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OPERATOR VALUED PROBABILITY THEORY

Abstract. We outline an extention of probability theory based on

positive operator valued measures. We generalize the main notions from

probability theory such as random variables, conditional expectations,

densities and mappings. We introduce a product of extended probability

spaces and mappings, and show that the resulting structure is a monoidal

category, just as in the classical theory.
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1. Introduction

In this paper we present an extension of standard probability theory.

An extended probability space is defined to be a normalized positive

operator valued measure defined on a measurable space of events. This

notion of extended probability space includes probability spaces and spec-

tral measures as important special cases. The use of the word probability

in this context is justified by showing that extended probability spaces

enjoy properties analog to all the basic properties of classical probabil-

ity spaces. Random vectors are defined as a generalization of the usual

Hilbert space of square integrable functions. This generalization is well

known in the literature and was first described by Naimark. Expectation

and conditional expectation is defined for extended probability spaces by

orthogonal projections in complete analogy with probability spaces.

The introduction of probability densities presents special problems in

the context of extended probability spaces. For the case of probability

spaces a probability density is any normalized positive integrable func-

tion, whereas for the case of extended probability spaces it turns out that

the right notion is not a density but a half density. These half densities

are elements in a Hilbert module of length one. Special cases of such half

densities are well known in quantum mechanics where they are called

wave functions. We define a random operator to be a linear operator on

the space of half densities. The expectation of random operators are op-

erators acting on the Hilbert space underlying the extended probability

space. For the case of probability spaces the notion of random vectors

and random operators coincide.

We introduce mappings or morphisms of extended probability spaces

through a generalization of the notion of absolute continuity in probabil-

ity theory. Half densities plays a pivotal role in this generalization. We

show that the morphisms can be composed and that extended probabil-

ity spaces and morphisms forms a category just as for probability spaces.

The Naimark construction extends to morphisms and in fact defines a

functor on the category of extended probability spaces.

Extended probability spaces can be multiplied and we furthermore

show that this multiplication can be extended to morphisms in such a

way that it defines a monoidal structure on the category of extended

probability spaces. This is in complete analogy with the case of proba-

bility spaces and testify strongly to the naturalness of our constructions.

We do not in this paper attempt to give any interpretation of extended

probabilities beyond the one implied by the strong structural analogies
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that we have shown to exists between the categories of probability spaces

and extended probability spaces. It is well known that the interpretation

of the classical Kolmogorov formalism for standard probability theory

is not without controversy as the old debate between frequentists and

Bayesians, among others, clearly demonstrate. Our theory of extended

probability spaces is evidently a generalization of the Kolmogorov frame-

work and it might be hoped that this enlarged framework will put some

of the controversy in a different light. As a case in point note that ex-

tended probabilities are in general only partially ordered. The notion of

partially ordered probabilities has been discussed and argued over for a

very long time. In our theory of extended probability spaces, ordered

and partially ordered probabilities lives side by side and enjoy the same

formal categorical properties.

2. Extended probability spaces

In this section we will make some technical assumptions that will as-

sumed to hold throughout this paper. These assumptions are not neces-

sarily the most general ones possible.

A measurable space [5] is a pair X = 〈ΩX ,BX〉 where ΩX is a set and

BX is a σ-algebra on ΩX . A measurable map f : X → Y is a map of

sets ΩX → ΩY such that f−1(A) ∈ BX for all A ∈ BY . Let Ω be a

set and let τ be a topology on Ω. In this paper the term topology is

taken to mean a second countable,locally compact Hausdorff topology

[3]. Note that any such space is metrizable,Polish and σ-compact. The

Borel structure corresponding to a topology τ is the smallest σ-algebra

containing the topology τ and is denoted by B(τ). A Borel space is a

measurable space where the σ-algebra is a Borel structure. Any contin-

uous map f : 〈ΩX , τX〉 → 〈ΩY , τY 〉 is measurable with respect to the

Borel structures B(τX) and B(τY ). Borel sets are the observable events

to which we must assign probabilities.

Let now 〈ΩX ,B(τX)〉 be a Borel space and let O(HX) be the real C∗

algebra [4] of bounded operators on the real Hilbert space HX . A positive

operator valued measure (POV) [1] defined on 〈ΩX ,B(τX)〉 is a map FX

from B(τX) to O(HX) such that FX(∅) = 0,FX(ΩX) = 1. The map FX

is assumed to be finitely additive on disjoint union of sets and for any

increasing sequence of sets {Vi} satisfy the following continuity condition

FX( lim
i−→∞

Vi) = sup{FX(Vi) | i = 1, 2, 3, ....},

where the supremum is taken with respect to the usual partial ordering

of self adjoint operators. The supremum always exists since the sequence



20 P. K. JAKOBSEN AND V. V. LYCHAGIN

{FX(Vi)} is increasing and bounded above by FX(limi−→∞ Vi). The con-

tinuity condition implies that FX is additive on countable disjoint unions.

FX(U∞
i=1Vi) =

∞∑

i=1

FX(Vi),

where the sum converges in the strong operator topology, that is, point-

wise convergence in norm.

A positive operator valued measure is a spectral measure if FX(V ) is a

projector for all V ∈ B. A necessary and sufficient condition for a POV,

FX ,to be a spectral measure is that it is multiplicative

FX(V1 ∩ V2) = FX(V1)FX(V2).

We are now ready to define our first main object

Definition 1. A extended probability spaceX is a triple X = 〈ΩX ,B(τX), FX〉
where FX : B(τX) −→ O(HX) is a positive operator valued measure.

Note that a probability space X = 〈ΩX ,B(τX), µX〉 can be iden-

tified with a extended probability space in many different ways. In

fact for any given Hilbert space HX we can identify the probability

space with a extended probability space X = 〈ΩX ,B(τX), FX〉 where

FX(V ) = µX(V )IHX
.

3. Random vectors

In standard probability theory quadratic integrable random variables

and their expectation plays an important role. We will now review the

classical Naimark construction of the analog of such random variables

for the case of extended probability spaces. We will call such random

variables random vectors. The space of random vectors forms a Hilbert

spaces and we use this structure to define expectation and conditional

expectation by orthogonal projections in complete analogy with the stan-

dard case.

3.1. The space of random vectors. Let 〈Ω,B, F 〉 be a extended prob-

ability space and let S be the linear space of simple measurable functions

v : Ω → H. The linear structure is defined through pointwise operations

as usual. Elements in S can be written as finite sums of characteristic

functions.

v =
∑

i

ξiθVi
,



OPERATOR VALUED PROBABILITY THEORY 21

where {Vi} is a B -measurable partition of the set Ω. We define a pseudo

inner product on S by

〈v, w〉 =
∑

i,j

〈F (Vi ∩Wj)ξi, ηj〉H ,

where v =
∑

i

ξiθVi
, w =

∑

j

ηjθWj
and 〈 〉H is the inner product in the

Hilbert space H. The product is not definite. In fact we have

〈v, v〉 = 0

m
∑

i

〈F (Vi)ξi, ξi〉H = 0

m
〈F (Vi)ξi, ξi〉 = 0

for all i.

The last identity follows from the fact the F (Vi) is a positive operator.

So for any simple function v =
∑
ξiθVi

we have 〈v, v〉 = 0 if and only if

F (Vi)ξi ⊥ ξi for all i. This is of course true if Vi is of F measure zero but

it can also be true if F (Vi) 6= 0 but ξi is in the kernel of F (Vi).

Since 〈 〉 is a pseudo inner product the set of elements of length zero,

〈v, v〉 = 0, form a linear subspace and we can divide S by this subspace.

and thereby get a, in general, incomplete inner product space. The com-

pletion of this space with respect to the associated norm is by definition

the space of random vectors and is a Hilbert space. We will use the no-

tation L2(B, F ) or just L2(F ) for this space in analogy with the classical

notation L2(µ). The set of equivalence classes of simple functions [v] ev-

idently form a dense set in L2(F ). Denote this dense subspace by T (F ).

We have a well defined isometric embedding π of H into L2(F ) defined

by

π(ξ) = [ξθΩ].

We also have a spectral measure P : B → O(L2(F )). On the dense set

T (F ) the spectral measure is given by

P (α)[v] = [
∑

i

ξiθVi∩α],

where v =
∑
ξiθVi

.

In fact the existence of this spectral measure is the whole point of the

Naimark construction. It show that by extending the Hilbert space one

can turn any POV into a spectral measure. This idea has been generalized
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by Sz.-Nagy and J. Arveson into a theory for generating representations

of ∗́-semigroups but we will not need any of these generalization in our

work.

As our first example let µ be a measure on the measurable space 〈Ω,B〉
and let H be a Hilbert space. Define a positive operator valued measure

on 〈Ω,B〉 acting on H by

F (U) = µ(U)1H .

For this case we have

〈[v], [w]〉 =
∑

i,j

〈µ(Vi∩Wj)ξi, ηj〉H =
∑

i,j

〈ξi, ηj〉Hµ(Vi∩Wj) =

∫
〈v, w〉Hdµ,

where for anyH valued functions f, g we define 〈f, g〉H(x) = 〈f(x), f(x)〉H .

Thus for this case our space L2(F ) will be the space of H valued function

elements such that

∫
〈f, f〉Hdµ < ∞. When H = C the space L2(F )

turns into the space of square integrable complex valued functions L2(µ).

As our second example let H be two dimensional and let a basis {ξ1, ξ2}
be given. With respect to this basis we have

F (U) =

[
µ(U) ω(U)

ω(U) ν(U)

]
,

where µ and ν and ω are signed measures. In order for F (U) to be

positive for all U it is easy to see that µ and ν must be positive measures

and that the following inequality must hold

ω(U)2 ≤ µ(U)ν(U).

Any function f : Ω → H determines a pair of real valued functions

{f1, f2} through f(x) = f1(x)ξ1 + f2(x)ξ2. The inner product in L2(F )

is given in terms of the measures µ,ν and ω as

〈(f1, f2), (g1, g2)〉

=

∫
f1g1dµ+

∫
f2g2dν +

∫
(f1g2 + f2g1)dω.

Similar expressions for the inner product in L2(F ) exists for any finite

dimensional Hilbert space H.

3.2. The expectation of random vectors. Recall that we have a iso-

metric embedding π : H → L2(F ) defined by

π(ξ) = [ξθΩ].
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Note that the image π(H) ⊂ L2(F ) is a closed subspace and therefore

the orthogonal projection onto π(H) exists. Let QH be this orthogonal

projection.

Definition 2. The expectation of a random vector f ∈ L2(F ) is the

unique element E(f) ∈ H such that

π(E(f)) = QH(f).

The following result is a immediate consequence of the definition

Proposition 3. The expectation is a surjective continuous linear map

: L2(F ) → H and is the adjoint of the embedding π

〈f, π(ξ)〉 = 〈E(f), ξ〉 ∀ξ ∈ H.

Note that adjointness condition uniquely determines the expectation.

In fact we could define the expectation to be the adjoint of the embedding

π.

Using this proposition it is easy to verify that the expectation of a

simple function element [v] where v =
∑
ξiθVi

is given by

E([v]) =
∑

i

F (Vi)(ξi).

This example makes it natural to introduce a integral inspired notation

for the expectation

E(f)
def
=

∫
dFf.

Note that it is natural to put the differential dF in front of f to em-

phasize the fact that F is a operator valued measure that acts on the

function valued of f .

Let {ξi} be an orthonormal basis for H. For general elements f the

following formula holds

E(f) =
∑

i

〈f, π(ξi)〉ξi.

3.3. Conditional expectation. Let A ⊂ B be a σ-subalgebra. We can

restrict the POV F to A and will in this way get the Hilbert space

L2(A, F ) of A measurable random vectors. We obviously have a isomet-

ric embedding of L2(A, F ) into L2(B, F ). Thus L2(A, F ) can be identified

with a closed subspace of L2(B, F ) and therefore the orthogonal projec-

tion QA : L2(B, F ) → L2(A, F ) is defined. In complete analogy with the

classical case we now define



24 P. K. JAKOBSEN AND V. V. LYCHAGIN

Definition 4. The conditional expectation of a element f ∈ L2(B, F ) is

given by

EA(f) = QA(f) ∈ L2(A, F ).

It is evident that L2(A, F ) is isomorphic to H when A = {Ω, ∅} and

that for this case we have EA(f) = π(E(f)). Let us consider the next

simplest case when A is generated by a partition {A1...An} where Ω =

∪ Ai and Ai ∩ Aj = ∅ when i 6= j. We need the following result

Proposition 5. Let F (Ai) for i = 1..n have closed range. Then L2(A, F ) =

T (A, F ).

Proof. Let [vn] be a Cauchy sequence in the inner product space T (A, F ).

This means that ||[vn] − [vm]||2 → 0 when m and n goes to infinity. But

vn =
∑

i

ξn
i θAi

and since F (Ai) are positive operators we get

∑

i

〈F (Ai)(ξ
n
i − ξm

i ), ξn
i − ξm

i 〉 → 0

⇓
〈F (Ai)(ξ

n
i − ξm

i ), ξn
i − ξm

i 〉 → 0

for all i.

Let Li = F (Ai)(H) be the range of F (Ai) and let L⊥ be the orthogonal

complement of Li. We have L⊥
i = Ker(F (Ai)) and since Li by assump-

tion is a closed subspace we have the decomposition H = Li⊕L⊥
i . Write

ξn
i = rn

i + tni with rn
i ∈ L⊥

i and tni ∈ Li. We then have by orthogonality

〈F (Ai)(t
n
i − tmi ), tni − tmi 〉 → 0.

Clearly F (Ai)|Li
: Li → Li is a positive, bounded, injective and sur-

jective map.

Let Ti : Li → Li be the square root of this operator. It is also a pos-

itive bounded injective and surjective map and therefore has a bounded

inverse. From the previous limit we can conclude that

〈Ti(t
n
i − tmi ), Ti(t

n
i − tmi )〉 → 0.

Thus {Ti(t
n
i )} is a Cauchy sequence in Li and since Li is closed there ex-

ists a element yi ∈ Li such that Ti(t
n
i ) → yi. From the previous remarks

the element ξi = T−1
i (yi) ∈ Li exists and limn→∞ tni = limn→∞ T−1

i (Ti(t
n
i )) =
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T−1
i (limn→∞ Ti(t

n
i )) = T−1

i (yi) = ξi. If we let v =
∑
ξiθAi

we have

||[vn] − [v]||2

=
∑

i

〈F (Ai)(ξ
n
i − ξi), ξ

n
i − ξi〉

=
∑

i

〈Ti(t
n
i − ξi), Ti(t

n
i − ξi)〉

=
∑

i

〈Ti(t
n
i ) − yi, Ti(t

n
i ) − yi〉

=
∑

i

||Ti(t
n
i ) − yi|| → 0.

Therefore T (A, F ) is complete. �

The assumption in the proposition holds for example if H is finite di-

mensional or if H is infinite dimensional but all the F (Ai) are orthogonal

projectors or isomorphisms. For the classical measure case H ≈ R and

the proposition is true.

Let v =
∑
ξjθVj

be a simple function in L2(B, F ). Then by the previous

proposition the conditional expectation must be of the form QA(v) =∑
ηiθAi

. It is uniquely determined by the conditions 〈v−QA(v), ξθAj
〉H =

0 for all ξ ∈ H and j = 1..n. These conditions give us the following

systems of equations for the unknown vectors ηi:

F (Ai)ηi =
∑

k

F (Vk ∩ Ai)ξk

for any i.

This systems does not have a unique solution in H but all solutions

represents the same element in L2(A, F ) = T (A, F ). For the special case

v = ξ0θC we get the simplified system

F (Ai)ηi = F (C ∩ Ai)ξ0.

When dim H = 1 and F (Ai) = µ(Ai) we get the usual classical expression

for the conditional expectation of C given A.

4. Densities and random operators

Densities are important for most applications of probability theory.

For us they will make their appearance when we seek to generalize the

relation of absolute continuity between measures to the context of pos-

itive operator valued measures. This generalization will play a pivotal
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role when we define maps between extended probability spaces. The gen-

eralization of the notion of density to the case of operator measures turns

out to be surprisingly subtle.

4.1. The Hilbert module of half densities. Let ν be a measure. A

density is a positive measurable function ρ such that

∫
ρdν = 1. Using

this density we can define a new measure

µ(V ) =

∫

V

ρdν.

If we try to generalize this formula directly to the case of POV measures

we run into problems.

Let F be a POV defined on a measurable space 〈Ω,B(τ)〉 and let ρ be

a function as above. Then we can certainly define a new POV measure

by the following formula

E(V ) =

∫

V

ρdF.

There is nothing inconsistent in this definition, the only problem is

that it is very limited. In fact if Ω is a finite set then any POV measure

on Ω is given by a finite set {Fi} of positive operators between zero and

the identity with the single condition
∑
Fi = 1. If E is the new POV

determined by the above formula then we have Ei = ρiFi for some set of

numbers {ρi}. Thus each Ei is proportional to Fi.

Now if the numbers ρi were changed into positive operators we could

produce a much more general E starting from a given F . We would thus

be considering a formula like

E(V ) =

∫

V

ρdF,

where ρ is a positive operator valued function. However even if we could

make sense of the proposed integral we would have problems. This is

because the product of positive operators is positive if and only if they

commute. This would put a highly nontrivial constraint on the allowed

densities, constraints it would be difficult to verify and keep track of.

There is however a natural way out of these problems. It is very simple

to verify that if F is a POV measure acting on H and Q a operator, then

QFQ∗ is a new POV measure. This suggest that we consider a density

to be a operator valued function ϕ such that
∫

Ω

ϕdFϕ∗ = 1. (1)
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We could then use this density to define a new POV measure by

E(V ) =

∫

V

ϕdFϕ∗. (2)

On a formal level this now looks fine, the only remaining problem is

to make sense of the proposed integrals. We will now proceed to do this.

Let

V = {s =
∑

i

siθVi
| si ∈ O(H) Vi ∈ B(τ)},

where {Vi} form a measurable partition of Ω. These are simple measur-

able operator valued functions. The set V is a real linear space through

pointwise operations as usual. We can define a left action of O(H) on V

in the following way

as =
∑

i

(asi)θVi
.

This action clearly makes V into a left module over the real C∗- algebra

O(H). Define an O(H) valued product on V through

〈s, t〉 =
∑

i,j

siF (Vi ∩Wj)t
∗
j ,

where s =
∑
siθVi

and t =
∑
tjθWj

. This product is clearly bilinear over

the real numbers.

Proposition 6. The following properties

〈s, s〉 ≥ 0,

〈as, t〉 = a〈s, t〉,
〈s, t〉 = 〈t, s〉∗,

〈s, at〉 = 〈s, t〉a∗

hold.

Thus the product is like a Hermitian product where the role of complex

numbers are played by the elements of the real C∗-algebra O(H). Such

structures have been known and studied for a long time. They leads, as

we will see, in a natural way to the idea that probability densities for

operator measures are elements in a Hilbert module. Our main sources

for the theory of Hilbert modules are the paper [10] and the book [2].

Chapters on Hilbert modules can also be found in the books [7] and [13].

Note that the product we have constructed is not positive definite. In

fact, since the sum of positive operators in a real C∗-algebras is zero only

if each operator is zero, the identity 〈s, s〉 = 0 holds if and only if

siF (Vi)s
∗
i = 0 for all i.
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These identities can easily be satisfied for nonzero operators si. In fact

if F (Vi) are projectors and si are projectors orthogonal to F (Vi) then the

equations are clearly satisfied. In order to make the product definite

we will need to divide out by the set of simple functions whose square

is zero 〈s, s〉 = 0. In order to do this we will need the analog of the

Cauchy-Swartz inequality.

For any element s ∈ V we know that 〈s, s〉 ≥ 0 and therefore there

exists a positive operator h such that h2 = 〈s, s〉. Denote this operator

by |s|. Thus we have |s|2 = 〈s, s〉. Also for any element s ∈ V define a

real number ||s|| by

||s||2 = ||〈s, s〉||

where ||〈s, s〉|| is the operator norm of the positive operator 〈s, s〉. With

these definitions at hand we can now state the following Cauchy Swartz

inequalities for V . The proof of this proposition is an adaption of the

proof in [13] to the case of real C∗ algebras.

Proposition 7. The following forms of the Cauchy-Swartz inequality

〈s, t〉〈t, s〉 ≤ |s|2||t||2,
||〈s, t〉|| ≤ ||s|| ||t||

hold.

Proof. A positive linear functional, ω ,on O(H) is a real valued linear

functional such that ω(a) ≥ 0 whenever a ≥ 0. A state on O(H) is a

positive linear functional such that ω(1) = 1 and ω(a) = ω(a∗). The

main property that makes states useful in C∗ algebra theory is that if

a 6= 0 there exists a state such that ω(a) = ||a||. From this it follows

immediately that if ω(a) = 0 for all states ω then a = 0 and this implies

that if ω(a) ≤ ω(b) for all states then a ≤ b. In this way verification

of inequalities in a C∗ algebra is reduced to the verification of numer-

ical inequalities. Also recall that in any real C∗ -algebra the following

important inequality holds [4]

ω(a∗b∗ba) ≤ ||b∗b||ω(a∗a)

For any given state ω define (s, t)ω = ω(〈s, t〉). It is evident that ( , )ω

is a pseudo inner product on V . It therefore satisfy the Cauchy-Swartz

inequality (s, t)2
ω ≤ (s, s)ω(t, t)ω. Define a = 〈s, t〉. We clearly have

ω(aa∗) = ω(a〈t, s〉) = ω(〈at, s〉) = (at, s)ω.
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Therefore

ω(aa∗) ≤ [(at, at)ω(s, s)ω]
1
2

= [ω(a〈t, t〉a∗)(s, s)ω]
1
2

= [ω(a|t|2a∗)(s, s)ω]
1
2

≤ ||〈t, t〉|| 12ω(aa∗)
1
2ω(〈s, s〉) 1

2 .

Dividing by ω(aa∗)
1
2 we find

ω(aa∗)
1
2 ≤ ||t||ω(〈s, s〉) 1

2 = ω(||t||〈s, s〉).
The first inequality now follows since this numerical inequality holds

for all states ω. As for the second inequality recall that in any real C∗-

algebra we have ||aa∗|| = ||a||2 and for any pair of operators 0 ≤ a ≤ b

we have ||a|| ≤ ||b||. Using this we have

||〈s, t〉||2 = ||〈s, t〉〈s, t〉∗|| = ||〈s, t〉〈t, s〉|| ≤ || |s|2||t||2|| = ||s||2||t|2

and this proves the second inequality. �

From the second inequality we can in the usual way conclude that the

triangle inequality holds for || ||.

Corollary 8. || || is a pseudo norm on V .

Let N be the subset of elements in V of pseudonorm zero.

N = {s | ||s|| = 0}.
For any operator a ∈ O(H) and a pair of elements s and t in N we

now have

||as||2 = ||〈as, as〉|| = ||a〈s, s〉a∗|| ≤ ||a|| ||s||2 ||a∗|| = 0

||s+ t|| ≤ ||s|| + ||t|| = 0.

Thus N is a submodule and we can therefore define a quotient module

H̃ = V/N.

Elements in H̃ are equivalent classes of simple operator valued func-

tions denoted by [s]. Note that for any elements [s], [t] ∈ H̃ with [s] = 0

we have

||〈s, t〉|| ≤ ||s|| ||t|| = 0,

and as a consequence of this 〈s, t〉 = 0. We therefore have a well defined

operator valued product on H̃ defined through

〈[s], [t]〉 = 〈s, t〉
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This product enjoy the same properties as the product on V and is

in addition positive definite. Thus H̃ with this product is a pre-Hilbert

module with a norm || || defined on the underlying real vector space. In

general this vector space is not complete with respect to the norm. We

can however complete the vector space with respect to the norm. The

resulting structure is a Hilbert module over the real C∗-algebra O(H).

We will call it the Hilbert module corresponding to the extended proba-

bility space 〈Ω,B(τ), F 〉. With the analogy with Hilbert spaces in mind

we will consider 〈ϕ, ϕ〉 to the the square length of ϕ. Note that for a

general Hilbert module the length is a positive operator, not a positive

number. Also note that in order to simplify the notation we use the same

symbol || || for the norm on H and for the operator norm on O(H). This

is the sense of the formula ||ϕ||2 = ||〈ϕ, ϕ〉||.
We have now made sense of equation (1). It just state that ϕ should

be a element in the Hilbert module H of length 1.

We will next proceed to make sense of equation (2). Note that what

we do is in fact to prove the analog of the easy part of the classical

Radon-Nikodym theorem.

For any U ∈ B(τ) define a map PU : V → V by

PU(s) =
∑

i

siθVi∩U .

This map is clearly a O(H) module morphism.

Proposition 9. The following properties

PU ◦ PU = PU ,

PU(as) = aPU(s), ∀a ∈ O(H),

PU∩V = PU ◦ PV ,

〈PU(s), t〉 = 〈s, PU(t)〉,
〈s, PU(s)〉 ≥ 0,

PV + PW = PV ∪W , if V ∩W = ∅,
〈PU(s), PU(s)〉 ≤ 〈s, s〉,

||PU(s)|| ≤ ||s||
hold.

The last property shows that if ||s|| = 0 then ||PU(s)|| = 0. Therefore

PU induce a well defined map, also denoted by PU , on H̃ through

PU([s]) = [PU(s)].



OPERATOR VALUED PROBABILITY THEORY 31

The last property shows also that the map PU is bounded on H̃. It

therefore extends to a unique bounded linear map on H. This map clearly

also enjoy the properties listed in the previous proposition.

Let now ϕ be a element in the Hilbert module H of unit length 〈ϕ, ϕ〉 =

1. For each set U ∈ B(τ) define a operator Eϕ(U) on the Hilbert space

H by

Eϕ(U) = 〈ϕ, PU(ϕ)〉.
Clearly Eϕ(Ω) = 1 and Eϕ(U) ≥ 0 for all U . It is also evident from

the previous proposition that Eϕ is finitely additive on disjoint sets. It

is in fact also countably additive as we now show.

Theorem 10. Eϕ : B(τ) → O(H) is a positive operator valued measure.

Proof. Let first s =
∑

i

siθVi
be a element in V with 〈s, s〉 = 1 and let {Tj}

be a increasing sequence of sets with limit T = ∪jTj. The set of operators

{Es(Tj)} is a increasing sequence of positive operators. The supremum

of this sequence exists [1]. Denote the supremum by Sup{Es(Tj)}. In

order to show that Es is a positive operator valued measure we only need

to show that

Es(∪jTj) = Sup{Es(Tj)}.
It is a fact [1] that the sequence Es(Tj) converges strongly to the limit

Sup{Es(Tj)}. Since the strong limit is unique when it exists we must only

show that Es(Tj)(x) → Es(∪jTj)(x) for all elements x ∈ H. We know

that F is a positive operator valued measure so F (Tj ∩ Vi) → F (T ∩ Vi)

strongly. But then since all si are bounded operators we have

siF (Tj ∩ Vi)s
∗
i (x) → siF (T ∩ Vi)s

∗
i (x)

⇓
∑

i

siF (Tj ∩ Vi)s
∗
i (x) →

∑

i

siF (T ∩ Vi)s
∗
i (x)

⇓
Es(Tj)(x) → Es(T )(x),

for all x ∈ H. This proves that Es is a POV. Next for any element [s] in

H̃ we define E[s](U) = 〈[s], PU([s])〉. It is trivial to verify that E[s] = Es

so that the previous proof show that E[s] is a POV. Finally let ϕ be a

arbitrary element in H. Then there exists a sequence of elements [sn] in

H such that [sn] → ϕ. Since E[sn] is a POV we know that for all x ∈ H

µn
x(U) = 〈E[sn](U)x, x〉H is a measure.
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Let µx be the positive set function defined by

µx(U) = 〈Eϕ(U)x, x〉H .
By continuity we know that E[sn](U) → Eϕ(U) in the uniform norm and

thus strongly. But then by continuity of the inner product on H we can

conclude that

lim
n→∞

µn
x(U) = µX(U),

for all sets U ∈ B(τ). This implies through the Vitali-Hahn-Saks theorem

[5] that µx is a measure and then it follows [1] that Eϕ is a POV. �

We have now made sense of equation (2) and are now ready to define

the symbolic expressions occurring in equation (1) and (2).

We define the integrals

∫
ϕdFψ∗and

∫

V

ϕdFϕ∗as follows:

∫
ϕdFψ∗ def

= 〈ϕ, ψ〉,
∫

V

ϕdFϕ∗ def
= 〈ϕ, PV (ϕ)〉.

We have thus found that probability densities for operator valued mea-

sures are not functions but elements in a Hilbert module. They should in

fact not be thought of as densities but as half densities, their square is a

density in the above sense. This is a startling conclusion. Half densities

are however not unfamiliar to anyone that has been exposed to quantum

mechanics. Wave functions are half densities. In fact wave functions

appear naturally in this scheme. If F is a positive operator valued mea-

sure acting on a real two dimensional Hilbert space we are lead to define

densities as functions whose values are operators on the plane. The com-

plex numbers are isomorphic to a special subalgebra of operators on the

plane (the conformal operators). Thus a large class of densities can be

identified with complex valued functions of length one. Since self-adjoint

operators are now naturally identified with real numbers the length can

be considered to be a number. What we are describing are of course wave

functions. Thus densities for positive operator valued measures acting

on a two-dimensional plane are wave functions.

4.2. Random operators. Recall [2] that a map A : H → H is said to

be adjointable if there exists a map denoted by A∗ : H → H such that

〈A∗ϕ, ψ〉 = 〈ϕ,Aψ〉,
for all elements ϕ and ψ in H. A map is self-adjoint if A∗ = A. It

follows directly from the algebraic properties of the inner product and the
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completeness of the underlying real vector space that any adjointable map

is a bounded O(H) module morphism. In fact the set of all adjointable

maps form a abstract real C∗-algebra that we denote by A. We will call

the elements in A random operators.

The expectation of a random operator A with respect to a density ϕ is

by definition given by

〈A〉 = 〈ϕ,Aϕ〉.

The expectation of a random operator with respect to a density ϕ is

thus a operator on H. We can also use the density to define a POV

acting on H as we have seen. Note that the expectation of self-adjoint

random operators is a self-adjoint operator in O(H).

Returning to the two dimensional example discussed above we see that

in that case for complex valued densities the expectation of self-adjoint

random operators can be identified with real numbers and thus the ex-

pectation of random operators can be thought of as numbers. In higher

dimensions and for more general densities no such identification with

real numbers is possible. Furthermore no such reduction should be ex-

pected. After all, the self-adjoint elements in a real C∗-algebra are the

right analog of real numbers.

Let us assume that the real Hilbert space underlying the extended

probability space X is one dimensional. If we choose a basis we can

identify the Hilbert space with R and the Hilbert module HX with the

real Hilbert space of square integrable functions on R. A positive operator

valued measure is through the basis identified with a probability measure

and therefore for a half density ϕ ∈ HX the formula E(V ) = 〈ϕ, PV ϕ〉
turns into

µ(V ) =

∫
ϕ2dν.

The half density ϕ is of course not uniquely determined by the proba-

bility measures µ and ν unless we by convention always take the positive

square root. If all our observables are random vectors then it does not

matter which half density we choose, they will all produce the same ex-

pectation. Thus by restricting to random vectors as our observables the

difference between the various half densities ϕ are not observable. How-

ever there is really no rational reason to restrict to this class of observ-

ables. If we include random operators in our observables the difference

between the half densities are readily observable.
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5. The category of extended probability spaces

In classical probability theory the notion of morphisms of probability

spaces plays a role at least as important as the notion of a probability

space. In fact from the Categorical point of view morphisms are the most

important element in any theory construction. All other entities should

be defined in terms of the morphisms. In this section we review the notion

of a morphism in the context of probability spaces and then define the

corresponding notion for extended probability spaces. The naturalness

of our definition is verified by proving that extended probability spaces

and morphisms forms a category. We also show that just as for the case

of probability spaces we get a functor mapping the category of extended

probability spaces into the category of Hilbert spaces. The existence of

this functor is a verification of the naturalness of our constructions.

Let X = 〈ΩX ,B(τX), µX〉 and Y = 〈ΩY ,B(τY ), µY 〉 be probability

spaces. A morphism f : X → Y is a measurable map f : ΩX → ΩY

such that µY is absolutely continuous with respect to the push forward

of the measure µX by f , µY ≤ f∗µX . By the Radon-Nikodym theorem

this means that there exists a probability density ρ : ΩY → R such that

µY (V ) =

∫

f−1(V )

ρdµX .

There are several other possibilities for morphisms of probability spaces

[11]. We could have required f∗µX ≤ µY or f∗µX ≈ µY . They can

all be composed and lead to a category structure. However the only

possibility that generalize well to extended probability spaces is the first

one µY ≤ f∗µX .

5.1. Morphisms of extended probability spaces. In this section we

will introduce the notion of mapping between extended probability spaces

and will then use mappings to define morphisms. This distinction be-

tween mappings and morphisms does not exist for probability spaces.

In order to define what a mapping is in the context of extended prob-

ability spaces, we must first generalize the notions of absolute continuity

and push forward to positive operator valued measures. We will do this

by combining them into a single entity.

Definition 11. Let X = 〈ΩX ,B(τX), FX〉 be a extended probability space,

Y = 〈ΩY ,B(τY )〉 a measurable space and h the 3 tuple h = 〈fh, gh, ϕ h〉
where fh : ΩX → ΩY is a measurable map,gh : HY → HX is a isom-

etry and ϕh ∈ HX is a element in the Hilbert module corresponding to

X. Then the push forward of FX by h is the positive operator valued
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measure,h∗FX , defined on the measurable space Y by

h∗FX(V ) = g∗h ◦ 〈ϕh, Pf−1
h

(V )ϕh〉 ◦ gh,

where g∗h is the adjoint of gh.

Note that we have g∗h = g−1
h ◦Qh where Qh is the orthogonal projection

onto the closed subspace gh(HY ) ⊂ HX and therefore g∗h ◦ gh = 1 and

gh ◦ g∗h = Qh.We can now define mappings between extended probability

spaces using push forward in a very simple way.

Definition 12. Let X = 〈ΩX ,B(τX), FX〉 and Y = 〈ΩY ,B(τY ), FY 〉 be

extended probability spaces. A mapping h : X → Y is a 3 tuple,h, as in

the previous definition such that

h∗FX = FY .

Let us assume that the real Hilbert spaces underlying the extended

probability spaces X and Y are one dimensional. If we choose basis for

these two spaces we can identify the Hilbert spaces with R, the positive

operator valued measures with probability measures µ and ν and the half

density ϕ with a real valued function on ΩX . We must have gh = 1 and

the condition for h = 〈fh, 1, ϕh〉 to be a mapping is

ν(V ) =

∫

f−1
h

(V )

ϕ2
hdµ.

This is of course the condition for fh to be a mapping between the

probability spaces 〈ΩX ,B(τX), µ〉 and 〈ΩX ,B(τX), µ〉 if we identify the

classical density with ϕ2
h.

Our first goal is to show that the proposed mappings can be composed.

In order to do this we must first define a certain pullback of half densities

induced by a mapping. Let therefore mappings h : X → Y and k :

Y → Z of extended probability spaces be given. Let us first define a

measurable map fk◦h, a isometry gk◦h and a linear map h∗ by

fk◦h = fk ◦ fh : ΩX → ΩZ ,

gk◦h = gh ◦ gk : HZ → HX ,

h∗(a) = gh ◦ a ◦ g∗h : O(HY ) → O(HX).

The map h∗ has the following easily verifiable properties

Proposition 13. The map h∗ is bounded and

h∗(a + b) = h∗(a) + h∗(b),

h∗(ab) = h∗(a)h∗(b).
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Define a linear map h∗ : VY → HX by

h∗(s) =
∑

j

h∗(sj)Pf−1
h

(Vj)
(ϕh),

where s =
∑
sjθVj

. The map h∗ has the following important properties

Proposition 14. The map h∗ is bounded and

h∗(s+ t) = h∗(s) + h∗(t),

h∗(as) = h∗(a)h∗(s),

〈h∗(s), h∗(t)〉 = h∗(〈s, t〉),
[s] = 0 =⇒ [h∗(s)] = 0,

h∗(PV (s)) = Pf−1
h

(V )(h
∗(s)).

Proof. Let s =
∑
siθVi

and t =
∑
tjθWj

. Then it is easy to verify that

{Vi ∩Wj} form a partition of ΩY and that s+ t =
∑

(si + tj)θVi∩Wj
. But

then we have

h∗(s+ t) =
∑

i,j

h́∗(si + tj)Pf−1
h

(Vi∩Wj)
(ϕh)

=
∑

i,j

h∗(si)Pf−1
h

(Vi)∩f−1
h

(Wj)
(ϕh) +

∑

i,j

h∗(tj)Pf−1
h

(Vi)∩f−1
h

(Wj)
(ϕh)

=
∑

i

h∗(si)Pf−1
h

(Vi)
(ϕh) +

∑

j

h∗(tj)Pf−1
h

(Wj)
(ϕh) = h∗(s) + h∗(t).

This proves the second statement. For the third statement we have

h∗(as) = h∗(
∑

i

asiθVi
) =

∑

i

h∗(asi)Pf−1
h

(Vi)
(ϕh)

=
∑

h∗(a)h∗(si)Pf−1
h

(Vi)
(ϕh) = h∗(a)h∗(s),
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and

〈h∗(s), h∗(t)〉 =
∑

i,j

〈h∗(si)Pf−1
h

(Vi)
(ϕh), h

∗(tj)Pf−1
h

(Wj)
(ϕh)〉

=
∑

i,j

h∗(si) ◦ 〈ϕh, Pf−1
h

(Vi∩Wj)
(ϕh)〉 ◦ h∗(tj)∗

= gh ◦
(
∑

i,j

si ◦ g∗h ◦ 〈ϕh, Pf−1
h

(Vi∩Wj)
(ϕh)〉 ◦ gh ◦ t∗j

)
◦ g∗h

= gh ◦
(
∑

i,j

si ◦ h∗FX(Vi ∩Wj) ◦ t∗j

)
◦ g∗h

= gh ◦
(
∑

i,j

si ◦ FY (Vi ∩Wj) ◦ t∗j

)
◦ g∗h

= gh ◦ 〈s, t〉 ◦ g∗h = h∗(〈s, t〉)

proves the fourth statement. The first and last statement in the propo-

sition follows from the fourth. Finally

h∗(PV (s)) = h∗(
∑

i

siθV ∩Vi
) =

∑

i

h∗(si)Pf−1
h

(V ∩Vi)
(ϕ)

=
∑

i

h∗(si)Pf−1
h

(V )(Pf−1
h

(Vi)
(ϕ))) = Pf−1

h
(V )(h

∗(s)).

�

Using this proposition we can extend the map h∗ to a continuous linear

map from HY to HX . This map is given on the dense set H̃Y by

h∗([s]) = h∗(s).

All the properties in the proposition holds for the extension. We are

now ready to prove that our mappings can be composed

Theorem 15. Let h : X → Y and k : Y → Z be mappings of extended

probability spaces. Define ϕk◦h ∈ HX by ϕk◦h = h∗(ϕk). Then

k ◦ h = 〈fk◦h, gk◦h, ϕk◦h〉

is a mapping of extended probability spaces k ◦ h : X → Z and we have

(k ◦ h)∗ = h∗ ◦ k∗.

Proof. In order to show that k ◦ h is a mapping we must prove that

(k ◦ h)∗FX = FZ . But doing this is now a straight forward calculation if
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we use the previous proposition.

(k ◦ h)∗FX(V )

= g∗k◦h ◦ 〈ϕk◦h, Pf−1
k◦h

(V )(ϕk◦h)〉 ◦ gk◦h

= g∗k ◦ g∗h ◦ 〈h∗(ϕk), Pf−1
h

(f−1
k

(V ))(h
∗(ϕk))〉 ◦ gh ◦ gk

= g∗k ◦ g∗h ◦ 〈h∗(ϕk), h
∗(Pf−1

k
(V )(ϕk))〉 ◦ gh ◦ gk

= g∗k ◦ g∗h ◦ gh ◦ 〈ϕkPf−1
k

(V )(ϕk)〉 ◦ g∗h ◦ gh ◦ gk

= g∗k ◦ 〈ϕkPf−1
k

(V )(ϕk)〉 ◦ gk = FZ(V ).

The last statement in the theorem is also proved by direct calculation.

Let s =
∑
sjθVj

∈ VZ . Then we have

(k ◦ h)∗([s])
=
∑

j

(k ◦ h)∗(sj)Pf−1
k◦h

(Vj)
(ϕk◦h)

=
∑

j

h∗(k∗(sj))Pf−1
h

(f−1
k

(Vj ))(h
∗(ϕk))

=
∑

j

h∗(k∗(sj))h
∗(Pf−1

k
(Vj)

(ϕk))

= h∗(
∑

j

k∗(sj)Pf−1
k

(Vj)
(ϕk)) = h∗(k∗(s)).

Since the identity holds on a dense subset is also holds for all elements

in HZ and this proves the theorem. �

We now can use this Theorem to define composition of mappings

Definition 16. Let h : X → Y and k : Y → Z be mappings of extended

probability spaces. Then k ◦ h is the composition of k and h.

It is now straight forward to prove that composition of mappings is

associative.

Theorem 17. Let h : X → Y , k : Y → Z and r : Z → T be mappings

of extended probability spaces. Then we have

r ◦ (k ◦ h) = (r ◦ k) ◦ h.
Proof. Clearly we have fr◦(k◦h) = f(r◦k)◦h and gr◦(k◦h) = g(r◦k)◦h. And

from the previous theorem we have

ϕr◦(k◦h) = (k ◦ h)∗(ϕr) = h∗(k∗(ϕr))

ϕ(r◦k)◦h = h∗(ϕr◦k) = h∗(k∗(ϕr))

�
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Extended probability spaces and mappings of extended probability

spaces does unfortunately not form a category, we will in general not

have unit morphisms.

For a given extended probability space X = 〈ΩX ,B(τX), FX〉 the only

reasonable candidate for a unit morphism is

1X = 〈1ΩX
, 1HX

, 1HX
θΩX

〉.

For this mapping it is easy to show that

Proposition 18.

k ◦ 1X = k,

1Y ◦ h = 〈fh, gh, Qhϕh〉.

Thus the mapping is not a unit morphism in the categorical sense

unless gh is a isomorphism. It is for this reason that we distinguish

between mappings and the yet to be defined morphisms. Morphisms will

be defined in terms of a equivalence relation on mappings.

Recall that for any mapping h : X → Y , Qh : HX → gh(HY ) is the

orthogonal projection on the closed subspace gh(HY ).

Definition 19. Two mappings h, k : X → Y of extended probability

spaces are equivalent if

fh = fk,

gh = gk,

Qhϕh = Qkϕk.

If h and k are equivalent we will write h ≈ k.

The defined relation is a equivalence relation. In order to define mor-

phisms we must show that composition of mappings extends to equiva-

lence classes of mappings. For this we need the following two lemmas.

Lemma 20. Let h : X → Y and k : Y → Z be mappings of extended

probability spaces. Then

Qk◦h = h∗(Qk).

Proof. For any ξ ∈ HX , Qk◦h(ξ) is the unique vector in gh(gk(HZ)) such

that ξ −Qk◦h(ξ) is orthogonal to gh(gk(HZ)). But for any η = gh(gk(α))
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in gh(gk(HZ)) we have

〈ξ − h∗(Qk)(ξ), η〉
= 〈ξ − (gh ◦Qk ◦ g∗h)(ξ), gh(gk(α)))〉
= 〈g∗k(g∗h(ξ)) − (g∗k ◦ g∗h ◦ gh ◦Qk ◦ g∗h)(ξ), α〉
= 〈g∗k(g∗h(ξ)) − g∗k(g

∗
h(ξ)), α〉 = 0.

Therefore by uniqueness Qk◦h(ξ) = h∗(Qk)(ξ). �

Lemma 21. Let h, h′ : X → Y be equivalent. Then

h∗ = h′∗.

Proof. We only need to verify the identity on the dense subset H̃X ⊂ HX .

But for any [s] ∈ H̃X with s =
∑
siθVi

we have

h′∗([s]) =
∑

i

h′∗(si)Pfh′ (Vi)(ϕh′)

=
∑

i

(gh′ ◦ si ◦ g−1
h′ ◦Qh′)Pfh′(Vi)(ϕh′)

=
∑

i

(gh ◦ si ◦ g−1
h )Qh′Pfh(Vi)(ϕh′)

=
∑

i

(gh ◦ si ◦ g−1
h )Pfh(Vi)(Qh′ϕh′)

=
∑

i

(gh ◦ si ◦ g−1
h )Pfh(Vi)(Qhϕh) = h∗([s]).

�

We can now prove that composition is well defined on classes.

Proposition 22. Let h, h′ : X → Y be equivalent and k, k′ : Y → Z be

equivalent. Then

k ◦ h ≈ k′ ◦ h′.

Proof. We only need to prove that ϕk◦h = ϕk′◦h′. But using the previous

two lemmas we have

Qk◦hϕk◦h = h∗(Qk)h
∗(ϕk) = h∗(Qkϕk) = h′∗(Qk′ϕk′) = Qk′◦h′(ϕk′◦h′).

�

Definition 23. A morphism between extended probability spaces X and

Y is a equivalence class, [h],of mappings h : X → Y .
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In order to keep the notation simple we will always denote a morphism

[h] by a representative mapping h. Thus when we speak of a morphism

h we mean the class [h]. The meaning will always be clear, we just have

to make sure that any operations involving morphisms does not depend

on choice of representative.

We can now formulate the main result of this subsection.

Theorem 24. Extended probability spaces and morphisms form a cate-

gory.

Proof. We know that composition is well defined and associative. For

any object X, let the unit mapping be 1X = 〈1ΩX
, 1Hx

, 1HX
θΩX

〉. From

proposition 18 we have for any morphisms h : X → Y

h ◦ 1X ≈ h,

1Y ◦ h = 〈fh, gh, Qhϕh〉 ≈ h

because Qh is a projection. �

We know that the category of probability spaces[11] has a terminal

object, T ,in the categorical sense, there is a unique morphism from any

probability space X to T . Here T = 〈ΩT ,BT , µT 〉 with ΩT = {∗} ,

BT = {∅, {∗}} and µT the only possible probability measure on BT . The

existence of T makes it possible to define points in probability spaces

categorically. We will now see that the category of extended probability

spaces does not have a terminal object and thus extended probability

spaces will not have points in the categorical sense, but only generalized

points. The only possible candidate for a terminal object in the category

of extended probability spaces is the object T = 〈ΩT ,BT , FT 〉 where

FT : BT → O(R) ≈ R is the only possible positive operator valued

measure, FT (ΩT ) = 1R. We will now show that T is in fact not a terminal

object.

Let h : X → T be any morphism of extended probability spaces. We

have h = 〈fh, gh, ϕh〉 and clearly fh : ΩX → ΩT = {∗} is unique. The

map gh : R → HX is a isometry and is therefore determined by a vector

ξh ∈ HX where 〈ξh, ξh〉 = 1 and gh(1) = ξh. The vector ξh and element

ϕh ∈ HX must satisfies the single condition

h∗FX(ΩT ) = FT (ΩT ) = 1R.

Using the definition of h∗ we find that the following identity must be

satisfied

〈〈ϕh, ϕh〉(ξh), ξh〉 = 1,
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and clearly this identity will be satisfied by many choices of ϕh and ξh.

Thus the morphism h is not uniquely determined and therefore T is not

a terminal object.

5.2. The Naimark functor. In probability theory there is a certain

functor that plays a major role in the theory. We will now review the

construction of this functor and show that a analog functor is defined

on the category of extended probability spaces. The existence of this

functor testify to the naturalness of our constructions. The functor will

be called the Naimark functor since the Naimark dilatation construction

plays a major role in its construction.

Let us start with a review of the functor for the case of probability

spaces. For any probability space X = 〈ΩX ,B(τX), µX〉 define a Hilbert

space,denoted by L2(X), by L2(X) = L2(µX). Let X = 〈ΩX ,B(τX), µX〉
and Y = 〈ΩY ,B(τY ), µY 〉 be two probability spaces and let f : ΩX → ΩY

be a morphism of probability spaces in the sense that

µY (V ) =

∫

f−1(V )

ρdµX

Define a mapping L2(f) : L2(Y ) → L2(X) by

L2(f)(ξ) =
√
ρ(ξ ◦ f)

It is easy to verify, using the Radon Nikodym theorem, that L2(f) is

in fact a isometry and moreover that L2 is a functor from the category

of probability spaces to the category of Hilbert spaces. We will now

show that it is possible to define a functor, also denoted by L2, from the

category of extended probability spaces to the category of Hilbert spaces

that for probability spaces reduce to the functor discussed above.

Let X and Y be extended probability spaces and let L2(X) and L2(Y )

be the corresponding Hilbert spaces of random vectors. Informally to

any morphism h : X → Y of extended probability spaces we will define

a isometry L2(h) : L2(Y ) → L2(X) by the formula

L2(h)(ξ)(x) = ϕ∗
h(x)(gh((ξ ◦ fh)(x)))

It is easy to see that the mapping L2(f) is a special case of this general

formula. Of course we can not use this formula to actually define L2(h)

since elements in L2(Y ) are not vector functions and elements in HX are

not operator valued functions. The action of elements in HX on L2(X)

implied by the formula must also be made sense of and since morphisms

are classes of mappings we need to prove independence of representative..

We will now prove that the map L2(h) exists and that it defines a functor.
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Recall that if SY denote the space of simple HY valued functions with

inner product 〈v, w〉 =
∑

i,j〈FY (Vi ∩ Tj)ξi, ηj〉HY
then L2(Y ) is the clo-

sure of TY = {[v] | v ∈ SY } where [v] = 0 iff 〈v, v〉 = 0. For any extended

probability space, VX is the linear space of simple operator valued func-

tions occurring in the construction of the Hilbert module HX . For a

measurable map f : ΩX → ΩY ,a isometry g : HY → HX and a element

v =
∑

i ξiθVi
∈ SY define a linear map tf,g

v : VX → L2(X) by

tf,g
v (s) = [

∑

i,j

s∗j(g(ξi))θf−1(Vi)∩Wj
]

where s =
∑

j sjθWj
∈ VX .

Lemma 25. For the linear map tf,g
v the following property

〈tf,g
v (s), tf,g

v (s)〉 ≤ cv,g||s||2

holds.

Proof. Let v =
∑

i ξiθVi
and s =

∑
j sjθWj

. Then we have

〈tf,g
v (s), tf,g

v (s)〉
=
∑

i,j

〈FX(Wj ∩ f−1(Vi))s
∗
j(g(ξi)), s

∗
j(g(ξi))〉HX

=
∑

i,j

〈(sjFX(Wj ∩ f−1(Vi))s
∗
j)(g(ξ i)), g(ξi)〉HX

=
∑

i

〈〈s, Pf−1(Vi)(s)〉(g(ξ i)), g(ξi)〉HX

≤
∑

i

〈〈s, s〉(g(ξ i)), g(ξi)〉HX
≤ cv,g||s||2.

In the last line we used the Cauchy-Swartz inequality and the definition

of the norm in the Hilbert module. �

This lemma implies that if [s] = 0 then [tf,g
v (s)] = 0 and therefore we

can extend tf,g
v to a bounded linear map tf,g

v : HX → L2(X). It is defined

on the dense subset H̃X by tf,g
v ([s]) = [tf,g

v (s)].

The following proposition sets the stage for proving the existence of

the Naimark functor.

Proposition 26. Let h : X → Y be a mapping of extended probability

spaces. Then there exists a isometry L2(h) : L2(Y ) → L2(X) that is

defined on the dense subset TY by

L2(h)([v]) = tfh,gh
v (ϕh),
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and that satisfy

L2(k ◦ h) = L2(h) ◦ L2(k),

L2(1X) = 1L2(X).

Proof. We will start by showing that tfh,gh
v only depends on the class of v.

Let {sn} be a sequence of elements in HX converging to ϕh. For each n

we can define a positive operator valued measure on 〈ΩY ,B(τY )〉 acting

on the Hilbert space HY by

F n
Y (V ) = g∗ ◦ 〈sn, Pf−1(V )(sn)〉 ◦ g.

By continuity F n
Y (V ) → FY (V ) strongly and thus weakly. But then we

have

〈tfh,gh
v (ϕh), t

fh,gh
v (ϕh)〉

= lim
n→∞

〈tfh,gh
v (sn), tfh,gh

v (sn)〉

= lim
n→∞

∑

i

〈〈sn, Pf−1(Vi)(sn)〉(g(ξ i)), g(ξi)〉HX

= lim
n→∞

∑

i

〈(g∗ ◦ 〈sn, Pf−1(Vi)(sn)〉 ◦ g)(ξ i)), ξi〉HY

= lim
n→∞

∑

i

〈F n
Y (Vi)(ξi), ξi〉HY

=
∑

i

〈FY (Vi)ξi, ξi〉HY
= 〈v, v〉.

The assumption [v] = 0 means that 〈v, v〉 = 0, so tfh,gh
v depends only

on the class of v. Therefore L2(h) is well defined on the dense subset

TY and the argument just given show that it is a isometry. It therefore

extends to a isometry from L2(Y ) to L2(X).

For the last part of the Theorem let [sn] and [tm] be sequences in

HX and HY converging to ϕh and ϕk. Here sn =
∑

l snlθWnl
and tm =∑

j tmjθTmj
. For [v] ∈ TZ ⊂ L2(Z) with v =

∑
i ξiθVi

we have by con-

tinuity of all maps involved that if we define [u] ∈ TY ⊂ L2(Y ) by
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um =
∑

i,j

t∗mj(gk(ξi))θf−1
k

(Vi)∩Tmj
then we have

L2(h) ◦ L2(k)([v])

= L2(h)(t
fk,gk
v (ϕk)) = L2(h)(t

fk,gk
v ( lim

m→∞
[tm]))

= lim
m→∞

L2(h)(t
fk ,gk
v ([tm]))

= lim
m→∞

L2(h)(
∑

i,j

t∗mj(gk(ξi))θf−1
k

(Vi)∩Tmj
) = lim

m→∞
L2(h)([um])

= lim
m→∞

tfh,gh
um

(ϕh) = lim
m→∞

lim
n→∞

tfh,gh
um

([sn])

= lim
m→∞

lim
n→∞

∑

i,j,l

(s∗nl ◦ gh ◦ t∗mj ◦ gk)(ξi)θf−1
h

(f−1
k

(Vi)∩Tmj )∩Wnl
.

Note that

h∗([tm])

=
∑

j

h∗(tmj)Pf−1
h

(Tmj )(ϕh)

=
∑

j

h∗(tmj)Pf−1
h

(Tmj )( lim
n→∞

[sn])

= lim
n→∞

∑

j,l

h∗(tmj)snlθf−1
h

(Tmj )∩Wnl
.

We have

L2(k ◦ h)([v]) = tfk◦h,gk◦h
v (ϕk◦h) = tfk◦h,gk◦h

v (h∗(ϕk))

= tfk◦h,gk◦h
v (h∗( lim

m→∞
[tm])) = lim

m→∞
tfk◦h,gk◦h
v (h∗([tm]))

= lim
m→∞

tfk◦h,gk◦h
v ( lim

n→∞

∑

j,l

h∗(tmj)snlθf−1
h

(Tmj )∩Wnl
)

= lim
m→∞

lim
n→∞

∑

i,j,l

(h∗(tmj)snl)
∗(gk◦h(ξi))θf−1

k◦h
(Vi)∩f−1

h
(Tmj )∩Wnl

= lim
m→∞

lim
n→∞

∑

i,j,l

(s∗nl ◦ gh ◦ t∗mj ◦ g∗h ◦ gh ◦ gk)(ξi)θf−1
h

(f−1
k

(Vi)∩Tmj )∩Wnl

= lim
m→∞

lim
n→∞

∑

i,j,l

(s∗nl ◦ gh ◦ t∗mj ◦ gk)(ξi)θf−1
h

(f−1
k

(Vi)∩Tmj )∩Wnl
.

The last statement of the theorem is verified by a trivial calculation.

�

We are now finally ready to prove the existence of the Naimark functor.
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Theorem 27. L2(h) is a well defined functor from the category of ex-

tended probability spaces to the category of Hilbert spaces.

Proof. We only need to prove that L2(h) is well defined for a given mor-

phism h. The functorial properties follows from the previous proposition.

Assume h ≈ h′. Let us first assume that the densities of h and h′ are [s]

and [s′]. We can without loss of generality assume that s and s′ are of

the form

s =
∑

i

siθWi
,

s′ =
∑

i

s′iθWi
,

since we can bring it to this form by the same construction as in lemma

29. The equivalence then amounts to Qhsi = Qh′s′i for all i. Then on the

dense subset TY ⊂ L2(Y ) we have for v =
∑
ξiθVi

that

L2(h)([v]) =
∑

i,j

s∗j(gh(ξi))θf−1
h

(Vi)∩Wj

=
∑

i,j

(s∗j ◦Qh ◦ gh)(ξi)θf−1
h

(Vi)∩Wj

=
∑

i,j

(s′∗j ◦Qh′ ◦ gh′)(ξi)θf−1
h′ (Vi)∩Wj

= L2(h
′)([v]).

The case for general densities follows by continuity. �

The Naimark functor L2 is not the only functor occurring in this theory.

In fact if we recall the properties of the pullback operation h→ h∗ defined

earlier in this section we can define a second functor.

Theorem 28. For any extended probability space X, define a Hilbert

module H(X) = HX and for any morphism h : X → Y of extended

probability spaces define a morphism of Hilbert modules H(h) = h∗. Then

H is a functor from the category of extended probability spaces to the

category of Hilbert modules.

For the case of probability spaces the Hilbert module H(X) and the

space of random vectors L2(X) are both isomorphic to the Hilbert space

of square integrable real valued function. This is why random variables

and densities appear to be taken from the same space in probability the-

ory. But this is a very special situation. If the underlying Hilbert space

is not one dimensional but two dimensional the densities and random

vectors start to reveal their different nature. As we have discussed pre-

viously for this case a important subclass of densities are the one whose
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values are contained in the conformal group of the plane. These densities

form a sub-Hilbert module that is actually a isomorphic to the complex

Hilbert space of complex valued functions.

6. Monoidal structure on the category of extended

probability spaces

In probability theory the notion of product measures and product den-

sities play a major role. It is through these that dependence and indepen-

dence for random variables are defined. From a categorical point of view

the situation is summarized by saying that the category of probability

spaces supports a monoidal structure. We will now show that the cate-

gory of extended probability spaces also supports a monoidal structures

and that as a consequence the notions of dependence and independence

can be defined.

Let us start by reviewing the notion of a monoidal structure for a

category. A monoidal structure in a category is basically a product in

the category that is associative up to natural isomorphism and has a

unit object up to natural isomorphism. What this means is that if X,Y

and Z are objects in the category and if the product is denoted by ⊗
then we require that there exists a isomorphism αXY Z : X ⊗ (Y ⊗ Z) →
(X⊗Y )⊗Z. Similarly if I is the unit object we require that there exists

isomorphisms βX : I ⊗X → X and γX : X ⊗ I → X. The isomorphisms

can not be arbitrarily chosen for different objects, they must form the

components of a natural transformation. In addition they must satisfies

a set of equations known as the MacLane coherence conditions. These

equations ensure that associativity and unit isomorphisms can be ex-

tended consistently to products of finitely many objects. The conditions

that must be satisfied by α,γ and β are the following.

For all objects X,Y ,Z and T we must have

αX⊗Y,Z,T ◦ αX,Y,Z⊗T = (αX,Y,Z ⊗ 1T ) ◦ αX,Y ⊗Z,T ◦ (1X ⊗ αY,Z,T ),

(γX ⊗ 1Y ) ◦ αX,I,Y = 1X ⊗ βY ,

γI = βI .

These are the MacLane coherence conditions. The naturality condi-

tions are expressed as follows. For any arrows f : X → X ′,g : Y → Y ′



48 P. K. JAKOBSEN AND V. V. LYCHAGIN

and h : Z → Z ′ we must have

((f ⊗ g) ⊗ h) ◦ αX,Y,Z = (f ⊗ (g ⊗ h)) ◦ αX′,Y ′,Z′,

f ◦ βX = βX′ ◦ (1I ⊗ f),

f ◦ γX = γX′ ◦ (f ⊗ 1I).

In general such equations are difficult to solve, there is a very large

number of variables and equations. However in some simple situations

the naturality conditions can be used to reduce the system of equations

to a much smaller set.

The reader not familiar with categories,natural transformations and

Coherence conditions might want to consult the book [8] for a elementary

introduction to the categorical view of mathematics, a more advanced

introduction can be found in the book [9]

The notion of product measures in probability theory has of course

been known for a long time. The corresponding monoidal structure in

the category of probability spaces is described in detail in [11]. The main

features are as follows. For two probability spaces X = 〈ΩX ,B(τX), µX〉
and Y = 〈ΩY ,B(τY ), µY 〉 their product is the probability space X⊗Y =

〈,ΩX × ΩY ,B(τX ⊗ τY ), µX ⊗ µY 〉, where µX ⊗ µY is the product mea-

sure. The product of two morphisms f : X → Y and g : X ′ → Y ′

is a morphism f ⊗ g : X ⊗ X ′ → Y ⊗ Y ′ where f ⊗ g = f × g

is just the Cartesian product of the maps f and g. The associativity

and unit isomorphisms are just the usual one from the category of sets.

αXY Z((x, (y, z))) = ((x, y), z), βX((∗, x)) = x, and γX((x, ∗)) = x. For

the category of probability spaces this choice of α, β and γ are the only

possible ones as we show in [11]. The unit object for the monoidal struc-

ture is the trivial, one-point probability space.

6.1. Product of extended probability spaces and morphisms. We

will now define the product of extended probability spaces and morphisms

and show that this product is a bifunctor on the category of extended

probability spaces.

Let X = 〈ΩX ,B(τX), FX〉 and Y = 〈ΩY ,B(τY ), FY 〉 be two extended

probability spaces. The product of the two positive operator valued

measures FX and FY always exists and is uniquely determined [1] by its

value on measurable boxes by

(FX ⊗ FY )(C ×D) = FX(D) ⊗ FY (D).

The product measure acts on the Hilbert space HX ⊗ HY . The ten-

sor product is the Hilbert tensor product. We now need to extend the
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product to morphisms and show that it is a bifunctor. Before we do this

we must specify the relationship between the Hilbert modules HX ⊗HY

and HX⊗Y . We will show that, as expected, we can map the first into

the second using a continuous injective module morphism. We will start

by constructing this morphism.

Recall that for any extended probability space X, HX is the completion

of the dense subspace H̃X = {[s] | s ∈ VX} and

VX = {s =
∑

i

siθVi
|si ∈ O(HX), {Vi} is a B(τX) measurable partition of ΩX}

is the real linear space of simple O(HX) valued measurable functions on

ΩX .

For a pair of extended probability spaces define a map γXY : VX×VY →
VX⊗Y by

γXY (s, t) =
∑

i,j

(si ⊗ tj)θVi×Wj
,

where s =
∑
siθVi

and t =
∑
tjθWj

.

For this map we have the following

Lemma 29. The map γ is bilinear and if [s] = 0 or [t] = 0 then [γ(s, t)] =

0.

Proof. We evidently have γXY (as, t) = γXY (s, at) for all real numbers a.

Let s =
∑n

i=1 siθVi
and r =

∑m

k=1 rkθCk
be two elements in VX . Define a

new sequence of sets {Al} where Al = Vl for l = 1..n and Al = Cl−n for

l = n + 1, ....n + m and let L = {1, 2, ...n + m}. Let S = {σ : L → Z2}
be the set of all Z2 = {−1,+1} valued functions on the index set L. The

set S is a index set for a new partition, {T σ}σ∈S of the set ΩX defined

by

T σ = ∩l∈LA
σ(l)
l ,

where for any set U we define U+1 = U and U−1 = U c, the complement

of U . We evidently have

Vi = ∪{σ|σ(i)=1}T
σ,

Ck = ∪{σ|σ(n+k)=1}T
σ.

Therefore

s+ r =
∑

σ


 ∑

{i|σ(i)=1}

si +
∑

{k|σ(k+n)=1}

rk


 θT σ .
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But then we have for any t =
∑
tjθWj

∈ VY that

γXY (s+ r, t)

=
∑

σ,j




 ∑

{i|σ(i)=1}

si +
∑

{k|σ(k+n)=1}

rk


⊗ tj


 θT σ×Wj

=
∑

σ,j

∑

{i|σ(i)=1}

(si ⊗ tj)θT σ×Wj
+
∑

σ,j

∑

{k|σ(k+n)=1}

(rk ⊗ tj)θT σ×Wj

=
∑

i,j

(si ⊗ tj)
∑

{σ|σ(i)=1}

θT σ×Wj
+
∑

k,j

(rk ⊗ tj)
∑

{σ|σ(n+k)=1}

θT σ×Wj

=
∑

i,j

(si ⊗ tj)θVi×Wj
+
∑

k,j

(rk ⊗ tj)θCk×Wj
= γXY (s, t) + γXY (r, t).

This show that γ is bilinear. For the second part of the statement in

the lemma we have

〈γXY (s, t), γXY (s, t)〉
=
∑

i,j,k,l

(si ⊗ tj)FX⊗Y ((Vi ×Wj) ∩ (Vk ×Wl))(sk ⊗ tl)
∗

=
∑

i,j,k,l

(si ⊗ tj)(FX(Vi ∩ Vk) ⊗ FY (Wj ∩Wl))(s
∗
k ⊗ t∗l )

=
∑

i,j

(si ⊗ tj)(FX(Vi) ⊗ FY (Wj))(s
∗
i ⊗ t∗j)

=

(
∑

i

siFX(Vi)s
∗
i

)
⊗
(
∑

j

tjFY (Wj)t
∗
j

)
= 〈s, s〉 ⊗ 〈t, t〉.

But [s] = 0 implies that 〈s, s〉 = 0 and the identity just derived

then implies that 〈γXY (s, t), γXY (s, t)〉 = 0 and therefore by definition

[γXY (s, t)] = 0. �

Using the lemma we have a well linear map, also denoted by γXY , from

H̃X ⊗ H̃Y to H̃X⊗Y

γXY ([s] ⊗ [t]) = [γXY (s, t)].

The map γXY satisfy the following important identity

Lemma 30.

〈γXY (v), γXY (v)〉 = 〈v, v〉.
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Proof. Any v ∈ H̃X⊗H̃Y is of the form v =
∑

i

si⊗ti where si =
∑

j

sijθVij

and ti =
∑

k

tikθWik
. But then we have

〈γXY (v), γXY (v)〉
=

∑

i,j,k,l,m,n

(sij ⊗ tik)FX⊗Y ((Vij ×Wik) ∩ (Vlm ×Wln))(slm ⊗ tln)∗

=
∑

i,j,k,l,m,n

(sij ⊗ tik)(FX(Vij ∩ Vlm) ⊗ FY (Wik ∩Wln))(s∗lm ⊗ t∗ln)

=
∑

i,l

(
∑

j,m

sijFX(Vij ∩ Vlm)s∗lm

)
⊗
(
∑

k,n

tikFY (Wik ∩Wln)t∗ln

)

=
∑

i,l

〈si, sl〉 ⊗ 〈ti, tl〉 =
∑

i,l

〈si ⊗ ti, sl ⊗ tl〉 = 〈v, v〉.

�

We can now state and prove the main property of γXY . First we will

recall some facts about (external) tensor products of Hilbert modules.

Let HX ⊗H HY denote the tensor product of HX and HY ,as real vector

spaces, with topology determined by the norm induced from the operator

valued inner product 〈ϕ⊗ψ, ϕ′⊗ψ′〉 = 〈ϕ, ϕ′〉⊗〈ψ, ψ′〉. The completion

of HX ⊗H HY is the external tensor product [2] of the Hilbert modules

HX and HY and will be denoted by HX ⊗ HY . It is a module over

the spatial tensor product O(HX) ⊗O(HY ) [12] of the represented C∗−
algebras O(HX) and O(HX).

Proposition 31. There exists an injective morphism of Hilbert modules

γXY : HX ⊗HY → HX⊗Y such that

〈γXY (v), γXY (v)〉 = 〈v, v〉.
H̃X ⊗H H̃Y is a dense subspace of HX ⊗HY and on this dense subspace

γXY is given by

γXY ([s] ⊗ [t]) = [γXY (s, t)].

Proof. Let H̃X ⊗π H̃Y and HX ⊗π HY be the projective tensor products

[6] of the underlying real vector spaces. Note that the tensor product

spaces have not been completed with respect to the projective norm. The

embedding H̃X ⊗π H̃Y ↪→ HX ⊗π HY is know to exist and be dense [6].

The norm on H̃X ⊗H H̃Y and HX ⊗HHY induced by the operator valued

inner product is evidently a cross norm and it is know that the projective

norm is the largest possible cross norm. Therefore we can conclude that
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H̃X ⊗H H̃Y is a dense subspace of HX ⊗H HY and thus by completion in

HX ⊗HY . By the previous lemma γXY is bounded and therefore extends

uniquely to a bounded map γXY : HX ⊗HY → HX⊗Y . The first identity

in the statement of the proposition follows from the previous lemma and

the continuity of the operator valued inner product. �

In order to introduce tensor product of morphisms between extended

probability spaces we need the previous proposition and the following

lemma

Lemma 32. For any measurable sets C ∈ B(τX) and D ∈ B(τY ) we

have the identity

γXY ◦ (PC ⊗ PD) = PC×D ◦ γXY

Proof. For C ∈ B(τX) and D ∈ B(τY ) we have

(γXY ◦ (PC ⊗ PD))([s] ⊗ [t])

= γXY ([PC(s)] ⊗ [PD(t)])

=
∑

i,j

(si ⊗ tj)θ(Vi∩C)×(Wj∩D)

=
∑

i,j

(si ⊗ tj)θ(Vi×Wj)∩(C×D) = PC×D(γXY ([s] ⊗ [t]).

By continuity and density we can conclude that the identity γXY ◦
(PC ⊗ PD) = PC×D ◦ γXY holds on HX ⊗HY . �

Let now h : X → Y and k : X ′ → Y ′ be morphisms of extended

probability spaces. We thus have h = 〈fh, gh, ϕh〉 and k = 〈fk, gk, ϕk〉
where ϕh ∈ HX and ϕk ∈ HX′ . Define a 3-tuple h⊗ k by

h⊗ k = 〈fh⊗h, gh⊗k, ϕh⊗k〉,

where fh⊗k = fh × fk , gh⊗k = gh ⊗ gk and ϕh⊗k = γXX′(ϕh ⊗ ϕk). Then

we have

Proposition 33. h⊗ k : X ⊗X ′ → Y ⊗ Y ′ is a morphism of extended

probability spaces.
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Proof. We need to prove that (h ⊗ k)∗FX⊗X′ = FY ⊗Y ′. But this is true

because

(h⊗ k)∗FX⊗X′(C ×D)

= g∗h⊗k ◦ 〈ϕh⊗k, Pf−1
h⊗k

(C×D)(ϕh⊗k)〉 ◦ gh⊗k

= (gh ⊗ gk)
∗ ◦ 〈γXX′(ϕh ⊗ ϕk), (Pf−1

h⊗k
(C×D) ◦ γXX′)(ϕh ⊗ ϕk))〉 ◦ (gh ⊗ gk)

= (g∗h ⊗ g∗k) ◦ 〈γXX′(ϕh ⊗ ϕk), (γXX′ ◦ (Pf−1
h

(C) ⊗ Pf−1
k

(D)))(ϕh ⊗ ϕk)〉 ◦ (gh ⊗ gk)

= (g∗h ⊗ g∗k) ◦ 〈ϕh ⊗ ϕk, Pf−1
h

(C)(ϕh) ⊗ Pf−1
k

(D)(ϕk))〉 ◦ (gh ⊗ gk)

= (g∗h ◦ 〈ϕh, Pf−1
h

(C)(ϕh)〉 ◦ gh) ⊗ (g∗k ◦ 〈ϕk, Pf−1
k

(D)(ϕk)〉 ◦ gk)

= (h∗FX)(C) ⊗ (k∗FX′)(D) = FY (C) ⊗ FY ′(D) = FY ⊗Y ′(C ×D),

where we have used the previous lemma. This proves that h ⊗ k is a

mapping of extended probability spaces. In order to show that it is also

a morphism we must show that it is independent of choice of represen-

tatives. Thus assume that h ≈ h′ and k ≈ k′. We need to show that

h⊗k ≈ h′⊗k′ and this amounts to proving thatQh⊗kϕh⊗k = Qh′⊗k′ϕh′⊗k′.

But from the identity (gh⊗gk)(HX ⊗HX′) = gh(HX)⊗gk(HX′) we have

Qh⊗k = Qh ⊗Qk and the rest of the proof is a simple calculation. �

Having proved that h⊗ k is a morphism our next goal is to prove that

it behaves as a functor under composition. For this we need the following

lemma.

Lemma 34.

γXX′ ◦ (h∗ ⊗ k∗) = (h⊗ k)∗ ◦ γY Y ′

Proof. By continuity we only need to prove the identity on the dense

subset H̃Y ⊗H H̃Y ′ ⊂ HY ⊗HY ′. But on this subset we have

((h⊗ k)∗ ◦ γY Y ′)([s] ⊗ [t])

= (h⊗ k)∗(γY Y ′(s, t))

=
∑

i,j

(h⊗ k)∗(si ⊗ tj)P(fh×fk)−1(Vi×Wj)(ϕh⊗k)

=
∑

i,j

(h∗(si) ⊗ k∗(tj))(P(fh×fk)−1(Vi×Wj) ◦ γXX′)(ϕh ⊗ ϕk)

=
∑

i,j

(h∗(si) ⊗ k∗(tj))(γXX′ ◦ (Pf−1
h

(Vi)
⊗ Pf−1

k
(Wj)

))(ϕh ⊗ ϕk)

= γXX′(
∑

i,j

(h∗(si)Pf−1
h

(Vi)
(ϕh)) ⊗ (k∗(tj)Pf−1

k
(Wj)

(ϕk)))

= (γXX′ ◦ (h∗ ⊗ k∗))([s] ⊗ [t]).
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�

We can now prove our first main result in this section

Theorem 35. The operation ⊗ is a bifunctor on the category of extended

probability spaces.

(h′ ⊗ k′) ◦ (h⊗ k) = (h′ ◦ h) ⊗ (k′ ◦ k),
1X ⊗ 1Y = 1X⊗Y .

Proof. The unit property is trivial to verify and for the first identity we

only need to prove that γXX′(ϕk◦h⊗ϕk′◦h′) = (h⊗h′)∗(ϕk⊗k′). But using

the previous lemma we have

γXX′(ϕk◦h ⊗ ϕk′◦h′)

= γXX′(h∗(ϕk) ⊗ h′∗(ϕk′))

= (γXX′ ◦ (h∗ ⊗ h′∗))(ϕk ⊗ ϕk′)

= ((h∗ ⊗ h′∗) ◦ γY Y ′)(ϕk ⊗ ϕk′)

= (h∗ ⊗ h′∗)(ϕk⊗k′).

�

6.2. The monoidal structure. Showing that ⊗ exists and is a bifunc-

tor is the only hard part in proving that there is a monoidal structure on

the category of extended probability spaces.

The only reasonable candidate for a unit object is clearly the extended

probability space T discussed previously. For any objects X, Y and Z

define

ηX = 〈fηX
, gηX

, ϕηX
〉,

γX = 〈fγX
, gγX

, ϕγX
〉,

αXY Z = 〈fαXY Z
, hαXY Z

, ϕαXY Z
〉,
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where

fηX
(∗, x) = fγX

(x, ∗) = x,

fαXY Z
((x, (y, z)) = ((x, y), z),

gηX
(ξ) = 1 ⊗ ξ,

gγX
(ξ) = ξ ⊗ 1,

gαXY Z
(ξ ⊗ (ξ′ ⊗ ξ′′)) = (ξ ⊗ ξ′) ⊗ ξ′′,

ϕηX
= 1HT⊗X

,

ϕγX
= 1HX⊗T

,

ϕαXY Z
= 1HX⊗(Y ⊗Z)

.

These are obviously the simplest choices we can make and it is a tedious

but simple exercise prove the following theorem. This is the second main

result of this section.

Theorem 36. ηX , γX and αXY Z are morphisms of extended probability

spaces

ηX : T ⊗X → X,

γX : X ⊗ T → X,

αXY Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z,

and are the components of natural isomorphisms. Furthermore 〈⊗, T, η, γ, α〉
is a monoidal structure on the category of extended probability spaces.
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