω

|∇u|pdx

)2/p

,

that is f(t) ≤ C|f ′(t)|2/p. Again byf ′(t) ≤ 0, we have f ′(t) ≤ −Cf p/2(t)

hence
∫

Ω

|∇u(x, t)|2dx +

∫

Ω

|u(x, t)|2dx ≤
1

(C1t + C2)α
,

where α > 0, Ci > 0, i = 1, 2. That is
∫

Ω

|u(x, t)|2dx ≤
1

(C1t + C2)α
, α > 0, Ci > 0, i = 1, 2.

The proof is complete.

3. Monotonicity of Support of Weak Solutions

In this section we study the problem (1.1)-(1.3) for one-dimensional

case, i.e. we consider the following problem

∂u

∂t
−

∂D2u

∂t
=

∂

∂x

(

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

p−2
∂u

∂x

)

, x ∈ I = (−1, 1), (3.1)

u(±1, t) = 0, u(x, 0) = u0(x), (3.2)
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where p > 2 is a given real number, and u0(x) is a nonzero nonnegative

continuous function in I with u0(±1) = 0. We are going to prove the

following theorem

Theorem 3.1. Let u be a nonnegative weak solution of the problem (3.1)-

(3.2), and p > 2, then

supp u(·, s) ⊂ supp u(·, t)

for all s, t with 0 < s < t.

The monotonicity of support of weak solutions for p-Laplacian equation

has been obtained by Yuan[11]. To prove the theorem, we need the

following lemmas

Lemma 3.1. (Comparison principle) Let u be a weak solutions of

(3.1)-(3.2). If v satisfies

∂v

∂t
−

∂D2v

∂t
=

∂

∂x

(

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

p−2
∂v

∂x

)

,

in the sense of distributions, and

v(x, 0) ≤ u(x, 0), Dv(x, 0) ≤ Du(x, 0),

v(±1, t) ≤ u(±1, t),

then we have

v(x, t) ≤ u(x, t), for all (x, t) ∈ QT = I × (0, T ).

Proof. By the definition of weak solution, in [10] we have for ϕ ∈

W 1,p
0 (Ω),

∫

Ω

(uh(x, τ))τϕ(x)dx +

∫

Ω

((∇u)h(x, τ))τϕ(x)dx

+

∫

Ω

(|∇u|p−2∇u)h(x, τ)∇ϕdx = 0,

where

uh(x, t) =







1

h

∫ t+h

t

u(·, τ)dτ, t ∈ (0, T − h),

0, t > T − h.

Hence, we have
∫ 1

−1

(v(x, τ) − u(x, τ))hτϕ(x)dx +

∫ 1

−1

((Dv − Du)h(x, τ))τDϕ(x)dx

+

∫ 1

−1

(|Dv|p−2Dv − |Du|p−2Du)h(x, τ)Dϕdx = 0.
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For a fixed τ , we take ϕ(x) = [(v − u)h]+. By the property of the

Steklov mean value and noting that v(±1, t) ≤ u(±1, t), we see that

ϕ(x) = [(v − u)h]+ ∈ W 1,p
0 (Ω). Substituting this function into the above

integral equality, we obtain
∫ 1

−1

(v(x, τ) − u(x, τ))hτ [(v − u)h]+dx

+

∫ 1

−1

D(v(x, τ) − u(x, τ))hτD[(v − u)h]+dx

= −

∫ 1

−1

[(|Dv|p−2Dv − |Du|p−2Du)h](x, τ)D[(v − u)h]+dx.

Integrating the above equality with respect to τ over (0, t),
∫ 1

−1

[(v − u)h]
2
+(x, t)dx +

∫ 1

−1

|D[(v − u)h]+|
2(x, t)dx

−

∫ 1

−1

[(v − u)h]
2
+(x, 0)dx −

∫ 1

−1

|D[(v − u)h]+|
2(x, 0)dx

= −

∫ 1

−1

[(|Dv|p−2Dv − |Du|p−2Du)h](x, τ)D[(v − u)h]+dx,

(3.3)

It is easily seen that

lim
h→0

∫ 1

−1

[(v − u)h]+(x, 0)dx = 0,

and

lim
h→0

∫ 1

−1

[D(v − u)h]+(x, 0)dx = 0.

Letting h → 0 in (3.3), we have
∫ 1

−1

|(v − u)+|
2(x, t)dx +

∫ 1

−1

|D(v − u)+|
2(x, t)dx ≤ 0,

that is
∫ 1

−1
|(v − u)+|

2dx = 0; therefore, v ≤ u. The proof is complete.

Lemma 3.2. Let u be a nonnegative weak solution of the problem (1.1)-

(1.3), If p > 2, then

∂u

∂t
≥ −

u

(p − 2)t

in the sense of distributions.

Proof. Denote

ur(x, t) = ru(x, rp−2t), for all (x, t) ∈ QT , r ∈ (
1

2
, 1).
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Clearly, ur is a weak solution of the equation (3.1) with the following

initial-boundary condition

ur(x, 0) = ru0(x), Dur(x, 0) = rDu0(x), (3.4)

ur(±1, t) = 0. (3.5)

Noting r ∈ (0, 1
2
), and using (3.2) and (3.4), (3.5) we get

ur(x, 0) ≤ u0(x), Dur(x, 0) ≤ Du0(x), (3.6)

ur(±1, t) = u(±1, t). (3.7)

Applying the comparison principle, we have

ur(x, t) ≤ u(x, t). (3.8)

For p > 2, by (3.8), we obtain

[u(x, λt)]p−2 − [u(x, t)]p−2

λt − t
≥

(1/λ − 1)[u(x, t)]p−2

λt − t

where λ = rp−2. Letting λ → 1−, we get

∂

∂t
[u(x, t)]p−2 ≥ −

1

t
[u(x, t)]p−2,

in the distribution, which implies that Lemma holds. Thus the proof is

completed.

Proof of Theorem 3.1. The proof follows from Lemma 3.2.
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