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QUANTIZATIONS IN A CATEGORY OF RELATIONS

Abstract. In this paper we develops a categorical theory of rela-

tions and use this formulation to define the notion of quantization for

relations. Categories of relations are defined in the context of symmetric

monoidal categories. They are shown to be symmetric monoidal cate-

gories in their own right and are found to be isomorphic to certain cate-

gories of A−A bicomodules. Properties of relations are defined in terms

of the symmetric monoidal structure. Equivalence relations are shown

to be commutative monoids in the category of relations. Quantization

in our view is a property of functors between monoidal categories. This

notion of quantization induce a deformation of all algebraic structures

in the category, in particular the ones defining properties of relations

like transitivity and symmetry.
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1. Introduction

The concept of quantization is somewhat mysterious and rather ill de-

fined. It first appeared in a rudimentary form in the work of Max Planck

[12] . Its role there was as a purely technical device to solve a problem

central to the physics of radiation at the time, the so called ultraviolet

catastrophe for the blackbody radiation spectrum. Planck’s original idea

was shortly thereafter used by Einstein to explain the photoelectric effect

[5] and was further developed by N. Bohr into what we today call the

Old Quantum Theory. This theory explained with greater precision than

ever before the position of the spectral lines for the hydrogen atom. The

theory was however rather ad hoc and it was difficult to generalize the

theory to more complicated atomic systems. The next step forward was

introduced by Louise De Broglie [2], [3],[4]. He generalized the already

well known wave-particle duality for light to matter and postulated that

electrons confined to an atom would display wavelike properties. The

idea of wave-particle duality inspired E. Schrødinger in 1926 to write

down a wave equation for matter waves. A different view on the notion

of quantization was introduced by Heisenberg [6][14] in 1925 through his

matrix mechanics. These two approaches was soon shown to be equiva-

lent. From a modern point of view the difference in the two approaches

lies in Schrødingers use of the Hamiltonian formulation of classical me-

chanics and of Heisenbergs use of a formulation of classical mechanics in

terms of Poisson brackets. Schrødinger’s approach gave rise to the canon-

ical quantization procedure. This procedure has been applied successfully

to many systems but contain ambiguities, like variable ordering, and has

invariance problems. The method of Geometric Quantization [7] was

introduced in order to resolve these problems. Heisenbergs approach to

quantization although equivalent to Schrødingers approach at an elemen-

tary level, has a distinctly more algebraic flavor than the wave mechanics

of Schrødinger. Here the structure of a physical system is represented

in terms of an algebra of observables. Representations of this algebra of
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observables are possible models of the system in question. Whereas alge-

bras derived from a classical description of the system are commutative,

the algebras representing quantized systems are in general noncommu-

tative although still associative. Deformation quantization [1],[13] is a

collection of tools and methods that have been developed in order to

find quantized version of classical systems by deforming the algebraic

description of the system within some class of algebras. What is clear

from the existence of all these different approaches is that the notion of

quantization is not well defined. The various approaches agree for simple

systems, but they have different domains of applicability and even for

a single approach several possible quantizations are possible for a given

system. What are the properties, or constraints, a system need in order

for the notion of quantization to be applicable? Is quantization one thing

or several different things? What is the relation between constraints and

quantizations? These are just some of the questions that comes to mind.

This paper will not give a definite answer to any of these questions but

will introduce a mathematical framework that emphasize the idea that

quantization is something that depends on constraints and that these

constraints may not belong to the domain of mechanics or not even to

physics. In fact we believe that quantization has its natural description

in terms of a theory of representation for constraints. We also believe

that at the present time the only mathematical framework with the right

kind of generality for the formulation of a representation theory of con-

straints is Category Theory [8]. Constraints will in this framework take

the form of relations between natural transformations and a representa-

tion of the constraints will be a category that supports all given functors

and natural transformation with the assumed relations. Quantizations

will be related to morphisms in the category of possible representations

of a given set of constraints. What we describe here is of course a lot

of bones with very little flesh. The goal of this paper is to put a little

more flesh on the bones. This we will do by developing a theory for the

quantization of relations along the lines described above. This theory

illustrate our view of quantization, but is also of independent interest

since it gives a framework for the quantization of logic and machines as

described in the classical theory of computing. In these days when the

whole domain of classical computing is in the process of being quantized

a wider point of view on the process of quantization is certainly needed.

The categorical approach to quantization has been introduced by one of

the authors in [9],[10],[11].
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2. Categorical framework

In this first chapter we formulate the basic categorical machinery that

we need in order to categorize the notion of relation. In the first subsec-

tion we introduce the notion of a semimonoidal and a monoidal category.

In line with our general ideas of constraints and representations both

notions are defined entirely in terms of functors and natural transforma-

tions. This leads to a slightly more general notion of monoidal category

than the usual one although we does not pursue this here. Symmetries

for monoidal categories is introduced as a further set of constraints on

monoidal categories. A certain derived relation for the natural transfor-

mations defining a symmetric monoidal category is described and shown

to be equivalent to the usual Yang-Baxter equation. This new formula-

tion of the Yang-Baxter equation is essential when we later in this paper

introduce a generalization of the usual notion of symmetry that we need

in order to formulate commutativity in the context of relations. We lay

the groundwork for this generalization by showing how the Yang-Baxter

equation is intimately connected to an action by a certain S2-graded

group. In the last subsection in this part of the paper we introduce the

notion of M-categories and C-categories. These categories have exactly

the constraints needed in order to formulate and develop a theory of

relations.

2.1. Symmetric monoidal categories. A semimonoidal category is a

category that has a product that is associative up to a natural isomor-

phism. A semimonoidal category is a monoidal category if there is an

object that is a unit for the product up to a natural isomorphism. Prop-

erties of categories are most clearly expressed in terms of functors and

natural transformations. We now review this formulation. On any cate-

gory we have defined the identity functor 1C . Let us assume that there

also is a bifunctor ⊗ : C × C −→ C defined on C.

Definition 1. A semimonoidal category is a triple 〈 C,⊗, α〉 where C is

a category, ⊗ : C× C −→ C is a bifunctors,

α : ⊗ ◦ (1C ×⊗) −→ ⊗ ◦ (⊗× 1C)

is a natural isomorphism and where the following relation holds

(α ◦ 1⊗×1C×1C
) · (α ◦ 11C×1C×⊗) = (1⊗ ◦ (α× 11C

))

· (α ◦ 11C×⊗×1C
) · (1⊗ ◦ (11C

× α)).

A semimonoidal category is strict if ⊗ ◦ (1C ×⊗) = ⊗ ◦ (⊗× 1C) and

α = 1⊗◦(1C×⊗). The relation on α given in the previous definition is the
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object-free formulation of the usual MacLane coherence condition for the

associativity constraint α.

For any category C we have defined two bifunctors P : C ×C −→ C

and Q : C ×C −→ C. These are the projection on the first and second

factor, P (X, Y ) = X and Q(X, Y ) = Y with obvious extension to

arrows. Let e be a fixed object in the category C and define a constant

functor Ke : C −→ C by Ke(X) = e and Ke(f) = 1e. Using these

functors we can give a definition of a monoidal category entirely in terms

of functors and natural transformations.

Definition 2. A monoidal category is a 6-tuple 〈C ,⊗, Ke, α, β, γ〉 such

that 〈C ,⊗, α〉 is a semimonoidal category and where

β : ⊗ ◦ (Ke × 1C) −→ Q,

γ : ⊗ ◦ (1C ×Ke) −→ P,

are natural isomorphisms such that the following relations holds

(1⊗ ◦ (γ × 11C
)) · (α ◦ 11C×Ke×1C

) = (1⊗ ◦ (11C
× β)),

β ◦ 11C×Ke = γ ◦ 1Ke×1C
.

A monoidal category is strict if 〈C,⊗, α〉 is a strict semimonoidal cat-

egory and if ⊗ ◦ (Ke × 1C) = Q, ⊗ ◦ (1C ×Ke) = P and β = 1Q,γ = 1P .

Note that 〈C, P, 1P◦(1C,×P )〉 and 〈C,Q, 1Q◦(1C,×Q)〉 both are strict semi-

monoidal categories. None of them can be made into a monoidal category

by selecting a unit e. However if ⊗ is part of a monoidal structure on

C then we can reduce the product to projections by fixing the first and

second argument to be the unit object.

Our definition in fact deviate somewhat from the standard formulation

in terms of objects. Recall that a monoidal category in the usual sense is

a 6-tuple 〈C,⊗, e, α′, β ′, γ′〉 where α′
X,Y,Z : X⊗ (Y ⊗Z) −→ (X⊗Y )⊗Z

, β ′
X : e ⊗X −→ X and γ′X : X ⊗ e −→ X are isomorphisms in C that

are natural in X, Y , and Z and where the following MacLane Coherence

[8] conditions are satisfied

X ⊗ (Y ⊗ (Z ⊗ T ))
α′

X,Y,Z⊗T- (X ⊗ Y ) ⊗ (Z ⊗ T )
α′

X⊗Y,Z,T- ((X ⊗ Y ) ⊗ Z) ⊗ T

X ⊗ ((Y ⊗ Z) ⊗ T )

1X ⊗ α′
Y,Z,T

?

α′
X,Y ⊗Z,T

- (X ⊗ (Y ⊗ Z)) ⊗ T

α′
X,Y,Z ⊗ 1T

6
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X ⊗ (e ⊗ Y )
α′X, e, Y- (X ⊗ e) ⊗ Y

@
@

@1X ⊗ β′
Y R 	�

�
�
γ′

X ⊗ 1Y

A ⊗ B

e ⊗ e
β′

e -
γ′

e

- e

It is easy to see that if we define

βX,Y = β ′
Y ,

γX,Y = γ′X ,

αX,Y,Z = α′
X,Y,Z .

for all objects X and Y in C, then 〈⊗, Ke, α, β, γ〉 is a monoidal cat-

egory as defined in 2. If we assume that C is a category such that for

all pairs of objects there exists at least one arrow f : X −→ X ′. Then

Ke(f) = 1e and naturality of β implies the commutativity of the following

diagram

e ⊗ Y
βX,Y- Y

e ⊗ Y

1e ⊗ 1Y

?

βX′,Y

- Y

1Y

?

We thus get βX,Y = βX′,Y . In a similar way we find γX,Y = γX,Y ′. This

gives us a monoidal category in the usual sense if we define β ′
X = βY,X and

γ′X = γX,Y . Our aim in this paper is not to investigate generalizations

of the notion of a monoidal category and we will therefore assume that

solutions to the relations in 2 satisfy βX,Y = βX′,Y and γX,Y = γX,Y ′.

We will need to express categorically the process of changing order in

a product with several factors. For any category C we have the trans-

position functor τ : C × C −→ C × C defined by τ(X, Y ) = (Y,X) and

τ(f, g) = (g, f). A symmetry for a monoidal category is expressed using

the functor τ .

Definition 3. A symmetric monoidal category is a 7-tuple 〈C ,⊗, Ke, α, β, γ, σ〉

such that 〈C ,⊗, Ke, α, β, γ〉 is a monoidal category and where

σ : ⊗ −→ ⊗ ◦ τ
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is a natural isomorphism such that the following relations holds

σ ◦ 1⊗×1C
= (α−1 ◦ 1τ×1C

◦ 11C×τ ) · (1⊗ ◦ (σ × 11C
)

· (α ◦ 11C×τ ) · (1⊗ ◦ (11C
× σ)) · α−1,

σ ◦ 11C×⊗ = (α ◦ 11C×τ ◦ 1τ×1C
) · (1⊗ ◦ (11C

× σ) ◦ 1τ×1C
)

· (α−1 ◦ 1τ×1C
) · (1⊗ ◦ (σ × 11C

)) · α,

β = (γ ◦ 1τ ) · (σ ◦ 1Ke×1C
),

γ = (β ◦ 1τ ) · (σ ◦ 11C×Ke),

σ ◦ 1τ = σ−1.

A symmetric monoidal category is strict if the underlying monoidal

category 〈C ,⊗, Ke, α, β, γ〉 is strict.

The conditions in the definition are not independent.

Proposition 4. Let 〈C ,⊗, Ke, α, β, γ〉 be a monoidal category and let

σ : ⊗ −→ ⊗ ◦ τ be a natural isomorphism such that σ ◦ 1τ = σ−1. Then

the following two conditions are equivalent

σ ◦ 1⊗×1C
= (α−1 ◦ 1τ×1C

◦ 11C×τ ) · (1⊗ ◦ (σ × 11C
))

· (α ◦ 11C×τ ) · (1⊗ ◦ (11C
× σ)) · α−1,

σ ◦ 11C×⊗ = (α ◦ 11C×τ ◦ 1τ×1C
) · (1⊗ ◦ (11C

× σ) ◦ 1τ×1C
)

· (α−1 ◦ 1τ×1C
) · (1⊗ ◦ (σ × 11C

)) · α.

Proof. We have the following relations τ ◦ τ = 1C×C and τ ◦ (1C ×⊗) =

(⊗× 1C) ◦ (1C × τ) ◦ (τ × 1C). Using these functorial relations we have

σ ◦ 11C×⊗

= σ ◦ 1τ ◦ 1τ ◦ 11C×⊗

= σ ◦ 1τ ◦ 1⊗×1C
◦ 11C×τ ◦ 1τ×1C

= (σ ◦ 1⊗×1C
)−1 ◦ 11C×τ ◦ 1τ×1C .

We thus have a relations between σ ◦11C×⊗ and σ ◦1⊗×1C
. The equiva-

lence of the two conditions stated in the proposition follows directly from

this relation. �

The third and fourth relations are also equivalent

Proposition 5. Let 〈C ,⊗, Ke, α, β, γ〉 be a monoidal category and let

σ : ⊗ −→ ⊗ ◦ τ be a natural isomorphism such that σ ◦ 1τ = σ−1. Then
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the following two conditions are equivalent

β = (γ ◦ 1τ ) · (σ ◦ 1Ke×1C
),

γ = (β ◦ 1τ ) · (σ ◦ 11C×Ke).

Proof. Let the first condition be given. Then we have

β ◦ 1τ

= ((γ ◦ 1τ ) · (σ ◦ 1Ke×1C
)) ◦ 1τ

= (γ ◦ 1τ ◦ 1τ ) · (σ ◦ 1Ke×1C
◦ 1τ )

= γ · (σ ◦ 1τ ◦ 11C×Ke)

= γ · (σ−1 ◦ 11C×Ke).

and this is equivalent to the last condition. �

The symmetry conditions have a consequence that will play an impor-

tant role.

Proposition 6. Let 〈C ,⊗, Ke, α, β, γ, σ〉 be a symmetric monoidal cat-

egory. Then the following equation holds

(α ◦ 11C×τ ◦ 1τ×1C
◦ 11C×τ ) · (σ ◦ (σ × 11C

)) · α = σ ◦ (11C
× σ).

Proof. We have

σ ◦ (11C
× σ)

= (σ ◦ (11C
× 1⊗◦τ )) · (1⊗ ◦ (11C

× σ))

= (σ ◦ 11C×⊗ ◦ 11C×τ ) · (1⊗ ◦ (11C
× σ))

= (((α ◦ 11C×τ ◦ 1τ×1C
) · (1⊗ ◦ (11C

× σ) ◦ 11C×τ )

· (α−1 ◦ 1τ×1C
) · (1⊗ ◦ (σ × 11C

)) · α) ◦ 11C×τ ) · (1⊗ ◦ (11C
× σ))

= (α ◦ 11C×τ ◦ 1τ×1C
◦ 11C×τ ) · (1⊗ ◦ (11C

× σ) ◦ 1τ×1C
◦ 11C×τ )

· (α−1 ◦ 1τ×1C
◦ 11C×τ ) · (1⊗ ◦ (σ × 11C

) ◦ 11C×τ ) · (α ◦ 11C×τ )

· (1⊗ ◦ (11C
× σ))

= (α ◦ 11C×τ ◦ 1τ×1C
◦ 11C×τ ) · (1⊗ ◦ (11C

× σ) ◦ 1τ×1C
◦ 11C×τ )

· (σ ◦ 1⊗×1C
) · α

= (α ◦ 11C×τ ◦ 1τ×1C
◦ 11C×τ ) · (1⊗◦τ ◦ (σ × 11C

)) · (σ ◦ 1⊗×1C
) · α

= (α ◦ 11C×τ ◦ 1τ×1C
◦ 11C×τ ) · (σ ◦ (σ × 11C

)) · α.

�

If we introduce the expressions for σ ◦ 1⊗×1C
and σ ◦ 11C×⊗ into the

equation from the previous proposition we get an equation that is cubic
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in σ. This equation is the well known Yang-Baxter equation. In terms

of object it takes in the strict case the following form

(1Z ⊗ σX,Y ) ◦ (σX,Z ⊗ 1Y ) ◦ (1X ⊗ σY,Z)

= (σY,Z ⊗ 1X) ◦ (1Y ⊗ σX,Z) ◦ (σX,Y ⊗ 1Z).

The equation from the previous proposition is clearly equivalent to the

Yang-Baxter equation in a symmetric monoidal category. We will call

this equation also for the Yang-Baxter equation. A certain generalization

of this equation will play a fundamental role in our theory of relations.

This generalization is based on characterization of symmetries in terms

of a group action.

2.2. Symmetries and group action. Let S2 be the group of per-

mutation of two elements with the single generator given by t. Let

τ : C × C −→ C × C be the transposition bifunctor. The functors

T1 = 1C , T2 = τ and T3 = (1C × τ) ◦ (τ × 1C) ◦ (1C × τ) defines action of

the group S2 on the categories C,C2 = C ×C and C3 = C×C×C. Let

[C2, C] and [C3, C] be the category of bifunctors and trifunctors on C

with natural transformations as arrows. We can induce an action of S2

on the functor categories [C2, C] and [C3, C] in the usual way by defining

for objects F and arrows α in [C i, C], i = 2, 3

tF = F ◦ Ti,

ta = α ◦ 1Ti
.

It is easy to see that this really defines an action of S2. Let us first

consider the case when C is a semimonoidal category with product ⊗

and associativity constraint α. Note that

t(⊗ ◦ (1C ×⊗))

= ⊗ ◦ (1C ×⊗) ◦ (τ × 1C) ◦ (1C × τ) ◦ (τ × 1C)

= t⊗ ◦(⊗× 1C) ◦ (τ × 1C)

= t⊗ ◦(t⊗×1C).

In a similar way we find that t(⊗ ◦ (⊗ × 1C)) = t ⊗ ◦(1C × t⊗). We

have here used the fact that (1C × τ) ◦ (τ × 1C) ◦ (1C × τ) = (τ × 1C) ◦

(1C × τ) ◦ (τ × 1C). We therefore have a natural isomorphism

tα−1 : t⊗ ◦(1C × t⊗) −→ t⊗ ◦(t⊗×1C).

This is in fact an associativity constraint as the next proposition show

Proposition 7. 〈C, t⊗, tα−1〉 is a semimonoidal category
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Proof. Let g = (1C × τ × 1C) ◦ (τ × τ) ◦ (1C × τ × 1C) ◦ (τ × τ). Then

we have

(tα−1 ◦ 1t⊗×1C×1C
) · (tα−1 ◦ 11C×1C×t⊗)

= (α−1 ◦ 1T3
◦ 1t⊗×1C×1C

) · (α−1 ◦ 1T3
◦ 11C×1C×t⊗)

= (α−1 ◦ 1t⊗×1C×1C
◦ 1g) · (α

−1 ◦ 11C×1C×t⊗ ◦ 1g)

= [(α ◦ 11C×1C×t⊗ ◦ 1g) · (α ◦ 1t⊗×1C×1C
◦ 1g)]

−1

= [((α ◦ 11C×1C×t⊗) · (α ◦ 1t⊗×1C×1C
)) ◦ 1g]

−1

= [((1⊗ ◦ (α× 11C
)) · (α ◦ 11C×⊗×1C

) · (1⊗ ◦ (11C
× α))) ◦ 1g]

−1

= ((1⊗ ◦ (11C
× α−1)) · (α−1 ◦ 11C×⊗×1C

) · (1⊗ ◦ (α−1 × 11C
))) ◦ 1g

= (1⊗ ◦ (11C
× α−1) ◦ 1g) · (α

−1 ◦ 11C×⊗×1C
◦ 1g) · (1⊗ ◦ (α−1 × 11C

) ◦ 1g)

= (1t⊗ ◦ (tα−1 × 11C
)) · (tα−1 ◦ 11C×t⊗×1C

) · (1t⊗ ◦ (11C
× tα−1)).

�

Let us assume that there exists a natural isomorphism σ : ⊗ −→ t⊗

and let α be an associativity constraint for a semimonoidal category

〈C,⊗, α〉. Then tα−1 : t⊗◦(1C×t⊗) −→ t⊗◦(t⊗×1C) is an associativity

constraint for a semimonoidal category 〈C,⊗, tα−1〉. On the other hand

we have natural isomorphisms

σ ◦ (11C
× σ) : t⊗ ◦(1C × t⊗) −→ ⊗ ◦ (1C ×⊗),

σ ◦ (σ × 11C
) : t⊗ ◦(t⊗×1C) −→ ⊗ ◦ (⊗× 1C).

We therefore have a natural isomorphism α̂ : ⊗◦(1C×⊗) −→ ⊗◦(⊗×1C)

where we have defined

α̂ = (σ−1 ◦ (σ−1 × 11C
)) · tα−1 · (σ ◦ (11C

× σ)).

This new isomorphism also an associativity constraint.

Proposition 8. 〈C,⊗, α̂〉 is a semimonoidal category.

Proof. We only need to show that the MacLane coherence condition hold

for α̂. Let us first observe that

(σ ◦ (11C
× σ) ◦ 1⊗×1C×1C

) · (σ−1 ◦ (σ−1 × 11C
) ◦ 11C×1C×⊗)

= (σ ◦ (11C
× σ) ◦ (1⊗ × 11C

× 11C
))

· (σ−1 ◦ (σ−1 × 11C
) ◦ (11C

× 11C
× 1⊗))

= (σ ◦ ((11C
◦ 1⊗) × (σ ◦ (11C

× 11C
))))

· (σ−1 ◦ ((σ−1 ◦ (11C
× 11C

)) × (11C
◦ 1⊗)))
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= (σ ◦ (1⊗ × σ)) · (σ−1 ◦ (σ−1 × 1⊗))

= (1t⊗ ◦ (σ−1 × σ))

= (1t⊗ ◦ (σ−1 × 1t⊗)) · (1t⊗ ◦ (1t⊗ × σ))

= (1t⊗ ◦ ((11C
◦ σ−1) × (1t⊗ ◦ (11C

× 11C
))))

· (1t⊗ ◦ ((1t⊗ ◦ (11C
× 11C

)) × (11C
◦ σ)))

= (1t⊗ ◦ (11C
× 1t⊗) ◦ (σ−1 × 11C

× 11C
))

· (1t⊗ ◦ (1t⊗ × 11C
) ◦ (11C

× 11C
× σ)).

Let g = (1C ×τ×1C)◦(τ×τ)◦(1C ×τ×1C)◦(τ×τ). Using the previous

identity we have for the left hand side of the coherence condition

(α̂ ◦ 1⊗×1C×1C
) ◦ (α̂ ◦ 11C×1C×⊗)

= (σ−1 ◦ (σ−1 × 11C
) ◦ 1⊗×1C×1C

) · (tα−1 ◦ 1⊗×1C×1C
)

· (σ ◦ (11C
× σ) ◦ 1⊗×1C×1C

) · (σ−1 ◦ (σ−1 × 11C
) ◦ 11C×1C×⊗)

(tα−1 ◦ 11C×1C×⊗) · (σ ◦ (11C
× σ) ◦ 11C×1C×⊗)

= (σ−1 ◦ (σ−1 × 11C
) ◦ 1⊗×1C×1C

) · (tα−1 ◦ (1⊗ × 11C
× 11C

))

· (1t⊗ ◦ (11C
× 1t⊗) ◦ (σ−1 × 11C

× 11C
))

· (1t⊗ ◦ (1t⊗ × 11C
) ◦ (11C

× 11C
× σ))

· (tα−1 ◦ (11C
× 11C

× 1⊗)) · (σ ◦ (11C
× σ) ◦ 11C×1C×⊗)

= (σ−1 ◦ (σ−1 × 11C
) ◦ (1⊗ × 11C

× 11C
)) · (tα−1 ◦ (σ−1 × 11C

× 11C
))

· (tα−1 ◦ (11C
× 11C

× σ)) · (σ ◦ (11C
× σ) ◦ (11C

× 11C
× 1⊗))

= (σ−1 ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
)) · (α−1 ◦ 1T3

◦ (1t⊗ × 11C
× 11C

))

· (α−1 ◦ 1T3
◦ (11C

× 11C
× 1t⊗)) · (σ ◦ (11C

× σ) ◦ (11C
× 11C

× σ))

= (σ−1 ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
))

· (α−1 ◦ 11C×1C×⊗ ◦ 1g) · (α
−1 ◦ 1⊗×1C×1C

◦ 1g)

· (σ ◦ (11C
× σ) ◦ (11C

× 11C
× σ))

= (σ−1 ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
))

· ([(α ◦ 1⊗×1C×1C
) · (α ◦ 11C×1C×⊗)]−1 ◦ 1g)

· (σ ◦ (11C
× σ) ◦ (11C

× 11C
× σ))
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= (σ−1 ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
))

· ([(1t ◦ (α× 11C
)) · (α ◦ 11C×⊗×1C

) · (1⊗ ◦ (11C
× α))]−1 ◦ 1g)

· (σ ◦ (11C
× σ) ◦ (11C

× 11C
× σ))

= (σ−1 ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
)) · (1⊗ ◦ (11C

× α−1) ◦ 1g)

· (α−1 ◦ 11C×⊗×1C
◦ 1g) · (1⊗ ◦ (α−1 × 11C

) ◦ 1g)

· (σ ◦ (11C
× σ) ◦ (11C

× 11C
× σ)).

For evaluating the right-hand side of the MacLane condition we need the

two identities

(1⊗ ◦ ((σ ◦ (11C
× σ)) × 11C

)) · (σ−1 ◦ (σ−1 × 11C
) ◦ 11C×⊗×1C

)

= (1⊗ ◦ (σ × 11C
) ◦ (11C

× 1⊗ × 11C
))

· (σ−1 ◦ (σ−1 × 11C
) ◦ (11C

× 1⊗ × 11C
))

= (σ−1 ◦ (1t⊗ × 11C
) ◦ (11C

× σ × 11C
))

= (σ−1 ◦ (1t⊗ × 11C
) ◦ (11C

× 1t⊗ × 11C
)).

· (1t⊗ ◦ (1t⊗ × 11C
) ◦ (11C

× 1⊗ × 11C
))

and

(σ ◦ (11C
× σ) ◦ 11C×⊗×1C

) · (1⊗ ◦ (11C
× (σ−1 ◦ (σ−1 × 11C

))))

= (σ ◦ (11C
× σ) ◦ (11C

× 1⊗ × 11C
))

· (1⊗ ◦ (11C
× σ−1) ◦ (11C

× σ−1 × 11C
))

= (σ ◦ (11C
× 1t⊗) ◦ (11C

× σ−1 × 11C
))

= (1t⊗ ◦ (11C
× 1t⊗) ◦ (11C

× σ−1 × 11C
))

· (σ ◦ (11C
× 1t⊗) ◦ (11C

× 1t⊗ × 11C
)).

Using these identities we have for the right-hand side of the MacLane

condition

(1⊗ ◦ (α̂× 11C
)) · (α̂ ◦ 11C×⊗×1C

) · (1⊗ × (11C
× α̂))

= (1⊗ ◦ ([(σ−1 ◦ (σ−1 × 11C
)) · tα−1 · (σ ◦ (11C

× σ))] × 11C
))

· ([(σ−1 ◦ (σ−1 × 11C
)) · tα−1 · (σ ◦ (11C

× σ))] ◦ 11C×⊗×1C
)

· (1⊗ ◦ (11C
× [(σ−1 ◦ (σ−1 × 11C

)) · tα−1 · (σ ◦ (11C
× σ))]))
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= (1⊗ ◦ ((σ−1 ◦ (σ−1 × 11C
)) × 11C

) · (1⊗ ◦ (tα−1 × 11C
))

· (1⊗ ◦ ((σ ◦ (11C
× σ)) × 11C

)) · (σ−1 ◦ (σ−1 × 11C
) ◦ 11C×⊗×1C

)

· (tα−1 ◦ 11C×⊗×1C
) · (σ ◦ (11C

× σ) ◦ 11C×⊗×1C
)

· (1⊗ ◦ (11C
× (σ−1 ◦ (σ−1 × 11C

)))) · (1⊗ ◦ (11C
× tα−1))

· (1⊗ ◦ (11C
× (σ ◦ (11C

× σ))))

= (1⊗ ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
)) · (1⊗ ◦ (tα−1 × 11C

))

· (σ−1 ◦ (1t⊗ × 11C
) ◦ (11C

× 1t⊗ × 11C
))

· (1t⊗ ◦ (1t⊗ × 11C
) ◦ (11C

× σ × 11C
)) · (tα−1 ◦ (11C

× 1⊗ × 11C
))

· (1t⊗ ◦ (11C
× 1t⊗) ◦ (11C

× σ−1 × 11C
))

· (σ ◦ (11C
× 1t⊗) ◦ (11C

× 1t⊗ × 11C
)) · (1⊗ ◦ (11C

× tα−1))

· (1⊗ ◦ (11C
× σ) ◦ (11C

× 11C
× σ))

= (1⊗ ◦ (σ−1 × 11C
) ◦ (σ−1 × 11C

× 11C
)) · (1⊗ ◦ (tα−1 × 11C

))

· (σ−1 ◦ ((1t⊗ ◦ (11C
× 1t⊗)) × 11C

)) · (1t⊗ ◦ (1t⊗ × 11C
) ◦ (11C

× σ × 11C
))

· (tα−1 ◦ (11C
× 1⊗ × 11C

)) · (1t⊗ ◦ (11C
× 1t⊗) ◦ (11C

× σ−1 × 11C
))

· (σ ◦ (11C
× (1t⊗ ◦ (1t⊗ × 11C

)))) · (1⊗ ◦ (11C
× tα−1))

· (1⊗ ◦ (11C
× σ) ◦ (11C

× 11C
× σ))

= (1⊗ ◦ ((σ−1 ◦ (σ−1 × 11C
)) × 11C

)) · (σ−1 ◦ (tα−1 × 11C
))

· (tα−1 ◦ (11C
× 1t⊗ × 11C

)) · (σ ◦ (11C
× tα−1))

· (1⊗ ◦ (11C
× (σ ◦ (11C

× σ))))

= (σ−1 ◦ ((σ−1 ◦ (σ−1 × 11C
)) × 11C

)) · (1t⊗ ◦ (tα−1 × 11C
))

· (tα−1 ◦ (11C
× 1t⊗ × 11C

)) · (1t⊗ ◦ (11C
× tα−1))

· (σ ◦ (11C
× (σ ◦ (11C

× σ))))

= (σ−1 ◦ ((σ−1 ◦ (σ−1 × 11C
)) × 11C

)) · (1⊗ ◦ (11C
× α−1) ◦ 1g)

· (α−1 ◦ 11C×⊗×1C
◦ 1g) · (1⊗ ◦ (α−1 × 11C

) ◦ 1g)

· (σ ◦ (11C
× (σ ◦ (11C

× σ)))).

The left-hand side and the right-hand side are thus equal and this proves

the proposition. �

Let us define SC,⊗ = {α | 〈C,⊗, α〉 is a semimonoidal category }.

Then the previous proposition show that for each natural isomorphism

σ : ⊗ −→ t⊗ we have a mapping of SC,⊗ to itself.
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Let us next consider the case of a monoidal category 〈C,⊗, Ke, α, β, γ〉.

Using the natural isomorphism σ we can define new natural isomorphisms

β̂ = (tγ) · (σ ◦ 1Ke×1C
) : ⊗ ◦ (Ke × 1C) −→ Q,

γ̂ = (tβ) · (σ ◦ 11C×Ke) : ⊗ ◦ (1C ×Ke) −→ P.

For α̂ and the two natural isomorphisms β̂ and γ̂ we have

Proposition 9. 〈C,⊗, Ke, α̂, β̂, γ̂〉 is a monoidal category

Proof. The First MacLane coherence condition has already been verified.

For the second MacLane condition we need the identities

(1⊗ ◦ ((σ ◦ 11C×Ke) × 11C
)) · ((σ−1 ◦ (σ−1 × 11C

)) ◦ 11C×Ke×1C
)

= (1⊗ ◦ (σ × 11C
) ◦ (11C

× 1Ke × 11C
))

· (σ−1 ◦ (σ−1 × 11C
) ◦ (11C

× 1Ke × 11C
))

= (σ−1 ◦ (1t⊗ × 11C
) ◦ (11C

× 1Ke × 11C
))

= (σ−1 ◦ (1t⊗ ◦ (11C
× 1Ke) × 11C

))

and

(1t⊗ ◦ (tβ × 11C
)) · (tα−1 ◦ 11C×Ke×1C

)

= (1⊗ ◦ (11C
× β) ◦ 1T3

) · (α−1 ◦ 11C×Ke×1C
◦ 1T3

)

= (((1⊗ ◦ (11C
× β)) · (α−1 ◦ 11C×Ke×1C

)) ◦ 1T3
)

= (1⊗ ◦ (γ × 11C
) ◦ 1T3

).

Using these two identities we have

(1⊗ ◦ (γ̂ × 11C
)) · (α̂ ◦ 11C×Ke×1C

)

= (1⊗ ◦ ((tβ · (σ ◦ 11C×Ke)) × 11C
))

· (((σ−1 ◦ (σ−1 × 11C
)) · tα−1 · (σ ◦ (11C

× σ))) ◦ 11C×Ke×1C
)

= (1⊗ ◦ (tβ × 11C
)) · (1⊗ ◦ ((σ ◦ 11C×Ke) × 11C

))

· ((σ−1 ◦ (σ−1 × 11C
)) ◦ 11C×Ke×1C

) · (tα−1 ◦ 11C×Ke×1C
)

· ((σ ◦ (11C
× σ)) ◦ 11C×Ke×1C

)

= (1⊗ ◦ (tβ × 11C
)) · (σ−1 ◦ (1t⊗ ◦ (11C

× 1Ke) × 11C
)) · (tα−1 ◦ 11C×Ke×1C

)

· ((σ ◦ (11C
× σ)) ◦ 11C×Ke×1C

)
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= (σ−1 ◦ (1P × 11C
)) · (1t⊗ ◦ (tβ × 11C

)) · (tα−1 ◦ 11C×Ke×1C
)

· ((σ ◦ (11C
× σ)) ◦ 11C×Ke×1C

)

= (σ−1 ◦ (1P × 11C
)) · (1⊗ ◦ (γ × 11C

) ◦ 1T3
) · ((σ ◦ (11C

× σ)) ◦ 11C×Ke×1C
)

= (σ−1 ◦ 1P×1C
) · (1t⊗ ◦ (11C

× tγ)) · (σ ◦ (11C
× σ) ◦ 11C×Ke×1C

)

= (σ−1 ◦ 11C×Q) · (1t⊗ ◦ (11C
× tγ)) · (σ ◦ (11C

× (σ ◦ (1Ke × 11C
))))

= (1⊗ ◦ (11C
× [tγ · (σ ◦ 1Ke×1C

)]))

= (1⊗ ◦ (11C
× β̂)).

For the last MacLane condition we have

β̂ ◦ 11C×Ke

= (tγ ◦ 11C×Ke) · (σ ◦ 1Ke×1C
◦ 11C×Ke)

= (γ ◦ 1τ ◦ 11C×Ke) · (σ ◦ 1Ke×Ke)

= (γ ◦ 1Ke×1C
◦ 1τ ) · (σ ◦ 1Ke×Ke)

= (β ◦ 11C×Ke ◦ 1τ ) · (σ ◦ 1Ke×Ke)

= (tβ ◦ 1Ke×1C
) · (σ ◦ 11C×Ke ◦ 1Ke×1C

)

= (tβ · (σ ◦ 11C×Ke)) ◦ 1Ke×1C

= γ̂ ◦ 1Ke×1C
.

�

Let MC,⊗,e = {(α, β, γ) | 〈C,⊗, Ke, α, β, γ〉 is a monoidal category}.

Then the previous proposition show that for each natural isomorphism

σ : ⊗ −→ t⊗ we have a map

Tt(σ) : MC,⊗,e −→MC,⊗,e

defined by Tt(σ)(α, β, γ) = (α̂, β̂, γ̂). Let us next for each ρ : ⊗ −→ ⊗

define a map on elements in MC,⊗,e

T1(ρ)(α, β, γ) = (α̃, β̃, γ̃),

where we have

α̃ = (ρ−1 ◦ (ρ−1 × 11C
)) · α · (ρ ◦ (11C

× ρ)),

β̃ = β · (ρ ◦ 1Ke×1C
),

γ̃ = γ · (ρ ◦ 11C×Ke).

For this map we have

Proposition 10. T1(ρ) : MC,⊗,e −→MC,⊗,e.
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The proof of this proposition is similar to the one for the map T1(σ)

and is not reproduced here.

Let

GC,⊗,e = {Tt(σ), T1(ρ) | σ : ⊗ −→ t⊗, ρ : ⊗ −→ ⊗ , σ, ρ natural isomorphisms}.

From the construction it is evident that all maps in GC,⊗,e are bijections.

The next proposition show that GC,⊗,e is closed under composition of

maps.

Proposition 11. Let σ1, σ2 : ⊗ −→ t⊗ and ρ1, ρ2 : ⊗ −→ ⊗ be natural

isomorphisms. Then we have

Tt(σ2) ◦ Tt(σ1) = T1(tσ1 · σ2),

Tt(σ1) ◦ T1(ρ1) = Tt(ρ1 · tσ1),

T1(ρ1) ◦ Tt(σ1) = Tt(σ1 · ρ1),

T1(ρ2) ◦ T1(ρ1) = T1(ρ1 · ρ2).

The proof of this proposition is routine and is left out. The set GC,⊗,e

is thus closed under composition and contains the identity map T1(1⊗) =

1MC,⊗,e
.All maps in the setGC,⊗,e are invertible by construction andGC,⊗,e

is closed under the operation of taking the inverse of a map. We have

T1(ρ) ◦ T1(ρ
−1) = 1MC,⊗,e

,

Tt(σ) ◦ Tt((tσ)−1) = 1MC,⊗,e
.

The previous propositions can now be restated in the following way.

Corollary 12. The set MC,⊗,e of monoidal structures on C corresponding

to a fixed product ⊗ and unit e is invariant under the action of the S2-

graded group GC,⊗,e.

We can use the S2-graded group GC,⊗,e to give an interpretation of the

notion of a symmetric monoidal category.

Proposition 13. Let 〈C,⊗, Ke, α, β, γ, σ〉 be a symmetric monoidal cat-

egory. Then H = {Tt(σ), 1⊗} is a S2 graded subgroup of GC,⊗,e and

(α, β, γ) ∈MC,⊗,e is a fixed-point for the action of H.

This gives an interpretation of the Yang-Baxter equation and the two

unit conditions in terms of invariance with respect to the action by the

group H. No such interpretation appears to be possible for the first two

conditions from the definition 3, of a symmetry. These two conditions

appear to be of a technical nature.
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2.3. σ-commutative comonoids in symmetric monoidal categories.

Recall that a comonoid in a monoidal category is a triple 〈A, δA, εA〉 where

A is an object in the category and δA : A −→ A⊗A and εA : A −→ e are

morphisms in the category such that the following diagrams commute

A ⊗ (A ⊗ A) �1A ⊗ δA
A ⊗ A �δA

A

	�
�

�
�

�
�

δA ⊗ 1A

(A ⊗ A) ⊗ A

αA,A,A

?

e ⊗ A �εA ⊗ 1A
A ⊗ A �1A ⊗ εA

A ⊗ e

@
@

@βA R 	�
�

�
γA

A

δA

6

The simpler structure 〈A, δA〉 is called a cosemigroup. The morphism

εA is the counit for the comonoid and δA is called the coproduct.

Before we proceed with formal developments we will first consider some

examples of these constructions. Let us first consider the case of sets.

The category Sets is a monoidal category with Cartesian product, ×

as bifunctor. The neutral object is the one point set e = {∗}. The

associativity constraints αA,B,C : A× (B×C) −→ (A×B)×C and unit

constraints βA : e⊗ A −→ A and γA : A⊗ e −→ A given by

αA,B,C(x, (y, z)) = ((x, y), z),

βA(∗, x) = x,

γA(x, ∗) = x.

Finite sets offer many examples of cosemigroups. Let A = {a, b, c} and

define a map δA : A −→ A× A by

δA(a) = (a, a),

δA(b) = (b, a),

δA(c) = (a, c).

A direct calculation show that 〈A, δA〉 is a cosemigroup. There is only

one possible map εA : A −→ e since e = {∗} is terminal is Sets and this
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is the map εA(x) = ∗ for all x ∈ A. But for this map we find

[βA ◦ (εA ⊗ 1A) ◦ δA](b) = [βA ◦ (εA ⊗ 1A)](b, a) = βA(∗, a) = a,

so 〈A, δA, εA〉 is not a comonoid.

Let A be any set. Define the map δA : A −→ A× A by

δA(x) = (x, x).

This is the diagonal map in Sets. We then have

[αA,A,A ◦ (1A × δA) ◦ δA](x) = [αA,A,A ◦ (1A × δA)](x, x) = ((x, x), x),

[(δA × 1A) ◦ δA](x) = (δA × 1A)(x, x) = ((x, x), x),

so 〈A, δA〉 is a cosemigroup. The only possible counit satisfy

[βA ◦ (εA ⊗ 1A) ◦ δA](x) = [βA ◦ (εA ⊗ 1A)](x, x) = βA(∗, x) = x,

[γA ◦ (1A ⊗ εA) ◦ δA](x) = [γA ◦ (1A ⊗ εA)](x, x) = γA(x, ∗) = x,

so 〈A, δA, εA〉 is a comonoid. Let δA : A −→ A × A, εA : A −→ {∗}

be any comonoid structure on A. We have δA(a) = (f(a), g(a)) and

εA(a) = ∗. The first counit condition βA ◦ (εA × 1A) ◦ δA = 1A gives

g(a) = a for all a. Similarly the second counit condition gives f(a) = a

for all a. So the previous example in fact gives the only possible comonoid

structure in this category. We will always assume that the objects in Sets

are comonoid with this structure.

As our next example let us consider a pointed set. This is a set A with

a chosen point x0 ∈ A. Define a map δA : A −→ A×A by δA(x) = (x0, x).

Then we have

[(1A × δA) ◦ δA](x) = (1A × δA)(x0, x) = (x0, x0, x),

[(δA × 1A) ◦ δA](x) = (δA × 1A)(x0, x) = (x0, x0, x),

so 〈A, δA〉 is a cosemigroup. It is not a comonoid because the only possible

map εA : A −→ e gives

[γA ◦ (1A ⊗ εA) ◦ δA](x) = [γA ◦ (1A ⊗ εA)](x0, x) = γA(x0, ∗) = x0,

so if there are any elements in A different from x0 then A is not a

comonoid. This construction only gives a comonoid when A = e. This

fact is true for any monoidal category.

Let us next consider the category V ectk. This is the category of vector

spaces over a field k with morphisms given by linear maps. This category

is monoidal with product bifunctor given by the tensor product of vector

spaces ⊗ = ⊗k. The neutral object is k. The associativity constraint α
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and unit constraints β and γ for this case are the linear maps αA,B,C :

A⊗ (B ⊗ C) −→ (A⊗ B) ⊗ C, βA : k ⊗ A −→ A and γA : A⊗ k −→ A

given on generators by

αA,B,C(x⊗ (y ⊗ z)) = (x⊗ y) ⊗ z,

βA(r ⊗ x) = rx,

γA(x⊗ r) = rx.

Let A be any finite dimensional vector space in V ectk. Let Ω be a

finite index set and let {ai}i∈Ω be a basis for A indexed by Ω. Then

{ai ⊗ai′}i,i′∈Ω is a basis for A⊗A. Define a linear map δA : A −→ A⊗A

by

δA(ai) = ai ⊗ ai.

Then evidently 〈A, δA〉 is a cosemigroup. Define a linear map εA :

A −→ k on generators by εA(ai) = 1 ∈ k. Then we have

[βA ◦ (εA ⊗ 1A) ◦ δA](ai) = [βA ◦ (εA ⊗ 1A)](ai, ai) = βA(1 ⊗ ai) = ai,

[γA ◦ (1A ⊗ εA) ◦ δA](ai) = [γA ◦ (1A ⊗ εA)](ai, ai) = γA(ai ⊗ 1) = ai,

so 〈A, δA, εA〉 is a comonoid. In contrast to the case of Sets we can have

many nonisomorphic comonoid structures on a given object in V ectk. Let

δA : A −→ A⊗ A and εA : A −→ k be linear maps. We have thus

δA(ai) =
∑

j,k

ri
j,kaj ⊗ ak,

εA(ai) = qi,

where all indices run from 1 to m, the dimension of A.

Then 〈A, δA, εA〉 is a comonoid if {ri
j,k} and {qi} are solutions of the

following system of quadratic equations.

∑

j

(ri
j,kr

j
l,n − ri

l,jr
j
n,k) = 0 for all i, k, l, n,

∑

j

ri
j,kqj = δi,k for all i, k,

∑

j

ri
k,jqj = δi,k for all i, k.
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For m = 2 this system have four different families of solutions. One of

these families is the following

δA(a1) = a1 ⊗ a1,

δA(a2) = −xa1 ⊗ a1 + a1 ⊗ a2 + a2 ⊗ a1,

qA(a1) = 1,

qA(a2) = x,

where x is an arbitrary element of k.

Let now G be a finite group and let A = F(G) be the vector space of

k valued functions on G.

Note that since G is finite we have F(G×G) ≈ F(G)⊗k F(G). Define

a linear map δF(G) : F(G) −→ F(G) ⊗k F(G) by

δF(G)(f)(x, y) = f(xy).

This clearly makes F(G) into a cosemigroup. The linear map εF(G) :

F(G) −→ k

εF(G)(f) = f(e),

where e ∈ G is the unit of the group G, makes 〈 F(G), δF(G), εF(G)〉

into a comonoid. Note that this conclusion depends strongly on the

identification F(G×G) ≈ F(G)⊗kF(G). For infinite groups this relation

does not hold in general but for some infinite groups it does. For these

cases we also get comonoids.

The tensor product is not the only monoidal structure on V ectk. Let

⊕ be the direct sum of vector spaces. This is a monoidal structure with

the neutral object given by the zero dimensional vector space e = {0}.

The maps α, β and γ are the standard identifications used for the direct

sum. The symmetry is the linear map σ(u, v) = (v, u). These structures

defines the structure of a symmetric monoidal category on V ectk. A

cosemigroup is a pair 〈A, δA〉 with δA : A→ A⊕A a coassociative linear

map. Any such map is determined by a pair of linear maps f, g : A→ A

through δA(a) = (f(a), g(a)). The coassociativity gives the following

conditions on the maps f and g.

f ◦ f = f,

g ◦ g = g,

f ◦ g = g ◦ f.

So any pair of commuting projectors on A define the structure of a

cosemigroup on A. There are thus in general many nontrivial cosemi-

group structures on a linear space. The comonoid structure is however
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much more restrictive. This is because the neutral object for ⊕ is also

the terminal object for the category. This means that there is only one

possible counit for any comonoid. It is straight forward to see that the

counit property for the only possible counit gives f = g = 1A. So there

is only one comonoid structure on A and this is the diagonal map

δA(a) = (a, a).

In all the examples we have seen that coproduct for the comonoids

have been monomorphisms. This is true in general

Proposition 14. Let 〈B, δB, εB〉 be a comonoid. Then the coproduct is

a monomorphism.

Proof. LetD be any object in C and let ϕ, ψ : D −→ B be two morphisms

in C such that δB ◦ ϕ = δB ◦ ψ. Then we have

ψ = 1B ◦ ψ

= βB ◦ (εB ⊗ 1B) ◦ δB ◦ ψ

= βB ◦ (εB ⊗ 1B) ◦ δB ◦ ϕ

= 1B ◦ ϕ

= ϕ,

so δB is by definition mono. �

We will in general only be interested in comonoids where the coproduct

has the additional property of being commutative. Only such comonoids

carry enough structure to support a full theory of relations. We express

this property by using the symmetry σ.

Definition 15. A comonoid 〈A, δA, εA〉 in a symmetric monoidal cate-

gory is σ-commutative if σA,A ◦ δA = δA.

2.4. C-categories and M-categories. In Sets each object is a σ-com-

mutative comonoid in one and only one way. For the case of a general

symmetric monoidal category we have seen that objects may have sev-

eral σ-commutative comonoid structures defined on them. We need to

preserve the unique relation between objects and structures when we

generalize from Sets. This relation is expressed in terms of functors and

natural transformations. To any category C we have associated a set

of functors. These are the projection functors P : C × C −→ C and

Q : C × C −→ C ,the diagonal functor ∆ : C −→ C × C defined by

∆(X) = (X,X) and the transposition functor τ : C × C −→ C × C .

Let e be a fixed object in the category C. To this object we associate
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the constant functor Ke : C −→ C . Finally let us assume that ⊗ :

C × C −→ C is a bifunctor and let H = (1C × τ × 1C) ◦ (∆ × ∆). We

are now ready to define the notion of a C-category.

Definition 16. A C-category is a collection 〈 C,⊗, Ke, α, β, γ, σ, δ, ε〉

where 〈 C,⊗, Ke, α, β, γ, σ〉 is a symmetric monoidal category and where

δ, ε are natural transformations

δ : 1C −→ ⊗ ◦ ∆,

ε : 1C −→ Ke,

such that the following relations holds

(1⊗ ◦ (δ × 11C
) ◦ 1∆) · δ = (α ◦ 1(1C×∆)◦∆) · (1⊗ ◦ (11C

× σ) ◦ 1∆) · δ,

11C
= (β ◦ 1∆) · (1⊗ ◦ (ε× 11C

) ◦ 1∆) · δ,

11C
= (γ ◦ 1∆) · (1⊗ ◦ (11C

× ε) ◦ 1∆) · δ,

δ = (σ−1 ◦ 1∆) · δ,

δ ◦ 1⊗ = (α−1 ◦ 1⊗×1C×1C
◦ 1H) · (1⊗ ◦ (α× 11C

) ◦ 1H)

· (1⊗◦(⊗×1C) ◦ (11C
× σ × 11C

) ◦ 1∆×∆)

· (1⊗ ◦ (α−1 × 11C
) ◦ 1∆×∆) · (α ◦ 1⊗×1C×1C

◦ 1∆×∆)

· (1⊗ ◦ (δ × δ)),

ε ◦ 1⊗ = (β ◦ 11C×Ke) · (1⊗ ◦ (ε× ε)).

The four first relations ensure that for each object in C there is fixed a

unique commutative comonoid structure. The last two relations say that

if an object X can be decomposed as X = A ⊗ B, then we can express

the unique comonoid structure on X in terms of the comonoid structures

on A and B. For the strict case they take the following form in terms of

objects

δA⊗B = (1A ⊗ σA,B ⊗ 1B) ◦ (δA ⊗ δB),

εA⊗B = εA ⊗ εB.

A M-category is the dual of a C-category. We get its defining equations

by reversing all arrows. It is a category where for each object there is

fixed a unique monoid structure and where the monoid structure on an

object of the form X = A⊗B can be expressed in terms of the structures

on A and B.
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3. Categorical theory of relations

In this part of the paper we use the categorical framework described

in the previous section to define a category of relations and develop its

properties. We first define the notion of a relation and a corelation in a

C-category. In a similar way relations and corelations can be developed

in a M-category. The notions of C-categories and M-categories are dual

concepts so that any definitions made or propositions proved in one of

them hold in a dualized version in the other. Since the notion of relation

and corelation also are dual of each other it is clear that it is enough

to develop the theory of relations in C-categories. The other cases fol-

low by duality. We start this section by defining relations on an object

A in a C-category C in terms of arrows and collect such arrows into a

category of relations RA(C). This category of relations is then shown

to be isomorphic to the category SA(C) of A − A bicomodules in C.

A semimonoidal structure �
Ais introduced in this category and by iso-

morphism into the category of relations. This semimonoidal structure

is then used to introduce a bifunctor ⊗Aon SA(C) and by isomorphism

on RA(C). This bifunctor is used to introduce a monoidal structure on

the category of relations. Certain properties of relations like transitiv-

ity and reflexivity are formulated in algebraic terms using the monoidal

structure. In the final sections a generalized notion of symmetry is intro-

duced, this notion of symmetry use in an essential way the formulation of

the Yang-Baxter equation in terms of action of a S2 graded group. The

new notion of symmetry is then used to further categorize properties of

relations. Equivalence relations appears as commutative and associative

algebras with units.

3.1. Relations. Let 〈C,⊗, ke, α, β, γ, σ, δ, ε〉 be a C-category and let A

be an object in C.

Definition 17. A relation on A is an arrow in C with codomain A⊗A.

Note that we will use the same symbol for an arrow in C and the

corresponding morphism of relations. Also note that a given arrow f :

B −→ B′ in C can give rise to more than one morphism of relations.

This can happen because we might have r1 = r′1 ◦f and r2 = r′2 ◦f where

r1, r2 : B −→ A⊗ A and r′1, r
′
2 : B′ −→ A⊗ A are two pairs of relations

on A. In this sense we can write 1r = 1B where B is the domain of the

arrow r. Let us now consider a few examples of this construction.

Let us first consider the case of Sets. This is a C-category with δX(x) =

(x, x) and εX(x) = ∗ for all objects X ∈ C. Let A and B be sets and let
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r : B −→ A× A be a map of sets. We can write r(b) = (f(b), g(b)). We

have

[(r × r) ◦ δB](b)

= (f(b), f(b), g(b), g(b))

= (δA × δA)(f(b), g(b))

= [δA×A ◦ r](b),

so r is an arrow in the C-category Sets and is therefore a relation in

Sets in our sense. A relation on A in the usual sense is a subset of A×A.

This is equivalent to assuming that the map r is a monomorphism. In

general the map r assign to each element in B a source and a target.

Several elements in B can be assigned the same source and target. In

fact we observe that in Sets a relation in our sense is the same as a

directed labelled graph.

Let us next consider the C-category V ectk with direct sum as monoidal

structure and δ and ε defined as for Sets. A relation on a linear space A

is any linear map r : B −→ A⊕A. Let L : A −→ A be an endomorphism

on A. Let B = A and define r : B −→ A⊕ A by

r(a) = (a, L(a)).

Then r is a linear map and therefore defines a relation on A in our

sense. Note that the image of A under r is by definition the graph of the

linear map L. More generally, let L be a linear subspace of A ⊕ A. Let

B = L and r : B −→ A ⊕ A the inclusion map. Then r is evidently a

relation on A. In general a relation on A is like a graph, where the set

of vertices and the set of labels have a vector space structure and the

source and target maps respect these structures.

As with any categorical concept the notion of a relation has a dual.

Definition 18. A corelation on a A is an arrow in C with domain A⊗A.

Let r : S −→ Ω × Ω be a relation on Ω in Sets. We assume now

that the sets S and Ω are finite. The algebraic description of the sets S

and Ω are given by the space of k valued functions B = F(S) on S and

A = F(Ω) on Ω. Let c defined by c(f ⊗ g)(x) = (f ⊗ g)(r(x)). Then

c : A⊗A −→ B is a linear map and by duality a morphism of the induced

algebra structures on B and A⊗ A.

Therefore the algebraic image of the relation r in Sets is a corela-

tion c in V ectk. This example show that corelations arise naturally by

algebraization of relations in Sets. Note that in general a corelation
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c : A⊗A −→ B in V ectk with the tensor product as monoidal structure

is in algebra usually called a A⊗ A algebra.

3.2. Categories of relations. Let r : B −→ A⊗A and r′ : B′ −→ A⊗A

be two relations on A. A morphism f : r −→ r′ is an arrow f : B −→ B ′

in C such that the following diagram commute

B
f - B′

@
@

@r R 	�
�

�
r′

A ⊗ A

Let RA(C) be the category of relations on A. This is a category

whose objects are relations and morphisms are morphisms of relations

as just defined. It is evident that to each diagram in RA(C) there is a

corresponding diagram of arrows in C and commutativity of diagrams in

RA(C) follows from commutativity of the corresponding diagrams in C.

For now there is no restriction on the object A or the arrows that are

relations on A. We will introduce further restrictions as we develop the

properties of the category of relations.

Morphisms of corelations are defined by dualizing the corresponding

diagrams for morphisms of relations. Corelations and morphisms of core-

lations form the category of corelations on A, RA(C).

We will now proceed to develop some formal properties of the category

RA(C). The corresponding dualized properties holds for the category

RA(C).

Let r be an object in RA(C) with domain B. Define two arrows δl :

B −→ A⊗B and δr : B −→ B ⊗ A in C by

δl = (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB,

δr = (1B ⊗ βA) ◦ (1B ⊗ (εA ⊗ 1A)) ◦ (1B ⊗ r) ◦ δB.

Define θl : B −→ (A⊗ A) ⊗B and θr : B −→ B ⊗ (A⊗ A) by

θl = (r ⊗ 1B) ◦ δB,

θr = (1B ⊗ r) ◦ δB.

We first prove the identities
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Lemma 19.

(δA⊗A ⊗ 1B) ◦ θl = αA⊗A,A⊗A,B ◦ (1A⊗A ⊗ θl) ◦ θl,

(1B ⊗ δA⊗A) ◦ θr = αB,A⊗A,A⊗A ◦ (θr ⊗ 1A⊗A) ◦ θr,

(θl ⊗ 1A⊗A) ◦ θr = αA⊗A,B,A⊗A ◦ (1A⊗A ⊗ θr) ◦ θl.

Proof. Since r is a morphism in C we have the diagram

B × B
r ⊗ r- A ⊗ A ⊗ A ⊗ A

B

δB

6

r
- A ⊗ A

δA⊗A

6

But then we have

αA⊗A,A⊗A,B ◦ (1A⊗A ⊗ θl) ◦ θl

= αA⊗A,A⊗A,B ◦ (1A⊗A ⊗ (r ⊗ 1B)) ◦ (1A⊗A ⊗ δB) ◦ (r ⊗ 1B) ◦ δB

= αA⊗A,A⊗A,B ◦ (r ⊗ (r ⊗ 1B)) ◦ (1B ⊗ δB) ◦ δB

= αA⊗A,A⊗A,B ◦ (r ⊗ (r ⊗ 1B)) ◦ α−1
B,B,B ◦ (δB ⊗ 1B) ◦ δB

= ((r ⊗ r) ◦ δB ⊗ 1B) ◦ δB

= (δA⊗A ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB.

The proof of the second relation proceeds in a similar way. For the

third we have

(θl ⊗ 1A⊗A) ◦ θr

= ((r ⊗ 1B) ⊗ 1A⊗A) ◦ (δB ⊗ 1A⊗A) ◦ (1B ⊗ r) ◦ δB

= ((r ⊗ 1B) ⊗ r) ◦ (δB ⊗ 1B) ◦ δB

= ((r ⊗ 1B) ⊗ r) ◦ αB,B,B ◦ (1B ⊗ δB) ◦ δB

= αA⊗A,B,A⊗A ◦ (r ⊗ (1B ⊗ r)) ◦ (1B ⊗ δB) ◦ δB

= αA⊗A,B,A⊗A ◦ (r ⊗ θr) ◦ δB,

�

we can now prove the following

Proposition 20. Let r be a relation. Then the following diagrams com-

mute
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A ⊗ B
δA ⊗ 1B- (A ⊗ A) ⊗ B

�
�

�δl �

B

@
@

@

δl

R
A ⊗ B

1A ⊗ δl
- A ⊗ (A ⊗ B)

αA,A,B

6

e ⊗ B �εA ⊗ 1B
A ⊗ B

@
@

@βB R
B

δl

6

B ⊗ A
1B ⊗ δA- B ⊗ (A ⊗ A)

�
�

�δr �

B

@
@

@

δr

R
B ⊗ A

δr ⊗ 1A

- (B ⊗ A) ⊗ A

αB,A,A

?

B ⊗ A
1B ⊗ εA- B ⊗ e

	�
�

�
γB

B

δr

6

A ⊗ B
1A ⊗ δr

- A ⊗ (B ⊗ A)

�
�

�δl �

B

@
@

@

δr

R
B ⊗ A

δl ⊗ 1A

- (A ⊗ B) ⊗ A

αA,B,A

?
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Proof. Using the lemma and the naturality of α and δ we have

αA,A,B ◦ (1A ⊗ δl) ◦ δl

= αA,A,B ◦ (1A ⊗ (γA ⊗ 1B)) ◦ (1A ⊗ ((1A ⊗ εA) ⊗ 1B))

◦ (1A ⊗ θl) ◦ (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ θl

= (((γA ◦ (1A ⊗ εA)) ⊗ (γA ◦ (1A ⊗ εA))) ⊗ 1B)

◦ αA⊗A,A⊗A,B ◦ (1A⊗A ⊗ θl) ◦ θl

= (((γA ◦ (1A ⊗ εA)) ⊗ (γA ◦ (1A ⊗ εA))) ⊗ 1B)

◦ (δA⊗A ⊗ 1B) ◦ θl

= (δA ⊗ 1B) ◦ ((γA ◦ (1A ⊗ εA)) ⊗ 1B) ◦ θl

= (δA ⊗ 1B) ◦ δl

= (δA ⊗ 1B) ◦ (1A ⊗ εA ⊗ 1B) ◦ θl

= (δA ⊗ 1B) ◦ δl.

Since ε is natural and r a morphism in C we have the identities

εA⊗e = εA ◦ γA,

εA⊗A = εA⊗e ◦ (1A ⊗ εA),

εB = εA⊗A ◦ r.

But then we have

βB ◦ (εA ⊗ 1B) ◦ δl

= βB ◦ (εA ⊗ 1B) ◦ (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= βB ◦ (εA⊗e ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= βB ◦ (εA⊗A ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= βB ◦ (εB ⊗ 1B) ◦ δB

= 1B,

so the first pair of diagrams are commutative. The proof of the commu-

tativity of the second pair of diagrams is similar. For the last diagram

we have

αA,B,A ◦ (1A ⊗ δr) ◦ δl

αA,B,A ◦ (1A ⊗ (1B ⊗ βA)) ◦ (1A ⊗ (1B ⊗ (εA ⊗ 1A)))

◦ (1A ⊗ θr) ◦ (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ θl
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= ((1A ⊗ 1B) ⊗ βA) ◦ ((1A ⊗ 1B) ⊗ (εA ⊗ 1A))

◦ ((γA ⊗ 1B) ⊗ 1A⊗A) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ 1A⊗A)

◦ αA⊗A,B,A⊗A ◦ (1A⊗A ⊗ θr) ◦ θl

= (((γA ◦ (1A ⊗ εA)) ⊗ 1B) ⊗ (βA ◦ (εA ⊗ 1A)))

◦ (θl ⊗ 1A⊗A) ◦ θr

= (δl ⊗ 1A) ◦ (1B ⊗ (βA ◦ (εA ⊗ 1A))) ◦ θr

= (δl ⊗ 1A) ◦ δr,

so this diagram is also commutative. �

The previous proposition show that the pair {δl, δr} define the struc-

ture of a A− A bicomodule on B.

Definition 21. Let δl : B −→ A ⊗ B, δr : B −→ B ⊗ A be arrows in

C. Then {δl, δr} define the structure of a A− A bicomodule on B if the

diagrams in proposition 20 commute

We call the object B in the previous definition the underlying object

for the A− A bicomodule δ = {δl, δr}.

Let now δ and γ be A − A bicomodules with underlying objects B

and E. A morphism f : δ −→ γ of A − A bicomodules is an arrow

f : B −→ E in C such that the following diagrams commute

A ⊗ B
1A ⊗ f- A ⊗ E

B

δl

6

f
- E

γl

6
B ⊗ A

f ⊗ 1A- E ⊗ A

B

δr

6

f
- E

γr

6

We now form a new category where objects are A − A bicomodules

and where morphisms are morphisms of A − A bicomodules. Let this

category be named SA(C).

3.3. Relations in terms of A − A bicomodules. To each object r

in RA(C) there corresponds an object δ in SA(C). For morphisms of

relations we have the following.

Proposition 22. Let r and s be two relations with domains B and E

and let f : r −→ s be a morphism of relations. Let δ and γ be the

objects in SA(C) corresponding to r and s. Then the corresponding arrow

f : B −→ E in C defines a morphism f : δ −→ γ in SA(C).
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Proof. Since f is a morphism in C and also a morphism from r to s we

have the following commutative diagrams

B
f - E

@
@

@r R 	�
�

�
s

A ⊗ A

B ⊗ B
f ⊗ f- E ⊗ E

B

δB

6

f
- E

δE

6

Using these identities we then have

(1A ⊗ f) ◦ δl

= (1A ⊗ f) ◦ (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (γA ⊗ 1E) ◦ ((1A ⊗ 1e) ⊗ f) ◦ (s⊗ 1B) ◦ (f ⊗ 1B) ◦ δB

= (γA ⊗ 1E) ◦ ((1A ⊗ εA) ⊗ 1E) ◦ (s⊗ 1B) ◦ (f ⊗ f) ◦ δB

= (γA ⊗ 1E) ◦ ((1A ⊗ εA) ⊗ 1E) ◦ (s⊗ 1B) ◦ δE ◦ f

= γl ◦ f.

In a similar way we prove the identity (f ⊗ 1A) ◦ δr = γr ◦ f . �

The previous definition show that we have a well defined functor Φ :

RA(C) −→ SA(C), where Φ(r) is the A − A bicomodule corresponding

to r and where Φ(f) = f . We will next construct a functor from SA(C)

to RA(C).

Let δ be an object in SA(C). define a morphism r : B −→ A⊗ A by

r = (1A ⊗ βA) ◦ (1A ⊗ (εB ⊗ 1A)) ◦ (1A ⊗ δr) ◦ δl.

We have proved that βA and εB are arrows in C and have therefore

the following result.

Proposition 23. r is an object in RA(C).

Using this result we can define a map of objects Ψ : SA(C) −→ RA(C)

by Ψ(δ) = r. For morphisms in SA(C) we have

Proposition 24. Let δ, and γ be two objects in SA(C) and let f : δ −→ γ

be a morphism. Then the corresponding arrow in C defines a morphism

of the objects r = Ψ(δ) and s = Ψ(γ) in RA(C).

Proof. Let the domains of r and s be B and E. We have the following

commutative diagrams
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A ⊗ B
1A ⊗ f- A ⊗ E

B

δl

6

f
- E

γl

6
B ⊗ A

f ⊗ 1A- E ⊗ A

B

δr

6

f
- E

γr

6

B
f - E

	�
�

�
εE

e

εB

?

But then we have

s ◦ f

= (1A ⊗ βA) ◦ (1A ⊗ (εE ⊗ 1A)) ◦ (1A ⊗ γr) ◦ γl ◦ f

= (1A ⊗ βA) ◦ (1A ⊗ (εE ⊗ 1A)) ◦ (1A ⊗ γr) ◦ (1A ⊗ f) ◦ δl

= (1A ⊗ βA) ◦ (1A ⊗ (εE ⊗ 1A)) ◦ (1A ⊗ (f ⊗ 1A)) ◦ (1A ⊗ δr) ◦ δl

= (1A ⊗ βA) ◦ (1A ⊗ (εE ◦ f ⊗ 1A)) ◦ (1A ⊗ δr) ◦ δl

= (1A ⊗ βA) ◦ (1A ⊗ (εB ⊗ 1A)) ◦ (1A ⊗ δr) ◦ δl

= r.

so f is a morphism of relations. �

We use this result to extend Ψ to a functor from SA(C) to RA(C)

by defining Ψ(f) = f . We will now show that RA(C) and SA(C) are

isomorphic categories. We need the following lemma

Lemma 25.

(γA ⊗ βA) ◦ ((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ δA⊗A = 1A⊗A,

(δl ⊗ 1B) ◦ δB = αA,B,B ◦ (1A ⊗ δB) ◦ δl,

(1B ⊗ δr) ◦ δB = α−1
B,B,A ◦ (δB ⊗ 1A) ◦ δr.

Proof. For the first part of the lemma we have

(γA ⊗ βA) ◦ ((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ δA⊗A

= (γA ⊗ βA) ◦ ((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ α−1
A⊗A,A,A

◦ (αA,A,A ⊗ 1A) ◦ ((1A ⊗ σA,A) ⊗ 1A) ◦ (α−1
A,A,A ⊗ 1A)

◦ αA⊗A,A,A ◦ (δA ⊗ δA)
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= (1A ⊗ βA) ◦ (γA ⊗ (1e ⊗ 1A)) ◦ α−1
A⊗e,e,A ◦ (αA,e,e ⊗ 1A)

◦ ((1A ⊗ σe,e) ⊗ 1A) ◦ (α−1
A,e,e ⊗ 1A) ◦ αA⊗e,A,A

◦ ((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ (δA ⊗ δA)

= (1A ⊗ βA) ◦ (γA ⊗ (1e ⊗ 1A)) ◦ α−1
A⊗e,e,A ◦ (αA,e,e ⊗ 1A)

◦ ((1A ⊗ σe,e) ⊗ 1A) ◦ (α−1
A,e,e ⊗ 1A) ◦ αA⊗e,A,A

◦ (γ−1
A ⊗ β−1

A )

= (1A ⊗ βA) ◦ α−1
A,e,A ◦ ((1A ⊗ βe) ⊗ 1A) ◦ ((1A ⊗ σe,e) ⊗ 1A)

◦ (α−1
A,e,e ⊗ 1A) ◦ αA⊗e,e,A ◦ (γ−1

A ⊗ β−1
A )

= (1A ⊗ βA) ◦ α−1
A,e,A ◦ ((1A ⊗ γe) ⊗ 1A)◦

◦ (α−1
A,e,e ⊗ 1A) ◦ αA⊗e,e,A ◦ (γ−1

A ⊗ β−1
A )

= (1A ⊗ βA) ◦ (1A ⊗ (γe ⊗ 1A))◦

◦ α−1
A,e⊗e,A ◦ (α−1

A,e,e ⊗ 1A) ◦ αA⊗e,e,A ◦ (γ−1
A ⊗ β−1

A )

= (1A ⊗ βA) ◦ (1A ⊗ (γe ⊗ 1A)) ◦ (1A ⊗ αe,e,A)

◦ α−1
A,e,e⊗A ◦ ((1A ⊗ 1e) ⊗ β−1

A ) ◦ (γ−1
A ⊗ 1A)

= (1A ⊗ βA) ◦ (1A ⊗ (1e ⊗ βA)) ◦ (1A ⊗ (1e ⊗ β−1
A ))

◦ α−1
A,e,A ◦ (γ−1

A ⊗ 1A)

= (1A ⊗ βA) ◦ α−1
A,e,A ◦ (γ−1

A ⊗ 1A)

= (1A ⊗ βA) ◦ (1A ⊗ β−1
A )

= 1A⊗A.

For the second part of the lemma we have

(δl ⊗ 1B) ◦ δB

= ((γA ⊗ 1B) ⊗ 1B) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ 1B) ◦ ((r ⊗ 1B) ⊗ 1B)

◦ (δB ⊗ 1B) ◦ δB

= ((γA ⊗ 1B) ⊗ 1B) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ 1B) ◦ ((r ⊗ 1B) ⊗ 1B)

◦ αB,B,B ◦ (1B ⊗ δB) ◦ δB

= αA,B,B ◦ (γA ⊗ 1B⊗B) ◦ ((1A ⊗ εA) ⊗ 1B⊗B) ◦ (r ⊗ 1B⊗B) ◦ (1B ⊗ δB) ◦ δB
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= (1B ⊗ δB) ◦ (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (1B ⊗ δB) ◦ δl.

The proof of the third part of the lemma is similar to the second

part. �

We now use the lemma to prove the following theorem

Theorem 26. The functor Φ : RA(C) −→ SA(C) is invertible with

inverse Ψ : SA(C) −→ RA(C).

Proof. We only need to prove that Φ is bijective with inverse Ψ on objects

since Ψ is obviously the inverse of Φ on morphisms.

Let r be an object in RA(C) with domain B. Using lemma 25 we have

(Ψ ◦ Φ)(r)

= (1A ⊗ βA) ◦ (1A ⊗ (εB ⊗ 1A)) ◦ (1A ⊗ (Φ(r))r) ◦ (Φ(r))l

= (1A ⊗ βA) ◦ (1A ⊗ (εB ⊗ 1A)) ◦ (1A ⊗ (1B ⊗ βA))

◦ (1A ⊗ (1B ⊗ (εA ⊗ 1A))) ◦ (1A ⊗ (1B ⊗ r)) ◦ (1A ⊗ δB)

◦ (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (1A ⊗ βA) ◦ (1A ⊗ (1e ⊗ βA)) ◦ (1A ⊗ (1e ⊗ (εA ⊗ 1A)))

◦ (1A ⊗ (1e ⊗ r)) ◦ (1A ⊗ (εB ⊗ 1B) ◦ δB) ◦ (γA ⊗ 1B)

◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (1A ⊗ βA) ◦ (1A ⊗ (1e ⊗ βA)) ◦ (1A ⊗ (1e ⊗ (εA ⊗ 1A)))

◦ (1A ⊗ (1e ⊗ r)) ◦ (1A ⊗ β−1
B ) ◦ (γA ⊗ 1B)

◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (1A ⊗ βA) ◦ (1A ⊗ (1e ⊗ βA)) ◦ (1A ⊗ (1e ⊗ (εA ⊗ 1A)))

◦ (1A ⊗ β−1
A⊗A) ◦ (γA ⊗ 1A⊗A) ◦ ((1A ⊗ εA) ⊗ 1A⊗A) ◦ (r ⊗ r) ◦ δB

= (1A ⊗ βA ◦ (1e ⊗ βA) ◦ β−1
e⊗A) ◦ (1A ⊗ β−1

e⊗A) ◦ (γA ⊗ (1e ⊗ 1A))

((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ δA⊗A ◦ r

= (γA ⊗ βA) ◦ ((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ δA⊗A ◦ r

= r,
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so Ψ ◦Φ = 1RA(C). Next let δ be any object in SA(C) with underlying

object B. We have

(Φ(Ψ(δ)))l

= (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (Ψ(δ) ⊗ 1B) ◦ δB

= (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ ((1A ⊗ βA) ⊗ 1B)

◦ ((1A ⊗ (εB ⊗ 1A)) ⊗ 1B) ◦ ((1A ⊗ δr) ⊗ 1B) ◦ (δl ⊗ 1B) ◦ δB

= (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ ((1A ⊗ βA) ⊗ 1B)

◦ ((1A ⊗ (εB ⊗ 1A)) ⊗ 1B) ◦ ((1A ⊗ δr) ⊗ 1B)

◦ αA,B,B ◦ (1A ⊗ δB) ◦ δl

= (γA ⊗ 1B) ◦ ((1A ⊗ εe⊗A) ⊗ 1B) ◦ ((1A ⊗ (εB ⊗ 1A)) ⊗ 1B)

◦ ((1A ⊗ δ〉) ⊗ 1B) ◦ αA,B,B ◦ (1A ⊗ δB) ◦ δl

= (γA ⊗ 1B) ◦ ((1A ⊗ εB⊗A) ⊗ 1B) ◦ ((1A ⊗ δr) ⊗ 1B)

◦ αA,B,B ◦ (1A ⊗ δB) ◦ δl

= (γA ⊗ 1B) ◦ ((1A ⊗ εB⊗e) ⊗ 1B) ◦ ((1A ⊗ (1B ⊗ εA)) ⊗ 1B)

◦ ((1A ⊗ δr) ⊗ 1B) ◦ αA,B,B ◦ (1A ⊗ δB) ◦ δl

= (γA ⊗ 1B) ◦ ((1A ⊗ εB⊗e) ⊗ 1B) ◦ ((1A ⊗ γ−1
B ) ⊗ 1B)

◦ αA,B,B ◦ (1A ⊗ δB) ◦ δl

= (γA ⊗ 1B) ◦ ((1A ⊗ εB) ⊗ 1B) ◦ αA,B,B ◦ (1A ⊗ δB) ◦ δl

= (γA ⊗ 1B) ◦ αA,e,B ◦ (1A ⊗ (εB ⊗ 1B)) ◦ (1A ⊗ δB) ◦ δl

= (1A ⊗ βB) ◦ (1A ⊗ (εB ⊗ 1B)) ◦ (1A ⊗ δB) ◦ δl

= δl

and similarly we find that (Φ(Ψ(δ)))r = δr. This proves that Φ ◦ Ψ =

1SA(C). �

By definition δA : A −→ A⊗A is an object in RA(C). Its image by Φ

is therefore an object in SA(C).

Proposition 27. Φ(δA) = {δA, δA}.
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Proof. We have

Φ(δA)l

= (γA ⊗ 1A) ◦ ((1A ⊗ εA) ⊗ 1A) ◦ (δA ⊗ 1A) ◦ δA

= (γA ◦ (1A ⊗ εA) ◦ δA ⊗ 1A) ◦ δA

= (1A ⊗ 1A) ◦ δA

= δA.

In a similar way we prove that Φ(δA)r = δA. �

The object {δA, δA} in SA(C) will play an important role for a product

we will define later and is given a special name.

a = {δA, δA}.

In the following we will mostly work in the category SA(C) and use

the isomorphism to induce the corresponding structures on the category

of relations RA(C). Note that the category of corelations on A,RA(C),

is by duality isomorphic to the category of A−A bimodules. Denote this

category by SA(C).

3.4. The �
A product of relations. Let δ and γ be two objects in

SA(C) with underlying objects B and E. Define two arrows in C (δ �
A

γ)l : B⊗E −→ A⊗ (B ⊗E) and (δ�
A γ)r : B⊗E −→ (B ⊗E)⊗A by

(δ �
A γ)l = α−1

A,B,E ◦ (δl ⊗ 1E),

(δ �
A γ)r = αB,E,A ◦ (1B ⊗ γr).

Then we have

Proposition 28. δ�
A γ = {(δ�

A γ)l, (δ�
A γ)r} is an object in SA(C).

Proof. Using the naturality and the MacLane coherence condition for α

we have

αA,A,B⊗E ◦ (1A ⊗ (δ �
A γ)l) ◦ (δ �

A γ)l

= αA,A,B⊗E ◦ (1A ⊗ α−1
A,B,E) ◦ (1A(δl ⊗ 1E)) ◦ α−1

A,B,E ◦ (δl ⊗ 1E)

= αA,A,B⊗E ◦ (1A ⊗ α−1
A,B,E) ◦ α−1

A,A⊗B,E ◦ ((1A ⊗ δl) ◦ δl ⊗ 1E)

= αA,A,B⊗E ◦ (1A ⊗ α−1
A,B,E) ◦ α−1

A,A⊗B,E ◦ (α−1
A,A,B ⊗ 1E)

◦ ((δA ⊗ 1B) ⊗ 1E) ◦ (δl ⊗ 1E)

= α−1
A⊗A,B,E ◦ ((δA ⊗ 1B) ⊗ 1E) ◦ (δl ⊗ 1E)

= (δA ⊗ 1B⊗E) ◦ (α−1
A,B,E ◦ (δl ⊗ 1E)

= (δA ⊗ 1B⊗E) ◦ (δ �
A γ)l
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and

βB⊗E ◦ (εA ⊗ 1B⊗E) ◦ (δ �
A γ)l

= βB⊗E ◦ (εA ⊗ (1B ⊗ 1E)) ◦ α−1
A,B,E ◦ (δl ⊗ 1E)

= βB⊗E ◦ α−1
e,B,E ◦ ((εA ⊗ 1B) ◦ δl ⊗ 1E)

= βB⊗E ◦ α−1
e,B,E ◦ (β−1

B ⊗ 1E)

= βB⊗E ◦ β−1
B⊗E

= 1B⊗E ,

so B ⊗ E is a left A comodule. In a similar way we show that B ⊗ E

is a right A comodule. For the compatibility between the two structures

we have

αA,B⊗E,A ◦ (1A ⊗ (δ �
A γ)r) ◦ (δ �

A γ)l

= αA,B⊗E,A ◦ (1A ⊗ αB,E,A) ◦ (1A ⊗ (1B ⊗ γr))

◦ α−1
A,B,E ◦ (δl ⊗ 1E)

= αA,B⊗E,A ◦ (1A ⊗ αB,E,A) ◦ α−1
A,B,E⊗A

◦ (δl ⊗ (1E ⊗ 1A)) ◦ (1B ⊗ γr)

= (α−1
A,B,E ⊗ 1A) ◦ αA⊗B,E,A

◦ (δl ⊗ (1E ⊗ 1A)) ◦ (1B ⊗ γr)

= (α−1
A,B,E ⊗ 1A) ◦ ((δl ⊗ 1E) ⊗ 1A)

◦ αB,E,A ◦ (1B ⊗ γr)

= ((δ �
A γ)l ⊗ 1A) ◦ (δ �

A γ)r.

�

Using the previous proposition we can define an object map �
A :

SA(C) × SA(C) −→ SA(C) by

�
A(δ, γ) = δ �

A γ.

Let δ, γ, ρ and θ be objects in SA(C) with underlying objects B,E,D

and T in C and let f : δ −→ ρ and g : γ −→ θ be two morphisms in

SA(C). Let f : B −→ E and g : D −→ T be the corresponding arrows

in C and let f ⊗ g : B ⊗ E −→ D ⊗ T be their product in C. Define

f �
A g = f ⊗ g.

Proposition 29. f �
A g :A δ�

A γ −→ ρ�
A θ is a morphism in SA(C).
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Proof. We have previously proved that f ⊗ g is an arrow in C. It is also

a morphism in SA(C)

(ρ�
A θ)l ◦ (f �

A g)

= α−1
A,D,T ◦ (ρl ⊗ 1T ) ◦ (f ⊗ g)

= α−1
B,D,T ◦ (ρl ◦ f ⊗ g)

= α−1
B,D,T ◦ ((1A ⊗ f) ⊗ g) ◦ (δl ⊗ 1E)

= (1A ⊗ (f ⊗ g)) ◦ α−1
A,B,E ◦ (δl ⊗ 1E)

= (1A ⊗ (f �
A g)) ◦ (δ �

A γ)l.

The identity (ρ�
A θ)r ◦ (f ⊗ g) = ((f �

A g)⊗ 1A) ◦ (δ�
A γ)r is proved

in a similar way. �

Using this proposition we can extend the object map �
A to a bifunctor

by defining

�
A(f, g) = f �

A g.

In terms of this bifunctor we have the following immediate consequence

of lemma 25

Corollary 30. Let δ be an object in SA(C) with underlying object B.

Then δB : δ −→ δ �
A δ is a morphism in SA(C).

In general there exists no neutral object for �
A. This is clearly seen in

the case of Sets. Let B be a set and let f : B −→ A be a injective map

of sets. Define a A− A bicomodule structure on B by δl(x) = (f(x), x)

and δr(x) = (x, f(x)). Assume that ω is a neutral object for �
Aand let

the underlying object for ω be S. Then there must exist a isomorphism

h : δ �
A ω −→ δ and therefore bijective map h : B × S −→ B that is a

morphism of A−A bicomodules. But this implies that f(h(x, s)) = f(x)

for all x and s. But since f is injective we must have h(x, s) = x and

this is not possible if there is more than one element in S. A neutral

element ω for �
A therefore must have e = {∗} as underlying object. Any

A − A bicomodule structure ω on e must be of the form ωl(∗) = (x0, ∗)

and ωr(∗) = (∗, y0) for some elements x0, y0 ∈ A. Let B be a set with

more than one point and let f : B −→ A be a map of sets that is not

constant. Define a A−A bicomodule structure on B by δl(x) = (f(x), x)

and δr(x) = (x, f(x)). If ω is a neutral object for �
A there must exist an

isomorphism h : e×B −→ B that is a morphism of A−A bicomodules.

But this implies that for all b ∈ B we have f(h(∗, b)) = x0 and this

implies that f is constant since h is bijective. This is a contradiction and

this proves that �
A does not have a neutral object in the case of Sets.
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3.5. Semimonoidal structures on the category of relations. Recall

that 〈SA(C),�A,MA〉 is a semimonoidal category if MA : �
A ◦ (1 ×

�
A) −→ �

A ◦ (�A × 1) is a natural isomorphism such that the first of

the MacLane Coherence conditions is satisfied. We will in general assume

that the category SA(C) is a semimonoidal category with respect to some

choice of natural isomorphism MA.

At least one semimonoidal structure for �
A will always exists.

Proposition 31. Let δ and γ be objects in SA(C) with underlying objects

B and E in C. Define

MA
δ,γ,ρ = αB,E,D,

where α is the associativity constraint for the category C. Then 〈SA(C),�A,MA, SA〉

is a symmetric semimonoidal category.

Proof. We have proved previously that αB,E,D is a Carrow in C. Next

we need to show that the associativity constraint for ⊗ on C is in fact a

morphism in SA(C). If we use the naturality and the MacLane coherence

condition for α we have

((δ �
A γ) �

A ρ) ◦ αB,E,D

= α−1
A,B⊗E,D ◦ (α−1

A,B,E ⊗ 1D) ◦ ((δl ⊗ 1B) ⊗ 1D) ◦ αB,E,D

= α−1
A,B⊗E,D ◦ (α−1

A,B,E ⊗ 1D) ◦ αA⊗B,E,D ◦ (δl ⊗ (1E ⊗ 1D))

= (1A ⊗ αB,E,D) ◦ α−1
A,B,E⊗D ◦ (δB ⊗ 1E⊗D)

= (1A ⊗ αB,E,D) ◦ (δ �
A (γ �

A ρ)).

MA is clearly an isomorphism and is a natural transformation if the

following identity holds ((f�
Ag)�Ah)◦MA

δ,γ,ρ = MA
δ′,γ′,ρ′ ◦(f�

A(g�Ah))

for all morphisms f : δ −→ δ′, g : γ −→ γ′ and h : ρ −→ ρ′in SA(C). But

the corresponding identity in C is ((f ⊗g)⊗h)◦αB,E,D = αB′,E′,D′ ◦ (f ⊗

(g⊗h)) and this identity holds because α is a natural transformation. �

The previous proposition leads us to the following definition

Definition 32. The semimonoidal 〈SA(C),�A,MA〉 category is external

if for all objects δ, γ and ρ we have

MA
δ,γ,ρ = αB,E,D,

where α is the associativity constraint for the product ⊗ on the category

C and where B,E and D are the underlying objects for δ, γ and ρ.

Since SA(C) is isomorphic to the category of relations, a semimonoidal

structure on SA(C) will induce one on the category of relations. Let the



QUANTIZATIONS IN A CATEGORY OF RELATIONS 99

product in RA(C) corresponding to �
A be �

A : RA(C) × RA(C) −→

RA(C). We thus have

�
A = Ψ ◦ �

A ◦ (Φ × Φ).

We have the following explicit expression for the product

Proposition 33. Let r and s be two objects in RA(C). Then we have

r �
A s = (γA ⊗ βA) ◦ ((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ◦ (r ⊗ s).

Proof. Since ϕ and Ψ are isomorphisms with Φ = Ψ−1we only need to

verify that

Φ(r �
A s) = Φ(r) �

A Φ(s),

for all objects r and s in RA(C). Note that the naturality of ε gives

the following relations

εA ◦ βA ◦ (εA ⊗ 1A)

= εe⊗A ◦ (εA ⊗ 1A)

= εA⊗A

= εA⊗e ◦ (1A ⊗ εA)

= εA ◦ γA ◦ (εA ⊗ 1A).

We then have

(Φ(r �
A s))l

= (γA ⊗ 1B⊗E) ◦ ((1A ⊗ εA) ⊗ 1B⊗E) ◦ ((t�A s) ⊗ 1B⊗E) ◦ δB⊗E

= (γA ⊗ 1B⊗E) ◦ ((1A ⊗ εA) ⊗ 1B⊗E) ◦ ((γA ⊗ βA) ⊗ 1B⊗E)

◦ (((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ⊗ 1B⊗E) ◦ ((r ⊗ s) ⊗ 1B⊗E) ◦ δB⊗E

= (γA ⊗ 1B⊗E) ◦ ((1A ⊗ εA) ⊗ 1B⊗E) ◦ ((γA ⊗ βA) ⊗ 1B⊗E)

◦ (((1A ⊗ εA) ⊗ (εA ⊗ 1A)) ⊗ 1B⊗E) ◦ ((r ⊗ s) ⊗ 1B⊗E)

◦ α−1
B⊗E,B,E ◦ (αB,E,B ⊗ 1E) ◦ ((1B ⊗ σB,E) ⊗ 1E)

◦ (α−1
B,B,E ⊗ 1E) ◦ αB⊗B,E,E ◦ (δB ⊗ δE)

= α−1
A,B,E ◦ ((γA ⊗ 1B) ⊗ 1E) ◦ (αA,e,B ⊗ 1E) ◦ ((1A ⊗ σB,e) ⊗ 1E)

◦ ((1A ⊗ (1B ⊗ εA)) ⊗ 1E) ◦ (α−1
A,B,A ⊗ 1E) ◦ αA⊗B,A,E

◦ ((γA ⊗ 1B) ⊗ (βA ⊗ 1E)) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ ((εA ⊗ 1A) ⊗ 1E))

◦ ((r ⊗ 1B) ⊗ (s⊗ 1E)) ◦ (δB ⊗ δE)
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= α−1
A,B,E ◦ ((1A ⊗ γB) ⊗ 1E) ◦ (α−1

A,B,e ⊗ 1E) ◦ αA⊗B,e,E ◦ (1A⊗B ⊗ (εA ⊗ 1E))

◦ ((γA ⊗ 1B) ⊗ (βA ⊗ 1E)) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ ((εA ⊗ 1A) ⊗ 1E))

◦ ((r ⊗ 1B) ⊗ (s⊗ 1E)) ◦ (δB ⊗ δE)

= (1A ⊗ (γB ⊗ 1E)) ◦ α−1
A,B⊗e,E ◦ (α−1

A,B,e ⊗ 1E) ◦ αA⊗B,e,E ◦ (1A⊗B ⊗ (εA ⊗ 1E))

◦ ((γA ⊗ 1B) ⊗ (βA ⊗ 1E)) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ ((εA ⊗ 1A) ⊗ 1E))

◦ ((r ⊗ 1B) ⊗ (s⊗ 1E)) ◦ (δB ⊗ δE)

= (1A ⊗ (γB ⊗ 1E)) ◦ (1A ⊗ αB,e,E) ◦ α−1
A,B,e⊗E ◦ (1A⊗B ⊗ (εA ⊗ 1E))

◦ ((γA ⊗ 1B) ⊗ (βA ⊗ 1E)) ◦ (((1A ⊗ εA) ⊗ 1B) ⊗ ((εA ⊗ 1A) ⊗ 1E))

◦ ((r ⊗ 1B) ⊗ (s⊗ 1E)) ◦ (δB ⊗ δE)

= α−1
A,B,E ◦ (Φ(r)l ⊗ βE ◦ ((εA ◦ βA ◦ (εA ⊗ 1A)) ◦ s) ⊗ 1E) ◦ δE)

= α−1
A,B,E ◦ (Φ(r)l ⊗ βE ◦ ((εA ◦ γA ◦ (1A ⊗ εA)) ◦ s) ⊗ 1E) ◦ δE)

= α−1
A,B,E ◦ (Φ(r)l ⊗ βE ◦ (εA ⊗ 1E) ◦ Φ(s)l)

= α−1
A,B,E ◦ (Φ(r)l ⊗ 1E)

= Φ(r)l
�

A Φ(s)l.

The proof of the identity (Φ(r�
A s))r = (Φ(r)�

A Φ(s))ris similar. �

By duality the category of C-corelations RA(C) is isomorphic to the

category of A− A bimodules SA(C).

3.6. The tensor product of relations. For categories of bimodules

over rings we have a standard construction of a tensor product. This

construction is categorical in nature and can in a natural way be gen-

eralized to the category of A − A bimodules SA(C). By dualizing this

construction we arrive at our definition of a tensor product of A − A

bicomodules. The isomorphism Ψ : SA(C) −→ RA(C) is used to define

the tensor product of relations.

The following lemma is fundamental for the construction of the tensor

product.

Lemma 34. Let δ be an object in SA(C). Then δl : δ −→ a �
A δ and

δr : δ −→ δ �
A a are morphisms in SA(C) and if f : δ −→ γ is a

morphism in SA(C) the following diagrams in SA(C) are commutative.

a � δ
1a �A f- a �

A γ

δ

δl

6

f
- γ

γl

6
δ �

A a
f �A 1a- γ �

A a

δ

δr

6

f
- γ

γr

6
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Proof. There are four diagrams that need to be commutative for the first

part of the lemma to be true. It is seen by inspection that this set of

diagrams is included in the set of diagrams defining δ to be a A − A

bicomodule. The second part of the lemma is clearly true since the

diagrams in C corresponding to the given diagrams are the conditions

for f to be a morphism of the A− A bicomodules δ and γ. �

Let now δ and γ be any pair of objects in SA(C). From the previous

lemma we can conclude that PA
δ,γ given by

δ �
A (a �

A γ)
MA

δ,a,γ - (δ �
A a) � γ

I@
@

@1δ �A γl
�

�
�
δr �A 1γ

�

δ � γ

is a diagram in SA(C). The limit of this diagram, when it exists, is

determined by an object in SA(C) denoted by δ ⊗A γ and a morphism

πA
δ,γ : δ ⊗A γ −→ δ �

A γ.

Definition 35. Let δ and γ be two objects in SA(C). The tensor product

of δ and γ is given by

⊗A(δ, γ) = δ ⊗A γ.

The following property of πA
δ,γ is important.

Proposition 36. πA
δ,γ is a monomorphism.

Proof. Let ρ be an object in SA(C) and let f, g : ρ −→ δ ⊗A γ be a pair

of morphisms such that πA
δ,γ ◦ f = πA

δ,γ ◦ g. Define h = πA
δ,γ ◦ g. Then

〈ρ, h〉 is a cone on PA
δ,γand therefore the equation

πA
δ,γ ◦ f = h

has a unique solution. But both f and g are solutions and therefore

by uniqueness we can conclude that f = g and this proves that πA
δ,γ is a

monomorphism. �

We now want to extend the tensor product to morphisms. Let δ,γ,θ

and ρ be objects in SA(C) and let f : δ −→ θ and g : γ −→ ρ be

morphisms. Then we have

Lemma 37. (f �
A g) ◦ πA

δ,γ is a cone on the diagram PA
θ,ρ.

Proof. We have
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MA
θ,a,ρ ◦ (1θ �

A ρl) ◦ (f �
A g) ◦ πA

δ,γ

= MA
θ,a,ρ ◦ (f �

A (ρl ◦ g)) ◦ πA
δ,γ

= MA
θ,a,ρ ◦ (f �

A (1a �
A g) ◦ γl) ◦ πA

δ,γ

= MA
θ,a,ρ ◦ (f �

A (1a �
A g)) ◦ (1δ �

A γl) ◦ πA
δ,γ

= ((f �
A 1a) �

A g) ◦MA
δ,a,γ ◦ (1δ �

A γl) ◦ πA
δ,γ

= ((f �
A 1a) �

A g) ◦ (δr
�

A 1γ) ◦ π
A
δ,γ

= ((f �
A 1a) ◦ δ

r
�

A g) ◦ πA
δ,γ

= ((θr ◦ f) �
A g) ◦ πA

δ,γ

= (θr
�

A 1ρ) ◦ (f �
A g) ◦ πA

δ,γ.

�

Let f ⊗A g : δ ⊗A γ −→ θ ⊗A ρ be the unique morphism that exists

by the universality of the cone θ ⊗A ρ. For this morphism we have the

commutative diagram

δ �
A γ

f �A g- θ �
A ρ

δ ⊗
A γ

πA
δ,γ

6

f ⊗A g
- θ ⊗

A ρ

πA
θ,ρ

6

In general δ ⊗A γ will not exist for all pairs of objects in SA(C). In

order for it to exists and have reasonable properties we need to restrict

the notion relation as we have defined it. Our first restriction is to assume

that ⊗A is defined for all pairs of objects in SA(C). Our second restriction

involves the arrow πA
δ,γ. Let δ, γ and ρ be relations. We require that the

morphism πA
δ,γ �

A 1ρ is mono. We have proved that πA
δ,γ is always mono,

but requiring that πA
δ,γ �

A 1ρ is mono is a nontrivial restriction in general.

It can be thought of a some kind of ”flatness” condition on A.

Given the above restrictions we can define a map ⊗A : SA(C) ×

SA(C) −→ SA(C) by

⊗A(δ, γ) = δ ⊗A γ,

⊗A(f, g) = f ⊗A g.

Proposition 38. The map ⊗A is a bifunctor
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Proof. Let δ, δ′, δ′′, γ, γ′ and γ′′ be four objects in SA(C) and let f :

δ −→ δ′, f ′ : δ′ −→ δ′′, g : γ −→ γ′ and g′ : γ′ −→ γ′′ be morphisms. By

universality we know that the equation

πδ′′ ,γ′′ ◦ ϕ = ((f ′ ◦ f) �
A (g′ ◦ g)) ◦ πA

δ,γ

has a unique solution. One solution is by definition (f ′ ◦ f)⊗A (g′ ◦ g).

But we also have

πA
δ′′ ,γ′′ ◦ ((f ′ ⊗A g′) ◦ (f ⊗A g))

= (f ′
�

A g′) ◦ πA
δ′,γ′ ◦ (f ⊗A g)

= (f ′
�

A g′) ◦ (f �
A g) ◦ πA

δ,γ

= ((f ′ ◦ f) �
A (g′ ◦ g)) ◦ πA

δ,γ.

By uniqueness we must have

(f ′ ◦ f) ⊗A (g′ ◦ g) = (f ′ ⊗A g′) ◦ (f ⊗A g).

Also by universality the following equation has a unique solution.

πA
δ,γ ◦ ϕ = 1δ�Aγ ◦ π

A
δ,γ.

One solution is clearly 1δ⊗Aγ . But we have

πA
δ,γ ◦ (1δ ⊗

A 1γ)

= (1δ �
A 1γ) ◦ π

A
δ,γ

= 1δ�Aγ ◦ π
A
δ,γ,

so by uniqueness we have 1δ⊗Aγ = 1δ ⊗
A 1γ. �

We will call δ⊗A γ for the tensor product of the A−A bicomodules δ

and γ.

We defined the map ⊗A using universal cones in the category SA(C)

but we will now prove that it can be constructed from universal cones in

the category C.

Let δ and γ be two objects in SA(C) with underlying objects B and

E in C. Let the diagram PA
B,E in C be given by

B ⊗ (A ⊗ E)
αB,A,E- (B ⊗ A) ⊗ E

I@
@

@1B ⊗ γl
�

�
�
δr ⊗ 1E

�

B ⊗ E
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Assume that there exists a universal cone 〈X, h〉 on the diagram PA
B,E

in C. Define

Θl = (γA ⊗ 1X) ◦ ((1A ⊗ εB⊗E) ⊗ 1X) ◦ (α−1
A,B,E ⊗ 1X)

◦ ((δl ⊗ 1E) ⊗ 1X) ◦ (h⊗ 1X) ◦ δX ,

Θr = (1X ⊗ βA) ◦ (1X ⊗ (εB⊗E ⊗ 1A)) ◦ (1X ⊗ αB,E,A)

◦ (1X ⊗ (1B ⊗ γr)) ◦ (1X ⊗ h) ◦ δX .

Proposition 39. Θ = {Θl,Θr} is a A − A bicomodule with underlying

object X.

Proof. Let us define morphisms L,M : X −→ A by

L = γA ◦ (1A ⊗ εB⊗E) ◦ α−1
A,B,E ◦ (δl ⊗ 1E) ◦ h,

M = βA ◦ (εB⊗E ⊗ 1A) ◦ αB,E,A ◦ (1B ⊗ γr) ◦ h.

Then Θl = (L ⊗ 1X) ◦ δX and Θr = (1X ⊗M) ◦ δX and we have for the

left structure

αA,A,X ◦ (1A ⊗ Θl) ◦ Θl

= αA,A,X ◦ (1A ⊗ (L⊗ 1X) ◦ δX) ◦ (L⊗ 1X) ◦ δX

= αA,A,X ◦ (1A ⊗ (L⊗ 1X)) ◦ (1A ⊗ δX) ◦ (L⊗ 1X) ◦ δX

= αA,A,X ◦ (1A ⊗ (L⊗ 1X)) ◦ (L⊗ (1X ⊗ 1X)) ◦ (1X ⊗ δX) ◦ δX

= αA,A,X ◦ (1A ⊗ (L⊗ 1X)) ◦ (L⊗ (1X ⊗ 1X)) ◦ α−1
X;X;X ◦ (δX ⊗ 1X) ◦ δX

= ((1A ⊗ L) ⊗ 1X) ◦ ((L⊗ 1X) ⊗ 1X) ◦ (δX ⊗ 1X) ◦ δX

= ((L⊗ L) ◦ δX ⊗ 1X) ◦ δX

= (δA ◦ L⊗ 1X) ◦ δX

= (δA ⊗ 1X) ◦ Θl.

The proof for the right structure is similar. For the compatibility of

the left and right structure we have

(Θl ⊗ 1A) ◦ Θr

= ((L⊗ 1X) ◦ δX ⊗ 1A) ◦ (1X ⊗M) ◦ δX

= ((L⊗ 1X) ⊗ 1A) ◦ (δX ⊗ 1A) ◦ (1X ⊗M) ◦ δX

= ((L⊗ 1X) ⊗M) ◦ (δX ⊗ 1X) ◦ δX

= ((L⊗ 1X) ⊗M) ◦ α−1
X;X;X ◦ (1X ⊗ δX) ◦ δX

= α−1
A,X,A ◦ (L⊗ (1X ⊗M) ◦ δX) ◦ δX

= α−1
A,X,A ◦ (1A ⊗ Θr) ◦ Θl.
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�

We will next show that h is a morphism in SA(C). For this we need

the following lemma

Lemma 40.

(γA ◦ (1A⊗ εB⊗E)⊗ (βB ◦ (εA⊗1B)⊗1E)◦αA,B,E)◦ δA⊗(B⊗E) = 1A⊗(B⊗E).

Proof. Let T be defined as

T = ((1A ⊗ σe,e) ⊗ 1B⊗E) ◦ (α−1
A,e,e ⊗ 1B⊗E) ◦ αA⊗e,e,B⊗E

◦ ((1A ⊗ εA) ⊗ (εB⊗E ⊗ 1B⊗E)) ◦ (δA ⊗ δB⊗E).

Then we have

(γA ◦ (1A ⊗ εB⊗E) ⊗ (βB ◦ (εA ⊗ 1B) ⊗ 1E) ◦ αA,B,E)

= (γA ⊗ (βB ⊗ 1E)) ◦ ((1A ⊗ εB⊗E) ⊗ ((εA ⊗ 1B) ⊗ 1E))

◦ (1A⊗(B⊗E) ⊗ αA,B,E) ◦ δA⊗(B⊗E)

= (γA ⊗ (βB ⊗ 1E)) ◦ (1A⊗e ⊗ αe,B,E) ◦ ((1A ⊗ εB⊗E) ⊗ (εA ⊗ 1B⊗E))

◦ α−1
A⊗(B⊗E),A,B⊗E

◦ (αA,B⊗E,A ⊗ 1B⊗E) ◦ ((1A ⊗ σA,B⊗E) ⊗ 1B⊗E)

◦ (α−1
A,A,B⊗E ⊗ 1B⊗E)αA⊗A,B⊗E,B⊗E ◦ (δA ⊗ δB⊗E)

= (γA ⊗ (βB ⊗ 1E)) ◦ (1A⊗e ⊗ αe,B,E) ◦ αA⊗e,e,B⊗E ◦ (αA,e,e ⊗ 1B⊗E) ◦ T

= (γA ⊗ (βB ⊗ 1E)) ◦ α−1
A⊗e,ηpB,E ◦ (αA⊗e,e,B ⊗ 1E) ◦ α(A⊗e)⊗e,B,E

◦ (αA,e,e ⊗ 1B⊗E) ◦ T

= α−1
A,B,E ◦ ((γA ⊗ 1B) ⊗ 1E) ◦ ((1A⊗e ⊗ βB) ⊗ 1E) ◦ (αA⊗e,e,B ⊗ 1E)

◦ α(A⊗e)⊗e,B,E ◦ (αA,e,e ⊗ 1B⊗E) ◦ T

= α−1
A,B,E ◦ ((γA ⊗ 1B) ⊗ 1E) ◦ ((γA⊗e ⊗ 1B) ⊗ 1E) ◦ α(A⊗e)⊗e,B,E

◦ (αA,e,e ⊗ 1B⊗E) ◦ T
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= (γA ⊗ 1B⊗E) ◦ (γA⊗e ⊗ 1B⊗E) ◦ (αA,e,e ⊗ 1B⊗E) ◦ T

= (γA ⊗ 1B⊗E) ◦ ((γA ⊗ 1e) ⊗ 1B⊗E) ◦ (αA,e,e ⊗ 1B⊗E) ◦ T

= (γA ⊗ 1B⊗E) ◦ ((1A ⊗ βe) ⊗ 1B⊗E) ◦ ((1A ⊗ σe,e) ⊗ 1B⊗E)

◦ (α−1
A,e,e ⊗ 1B⊗E) ◦ αA⊗e,e,B⊗E ◦ ((1A ⊗ εA) ◦ δA ⊗ (εB⊗E ⊗ 1B⊗E) ◦ δB⊗E)

= (γA ⊗ 1B⊗E) ◦ ((1A ⊗ γe) ⊗ 1B⊗E) ◦ (α−1
A,e,e ⊗ 1B⊗E) ◦ αA⊗e,e,B⊗E

◦ (γ−1
A ⊗ β−1

B⊗E)

= (γA ⊗ 1B⊗E) ◦ ((γA ⊗ 1e) ⊗ 1B⊗E) ◦ αA⊗e,e,B⊗E ◦ (γ−1
A ⊗ β−1

B⊗E)

= (γA ⊗ 1B⊗E) ◦ αA,e,B⊗E ◦ (γA ⊗ (1e ⊗ 1B⊗E)) ◦ (γ−1
A ⊗ β−1

B⊗E)

= (γA ⊗ βB⊗E) ◦ (γ−1
A ⊗ β−1

B⊗E)

= 1A⊗(B⊗E).

�

We can now prove that h is a morphism in SA(C).

Proposition 41. h defines a monomorphism in SA(C) with domain Θ

and codomain δ �
A γ

Proof. The fact that h is a monomorphism in C follows from the univer-

sality as it did for πA
δ,γ in proposition 36.

For the left structure we have

(1A ⊗ h) ◦ Θl

(1A ⊗ h) ◦ (L⊗ 1X) ◦ δX

= (L⊗ 1B⊗E) ◦ (1X ⊗ h) ◦ δX

= (γA ◦ (1A ⊗ εB⊗E) ⊗ 1B⊗E) ◦ (α−1
A,B,E ⊗ 1B⊗E) ◦ ((δl ⊗ 1E) ⊗ 1B⊗E)

◦ (h⊗ h) ◦ δX
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= (γA ◦ (1A ⊗ εB⊗E) ⊗ 1B⊗E) ◦ (α−1
A,B,E ⊗ 1B⊗E) ◦ ((δl ⊗ 1E) ⊗ 1B⊗E)

◦ δB⊗E ◦ h

= (γA ◦ (1A ⊗ εB⊗E) ⊗ 1B⊗E) ◦ (α−1
A,B,E ⊗ 1B⊗E)

◦ ((1A⊗B ⊗ 1E) ⊗ (βB ⊗ 1E) ◦ ((εA ⊗ 1B) ⊗ 1E)) ◦ ((δl ⊗ 1E) ⊗ (δl ⊗ 1E))

◦ δB⊗E ◦ h

= (γA ◦ (1A ⊗ εB⊗E) ⊗ (βB ◦ (εA ⊗ 1B) ⊗ 1E) ◦ αA,B,E) ◦ (α−1
A,B,E ⊗ α−1

A,B,E)

◦ δ(A⊗B)⊗E ◦ (δl ⊗ 1E) ◦ h

= (γA ◦ (1A ⊗ εB⊗E) ⊗ (βB ◦ (εA ⊗ 1B) ⊗ 1E) ◦ αA,B,E) ◦ δA⊗(B⊗E)

◦ α−1
A,B,E ◦ (δl ⊗ 1E) ◦ h

= α−1
A,B,E ◦ (δl ⊗ 1E) ◦ h

= (δ �
A γ)l ◦ h.

In a similar way we show the identity (h⊗1A)◦Θr = (δ�
A γ)r ◦h. �

Proposition 42. Let the semimonoidal category 〈SA(C),�A, α〉 be ex-

ternal. Then 〈Θ, h〉 is a universal cone on PA
δ,γ.

Proof. It is evident that 〈Θ, h〉 is a cone on the diagram PA
δ,γ. Let 〈θ, u〉

be any cone on PA
δ,γ. Let ϕ, ψ : θ −→ Θ be two morphisms in SA(C)

such that

h ◦ ϕ = θ,

h ◦ ψ = θ.

Then h ◦ϕ = h ◦ψ and since h is mono we have ϕ = ψ. Therefore the

equation h ◦ ϕ = θ has at most one solution.

The fact that 〈θ, u〉 is a cone gives us the relation

MA
δ,a,γ ◦ (1δ �

A γl) ◦ u = (δl
�

A 1γ) ◦ u.

If the underlying objects for δ, γ and θ are B,E and D, then u : D −→

B ⊗ E and the previous identity corresponds to the following

identity in C

(1B ⊗ γl) ◦ u = (δl ⊗ 1E) ◦ u

and therefore 〈D, u〉 is a cone on the diagram PA
B,E in C. By univer-

sality there exists a unique morphism ϕ : D −→ X in Csuch that

h ◦ ϕ = u.

The fact that ϕ is a morphism in C and u and δD are morphisms in

SA(C) gives us the following four commutative diagrams
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D
u - B ⊗ E

A ⊗ D

θl

?

1A ⊗ u
- A ⊗ B ⊗ E

δl ⊗ 1E

?

D
δD - D ⊗ D

A ⊗ D

θl

?

1A ⊗ δD

- A ⊗ D ⊗ D

δl ⊗ 1D

?

D
φ - X

D ⊗ D

δD

?

φ ⊗ φ
- X ⊗ X

δX

?

D
u - B ⊗ E

@
@

@εD R 	�
�

�
εB⊗E

e

If we define L as in proposition 39 we have the following identities

L ◦ ϕ

= γA ◦ (1A ⊗ εB⊗E) ◦ α−1
A,B,E ◦ (δl ⊗ 1E) ◦ h ◦ ϕ

= γA ◦ (1A ⊗ εB⊗E) ◦ α−1
A,B,E ◦ (δl ⊗ 1E) ◦ u

= γA ◦ (1A ⊗ εB⊗E) ◦ (1A ⊗ u) ◦ θl

= γA ◦ (1A ⊗ εD) ◦ θl.

But then we have

Θl ◦ ϕ

= (L⊗ 1X) ◦ δX ◦ ϕ

= (L⊗ 1X) ◦ (ϕ⊗ ϕ) ◦ δD

= (L ◦ ϕ⊗ ϕ) ◦ δD

= (1A ⊗ ϕ) ◦ (γA ⊗ 1D) ◦ ((1A ⊗ εD) ⊗ 1D) ◦ (θl ⊗ 1D) ◦ δD

= (1A ⊗ ϕ) ◦ (γA ⊗ 1D) ◦ αA,e,D ◦ (1A ⊗ (εD ⊗ 1D)) ◦ (1A ⊗ δD) ◦ θl

= (1A ⊗ ϕ) ◦ (1A ⊗ βD ◦ (εD ⊗ 1D) ◦ δD) ◦ θl

= (1A ⊗ ϕ) ◦ θl.

In a similar way we prove the identity Θr ◦ ϕ = (ϕ ⊗ 1A) ◦ θr. This

proves that ϕ is a morphism in SA(C) and therefore that the equation

h ◦ ϕ = u

has a unique solution in SA(C). �

This proposition show that δ⊗A γ ≈ Θ since universal cones are deter-

mined up to isomorphism. This is the way the tensor product is usually

computed.
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We now have two bifunctors �
Aand ⊗A defined on SA(C). These two

structures are related at the functorial level as the next proposition show.

Proposition 43. πA
δ,γ are the components of a natural monomorphism

πA : ⊗A −→ �
A.

Proof. The proposition follows directly from the commutative diagram

3.6. �

3.7. Monoidal structures on the category of relations. We have

seen that �
A defines a semimonoidal structure on SA(C) with associativ-

ity constraint MA. We will in the following only consider the case when

the product ⊗A defines a monoidal structure on SA(C) with neutral ob-

ject a. This is a further restriction on the category SA(C) and thus on

the category of relations. Recall that the pair ⊗A, a defines a monoidal

structure on SA(C) if for all objects δ, γ and ρ there exists isomorphisms

mA
δ,γ,ρ : δ ⊗A (γ ⊗A ρ) −→ (δ ⊗A γ) ⊗A ρ,

lAδ : a⊗A δ −→ δ,

rA
δ : δ ⊗A a −→ δ,

that are natural in δ, γ and ρ and such that the MacLane coherence

conditions are satisfied. The coherence conditions are a set of equations

for the morphisms mA, lA and rA and these equations may have no solu-

tions, a unique solution or many solutions depending on the category C

and the coalgebra A.

Definition 44. A monoidal structure 〈SA(C),⊗A, a,mA, lA, rA〉 on the

category SA(C) is induced if for all objects δ, γ and ρ in SA(C) the fol-

lowing diagrams commute

a ⊗
A δ

lAδ - δ

@
@

@πA
a,δ R 	�

�
�
δl

a �
A δ

δ ⊗
A a

rA
δ - δ

@
@

@πA
δ,a R 	�

�
�

δr

δ �
A a
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δ �
A (γ �

A ρ)
MA

δ,γ,ρ- (δ �
A γ) � ρ

δ �
A (γ ⊗

A ρ)

1δ �A πA
γ,ρ

6

(δ ⊗
A γ) �

A ρ

πA
δ,γ ⊗ 1ρ

6

δ ⊗
A (γ ⊗

A ρ)

πA
δ,γ⊗Aρ

6

mA
δ,γ,ρ

- (δ ⊗
A γ) ⊗A ρ

πA
δ⊗Aγ,ρ

6

We will in the following derive a necessary and sufficient condition for

induced constraints to exist in the external case. Let us assume that

the semimonoidal category 〈SA(C),�A,MA〉 is external. Let PA
a,δ be the

diagram

a �
A (a �

A δ)
MA

a,a,δ - (δ �
A a) � γ

I@
@

@1a �A δl
�

�
�
δA �A 1δ

�

a � δ

Then 〈δ, δl〉 is clearly a cone on this diagram since this is equivalent

to the condition that δl is a left comodule structure on the underlying

object of δ. But we have also a stronger condition.

Proposition 45. Let the semimonoidal category 〈SA(C),�A,MA〉 be

external. Then 〈δ, δl〉 is a universal cone on PA
a,δ.

Proof. In order to prove that 〈δ, δl〉 is a universal cone we must show that

the equation

δl ◦ ϕ = f,

has a unique solution ϕ : γ −→ δ for any f : γ −→ a�
A δ such that

(δA ⊗ 1δ) ◦ f = MA
a,a,δ ◦ (1a ⊗ δl) ◦ f.

Since βB ◦ (εA ⊗ 1B) ◦ δl = 1B the equation can have only one solution

and this solution must be

ϕ = βB ◦ (εA ⊗ 1B) ◦ f.
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The universality is proved if we can show that this is in fact a solution

and also a morphism in SA(C).

δl ◦ ϕ

= δl ◦ βB ◦ (εA ⊗ 1B) ◦ f

= βA⊗B ◦ (1e ⊗ δl) ◦ (εA ⊗ 1B) ◦ f

= βA⊗B ◦ (εA ⊗ (1A ⊗ 1B)) ◦ (1A ⊗ δl) ◦ f

= βA⊗B ◦ (εA ⊗ (1A ⊗ 1B)) ◦ α−1
A,A,B ◦ (δA ⊗ 1B) ◦ f

= βA⊗B ◦ α−1
e,A,B ◦ (β−1

A ⊗ 1B) ◦ f

= f,

so ϕ is a solution. Here we have used the identity βA⊗B = (βA ⊗ 1B) ◦

αe,A,B. By construction ϕ is an arrow in C, but we also have

(1A ⊗ ϕ) ◦ γl

= (1A ⊗ βB) ◦ (1A ⊗ (εA ⊗ 1B)) ◦ (1A ⊗ f) ◦ γl

= (1A ⊗ βB) ◦ (1A ⊗ (εA ⊗ 1B)) ◦ (1A ⊗ δl) ◦ f

= (1A ⊗ βB) ◦ (1A ⊗ (εA ⊗ 1B)) ◦ α−1
A,A,B ◦ (δA ⊗ 1B) ◦ f

= (1A ⊗ βB) ◦ α−1
A,e,B ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (δA ⊗ 1B) ◦ f

= (γA ⊗ 1B) ◦ (γ−1
A ⊗ 1B) ◦ f

= f

= δl ◦ ϕ,

so ϕ is a morphism in SA(C). �

We have the following two corollaries to the previous proposition

Corollary 46. Let the semimonoidal category 〈SA(C),�A,MA〉 be ex-

ternal and let the underlying object for δ be B. If induced unit constraints

exists they must be of the form

lAδ = βB ◦ (εA ⊗ 1B) ◦ πA
a,δ,

rA
δ = γB ◦ (1B ⊗ εA) ◦ πA

δ,a.

Corollary 47. Let the semimonoidal category 〈SA(C),�A,MA〉 be ex-

ternal. Then the morphism δl : δ −→ a⊗A δ is a monomorphism.

Proof. Let γ be any object in SA(C) and let f, g : γ −→ δ be any pair of

morphisms. Assume that δl ◦ f = δl ◦ g and define h = δl ◦ g. Then both

f and h satisfy the equation

δl ◦ ϕ = h.
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By universality we can conclude that f = g. �

Proposition 48. Let the semimonoidal category 〈SA(C),�A,MA〉 be

external. Then induced unit and associativity constraints are unique if

they exist.

Proof. By definition an external unit constraint lAδ is a solution of the

equation

δl ◦ lAδ = πA
a,δ.

But by universality this equation has a unique solution. The unique-

ness of rA
δ is proved in a similar way. FormA

r,s,t we note that the morphism

t = (πA
δ,γ ⊗ 1ρ) ◦ π

A
δ⊗Aγ,ρ

is mono. Let f and g be two morphisms such

that the third diagram in definition 44 commutes. Then we have

t ◦ f = (πA
δ,γ ⊗ 1ρ) ◦ π

A
δ⊗Aγ,ρ ◦ f = αB,E,D ◦ (1δ ⊗ πA

γ,ρ) ◦ π
A
δ,γ⊗Aρ,

t ◦ g = (πA
γ,δ ⊗ 1ρ) ◦ π

A
δ⊗Aγ,ρ ◦ g = αB,E,D ◦ (1δ ⊗ πA

γ,ρ) ◦ π
A
δ,γ⊗Aρ,

so t ◦ f = t ◦ g. But t is mono and therefore f = g �

We can now give sufficient conditions for the existence of induced unit

and associativity constraints.

Theorem 49. Let the semimonoidal category 〈SA(C),�A,MA〉 be ex-

ternal and assume that for all δ, γ and ρ there exists a isomorphism

mA
δ,γ,ρ : δ ⊗A (γ ⊗A ρ) −→ (δ ⊗A γ) ⊗A ρ such that the following dia-

gram commute.

δ �
A (γ �

A ρ)
MA

δ,γ,ρ- (δ �
A γ) � ρ

δ �
A (γ ⊗

A ρ)

1δ �A πA
γ,ρ

6

(δ ⊗
A γ) �

A ρ

πA
δ,γ ⊗ 1ρ

6

δ ⊗
A (γ ⊗

A ρ)

πA
δ,γ⊗Aρ

6

mA
δ,γ,ρ

- (δ ⊗
A γ) ⊗A ρ

πA
δ⊗Aγ,ρ

6

Then a induced monoidal structure 〈SA(C),⊗A, a,mA, lA, rA〉 on the

category SA(C) exists.

Proof. Let us first prove that mA
δ,γ,ρ are the components of a natural

isomorphism. Let δ′, γ′ and ρ′ be three other relations and let f : δ −→

δ
′

, g : γ −→ γ′ and h : ρ −→ ρ′ be three morphisms. For any three
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relations δ, γ and ρ define ϕδ,γ,ρ = (πA
δ,γ ⊗ 1ρ) ◦ πA

δ⊗Aγ,ρ
and ψδ,γ,ρ =

(1δ ⊗
A πA

γ,ρ) ◦ π
A
δ,γ⊗Aρ

. Then we have

ϕδ′,γ′,ρ′ ◦ ((f ⊗A g) ⊗A h) ◦mA
δ,γ,ρ

= ((f �
A g) �

A h) ◦ ϕδ,γ,ρ ◦m
A
δ,γ,ρ

= ((f �
A g) �

A h) ◦MA
δ,γ,ρ ◦ ψδ,γ,ρ

= MA
δ′ ,γ′,ρ′ ◦ (f �

A (g �
A h)) ◦ ψδ,γ,ρ

= MA
δ′ ,γ′,ρ′ ◦ ψδ′ ,γ′,ρ′ ◦ (f ⊗A (g ⊗A h))

= ϕδ′,γ′,ρ′ ◦m
A
δ′,γ′,ρ′ ◦ (f ⊗A (g ⊗A h)).

From this the naturality of mA
δ,γ,ρ follows because ϕδ′,γ′,ρ′ is mono. We

have thus far proved that we have a natural isomorphism

mA
δ,γ,ρ : δ ⊗A (γ ⊗A ρ) −→ (δ ⊗A γ) ⊗A ρ.

A induced left unit constraint is a natural isomorphism in SA(C) that

satisfy the equation

δl ◦ ϕ = πA
a,δ.

By definition a ⊗A δ is a universal cone on the diagram PA
a,δ. But δl

is also a universal cone on this diagram so there exists an isomorphism

ϕ : a ⊗A δ −→ δ such that δl ◦ ϕ = πA
a,δ. We have seen that the only

solution of this equation in SA(C) is given by lAδ = βB ◦ (εA ⊗ 1B) ◦ πA
a,δ

where the underlying object for δ is B. We can therefore conclude that

lAδ : a⊗A δ −→ δ is an isomorphism. This isomorphism is natural because

if δ and δ′ are objects in SA(C) with underlying objects B and B ′ and

f : δ −→ δ′ is any morphism the naturality of β and πA give

f ◦ lAδ

= f ◦ βB ◦ (εA ⊗ 1B) ◦ πA
a,δ

= βB′ ◦ (1e ⊗ f) ◦ (εA ⊗ 1B) ◦ πA
a,δ

= βB′ ◦ (εA ⊗ f) ◦ πA
a,δ

= βB′ ◦ (εA ⊗ 1B′) ◦ (1A ⊗ f) ◦ πA
a,δ

= βB′ ◦ (εA ⊗ 1B′) ◦ πA
a,δ′ ◦ f

= lAδ′ ◦ f.

In a similar way we find a natural isomorphism rA
δ = γB ◦ (1B ⊗ εA) ◦

πA
δ,a. The proposition is proved if we can show that these three natural

isomorphisms satisfy the MacLane coherence conditions for a monoidal
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category. We clearly have

al ◦ lAa = πA
a,a = ar ◦ rA

a .

But al = δA = ar and δA is a monomorphism so we have lAa = rA
a .

This is the third MacLane condition. Let us now consider the second

MacLane condition. Let δ and γ have underlying objects B and E.

Using the formulas for lAδ , r
A
δ and the definition of mA

δ,γ,ρ we find

πA
δ,γ ◦ (rA

δ ⊗A 1γ) ◦m
A
δ,a,γ

= (rA
δ ⊗ 1E) ◦ πA

δ⊗Aa,γ ◦m
A
δ,a,γ

= (γB ◦ (1B ⊗ εA) ◦ πA
δ,a ⊗ 1E) ◦ πA

δ⊗Aa,γ ◦m
A
δ,a,γ

= (γB ⊗ 1E) ◦ ((1B ⊗ εA) ⊗ 1E) ◦ (πA
δ,a �

A 1γ) ◦ π
A
δ⊗Aa,γ ◦m

A
δ,a,γ

= (γB ⊗ 1E) ◦ ((1B ⊗ εA) ⊗ 1E) ◦ αB,A,E ◦ (1δ �
A πA

a,γ) ◦ π
A
δ,a⊗Aγ

= (γB ⊗ 1E) ◦ αB,e,E ◦ (1B ⊗ (εA ⊗ 1E)) ◦ (1δ �
A πA

a,γ) ◦ π
A
δ,a⊗Aγ

= (1B ⊗ βE) ◦ (1B ⊗ (εA ⊗ 1E)) ◦ (1B ⊗ πA
a,γ) ◦ π

A
δ,a⊗Aγ

= (1B ⊗ βE ◦ (εA ⊗ 1E) ◦ πA
a,γ) ◦ π

A
δ,a⊗Aγ

= (1δ �
A lAγ ) ◦ πA

δ,a⊗Aγ

= πA
δ,γ ◦ (1δ ⊗

A lAγ )

and πA
δ,γ is mono so we have

(rA
δ ⊗A 1γ) ◦m

A
δ,a,γ = (1δ ⊗

A lAγ )

and this is the second MacLane condition. The first MacLane condition

follow from the assumptions in the Theorem and the fact that �
A is a

semimonoidal structure on SA(C) with associativity constraint MA. �

Since SA(C) is isomorphic to the category of relations a monoidal

structure on SA(C) will induce one on the category of relations. Let the

product in RA(C) corresponding to ⊗A be �A : RA(C) × RA(C) −→

RA(C). We thus have

�A = Ψ ◦ ⊗A ◦ (Φ × Φ).

We have the following explicit expression for the product

Proposition 50. For any pair of objects r and s inRA(C) we have

r �A s = (γA ⊗ βA) ◦ (1A ⊗ εA ⊗ εA ⊗ 1A) ◦ (r ⊗ s) ◦ πA
Φ(r),Φ(s).
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Proof. We have a natural monomorphism

πA : ⊗A −→ �
A.

Since by definition �
A = Ψ ◦ �

A ◦ (Φ × Φ) and �A = Ψ ◦ ⊗A ◦ (Φ ×

Φ), horizontal composition of natural transformations give us a natural

transformation

(1Ψ ◦ πA ◦ (1Φ × 1Φ)) : �A −→ �
A.

If we evaluate this natural transformation at a pair of objects r and s

in RA(C) we get the following morphism in RA(C)

πA
Φ(r),Φ(s) : r �A s −→ r �

A s.

But this means that

r �A s = (r �
A s) ◦ πA

Φ(r),Φ(s)

and this is the formula in the proposition if we take into account the

formula for r �
A s that we have derived earlier. �

We will now consider a few examples of the tensor product. Let us first

assume that the underlying category C is Sets with its unique choice of

natural C-category C. We have seen that all possible A−A bicomodule

structures δ = {δl, δr}on a set B are of the form δl(x) = (f(x), x) and

δr(x) = (x, g(x)) for some functions f, g : B −→ A. The relation on

A corresponding to δ is clearly given by r(x) = (f(x), g(x)). Let now

r(x) = (f(x), g(x)) and s(y) = (h(y), k(y)) be two relations with domains

B and E and let the corresponding A−A bicomodules be δ and γ. The

two maps (δr × 1E) and (1B × γl) are given by

(δr × 1E)(x, y) = (x, g(x), y),

(1B × γl)(x, y) = (x, h(y), y).

In Sets the underlying object X for the A − A bicomodule δ ⊗A γ is

the equalizer of the two given maps. We therefore find that

X = {(x, y)| g(x) = h(y)}

and

(δ ⊗A γ)l(x, y) = (f(x), x, y),

(δ ⊗A γ)r(x, y) = (x, y, x, k(y)).

The map πA
δ,γ : X −→ B×E is the inclusion map. The relation r�A s

corresponding to δ ⊗A γ is then given by (r �A s)(x, y) = (f(x), k(y)).

We have seen that each relation r and s is in fact a directed labelled

graph. Each element in B can be thought of as an arrow that has a
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source and a target in the vertex set A for the graph and similarly for

elements in E. Let us define two arrows to be composable if the target of

the first is the same as the source of the second. The set X then consists

of all composable pairs of arrows from B and E. Two relations on A,

B ⊂ A× A and E ⊂ A× A, in the usual sense corresponds to relations

r and s in our sense if we let r(x, x′) = (x, x′) and s(y, y′) = (y, y′)

be the inclusion maps. If we use the same notation as above we find

f(x, x′) = x, g(x, x′) = x′, h(y, y′) = y and k(y, y′) = y′.

For this special case we find

X = {((x, y), (y, y′))},

(r �A s)((x, y), (y, y′)) = (x, y′).

We then observe that

(r �A s)(X) = B ◦ E,

where B ◦ E is the usual composition of relations.

Let t : D −→ A×A be a third relation with t(z) = (p(z), q(z)) and let

ρ be the A−A bicomodule corresponding to t. Let X be the underlying

object for (δ ⊗A γ) ⊗A ρ and Y the underlying object for δ ⊗A (γ ⊗A ρ).

Direct calculation show that

X = {((x, y), z)| g(x) = h(y), k(y) = p(z)},

Y = {(x, (y, z))| g(x) = h(y), k(y) = p(z)}.

Define

mA
δ,γ,ρ(x, (y, z)) = ((x, y), z),

lAδ (a, x) = x,

rA
δ (x, a) = x.

It is easy to see that mA
δ,γ,ρ is a morphism of relations. The underlying

object for a⊗A δ is easily seen to given by

Z = {(f(x), x)| x ∈ B}.

Therefore lAδ is clearly a isomorphism and

(δl ◦ lAδ )(f(x), x)

= δl(x)

= (f(x), x)

= πA
a,δ(f(x), x).
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In a similar way we show that rA
δ is a isomorphism that satisfy δr◦rA

δ =

πA
δ,a. It is easy to see that ωA

r,s,t, β
A
r and γA

r satisfy the MacLane coherence

conditions. They are therefore the associativity and unit constraints for

a monoidal structure ⊗Aon SA(C). A simple calculation show that they

are induced.

In a similar way we can define products of any number of relations. It is

evident that the product of n relations consists of strings of composable

arrows of length n, one arrow from each relation. Note that δA is a

relation on A. Let us assume that there exists a morphism of relations

f : δA −→ r. This means that for each element a ∈ A there exists a

element ba = f(a) in B such that a is both the source and target of ba.

If we now take all possible products of the relation r we observe that the

result is in fact the (internal) category generated by the graph defined

by the relation.

Let us next consider V ectk with ⊕ as monoidal structure. Let A be a

linear space and let r : B −→ A ⊕ A and s : E −→ A ⊕ A be relations

on A. The domain for the product r �A s is a linear subspace of B ⊕ E

V = {(u, v)| g(u) = h(v)},

(r �A s)(u, v) = (f(u), k(v)).

where r(u) = (f(u), g(u)) and s(v) = (h(v), k(v)). Let L : A −→ A

and S : A −→ A be two endomorphism of A and let B = E = A and

r : B −→ A ⊕ A s : E −→ A ⊕ A be relations where r(a) = (a, L(a))

and s(a) = (a, S(a))̇. We then have f(a) = a, g(a) = L(a), h(a) = a

and k(a) = S(a). Therefore the underlying object for r �A s is X =

{(a, L(a))} and

(r �A s)(a, L(a)) = (a, (S ◦ L)(a)),

so the image of X in A ⊕ A is the graph of the composition of L and

S. More generally let L ⊂ A⊕A and S ⊂ A⊕A be two linear subspaces

and let r : L −→ A ⊕ A and s : S −→ A ⊕ A be the corresponding

relations with r and s the inclusion maps. Then the image of the product

relation of L and S in A ⊕ A is formed by selecting vectors in u ∈ L ,

decomposing them as u = a + b with a, b ∈ A, selecting vectors v ∈ S

with decomposition v = b + c and finally forming the vectors w = a+ c.

A monoid in the category of relations is a relation r and two morphisms

of relations

µr : r �A r −→ r,

ur : δA −→ r,
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such that the associativity and unit diagrams commute. Let us con-

sider the case when the basic category is Sets. Then we have seen that a

relation is a graph with vertex set A and arrow set B. The source and tar-

get for any arrow x is given by f(x), g(x) ∈ A where r(x) = (f(x), g(x)).

The domain X for the relation r�A r consists of all composable pairs of

arrows from the graph B,

X = {(x, x′)| g(x) = f(x′) }.

The map µr will define an associative rule of composition for com-

posable pair of arrows in B. Furthermore the unit map will provide for

each vertex a ∈ A an arrow u(a) that has a as both source and target

and that acts as left and right unit for composition. The structure we

have described is clearly a internal category in Sets with objects A and

arrows B. Let B ⊂ A × A be a transitive and reflexive relation in the

usual sense. If we define r((x, y)) = (x, y) then r is clearly a relation in

our sense. We have seen that the domain of the relation r ⊗A r is of the

form

X = {((x, y), (y, z)) | (x, y) ∈ B, (y, z) ∈ B},

and (r ⊗A r)(((x, y), (y, z))) = (x, z). Define a map of sets µr : X −→

A×A by µr(((x, y), (y, z))) = (x, z). But both (x, y) ∈ B and (y, z) ∈ B

and since B is transitive we have (x, z) ∈ B and so we have in fact

µr : X −→ B. But we also have

(r ◦ µr)(((x, y), (y, z))

= r((x, z))

= (x, z)

= (r ⊗A r)(((x, y), (y, z))),

so µr : r⊗Ar −→ r. The map µr is clearly associative. Define a map of

sets ur : A −→ A×A by ur(x) = (x, x). Since the relation B is reflexive

we have (x, x) ∈ B for all x ∈ A and therefore we have ur : A −→ B.

This map is clearly a morphism of relations and acts as a left and right

unit for the rule of composition µr. We therefore have proved that the

relation in our sense,corresponding to a reflexive and transitive relation

in the usual sense, is in fact a monoid in the category of relations. We can

thus think of monoids in RA(C) as generalized reflexive and transitive

relations or generalized categories.

3.8. Symmetries for the category of relations. From an algebraic

point of view we know that commutative monoids is an important and

interesting subclass of all monoids. From a categorical point of view the
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notion of commutativity can not be formulated unless there is a symmetry

defined on the category.

Let us therefore consider the notion of a symmetry for the category of

relations. In Sets a relation r with domain B is a labelled and directed

graph with vertex set A and arrow set B. We have seen that the tensor

product of two relations r and s with domains B and E is a new graph on

the vertex set A where the set of arrows consists of all composable pairs of

arrows fromB and E. If (x, y) with x ∈ B and y ∈ E is a composable pair

of arrows it is clear that in general the pair (y, x) is not a composable pair.

It is thus evident that for relations the simple transposition (x, y) −→

(y, x) is not the right notion for a symmetry. We will develop our theory

for the category SA(C) and use the isomorphism whenever we need the

corresponding structures in the category of relations. Dual properties

holds for the categories SA(C) and the category of C-corelations.

Before we give the right definition of symmetry for the category of

relations we need to introduce a new structure. Let δ = {δl, δr} be an

object in SA(C). Let r = Ψ(δ) be the corresponding relation and define

r∗ = σA,A ◦ r and

δ∗ = Φ(r∗).

An explicit expression for the new object δ∗ is given by the following.

Proposition 51. Let δ be an object in SA(C) with underlying object B.

Then we have

(δ∗)l = σB,A ◦ δr,

(δ∗)r = σA,B ◦ δl.

Proof. Let r = Ψ(δ). Then we have

(δ∗)l

= (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (r∗ ⊗ 1B) ◦ δB

= (γA ⊗ 1B) ◦ ((1A ⊗ εA) ⊗ 1B) ◦ (σA,A ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (γA ⊗ 1B) ◦ (σe,A ⊗ 1B) ◦ ((εA ⊗ 1A) ⊗ 1B) ◦ (r ⊗ 1B) ◦ δB

= (βA ⊗ 1B) ◦ ((εA ⊗ 1A) ⊗ 1B) ◦ (r ⊗ 1B) ◦ σB,B ◦ δB

= σB,A ◦ (1B ⊗ βA) ◦ (1B ⊗ (εA ⊗ 1A)) ◦ (1B ⊗ r) ◦ δB

= σB,A ◦ δr,

where we have used the commutativity of δB. In a similar way we show

that (δ∗)r = σA,B ◦ δl. �

Note that δ and δ∗ both have the same underlying object. In order to

extend the new operation ∗ to morphisms we need the following lemma
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Lemma 52. Let δ and γ be two objects in SA(C) with underlying objects

B and E and let f : δ −→ γ be a morphism. Then the corresponding

arrow in C define a morphism in SA(C) with domain δ∗ and codomain

γ∗.

Proof. We have

(1A ⊗ f) ◦ (δ∗)l

= (1A ⊗ f) ◦ σB,A ◦ δr

= σE,A ◦ (f ⊗ 1A) ◦ δr

= σE,A ◦ γr ◦ f

= (γ∗)l ◦ f,

and in a similar way we prove that (f ⊗ 1A) ◦ (δ∗)r = (γ∗)r ◦ f . �

We define f ∗ : δ∗ −→ γ∗ to be the morphism described in the previous

lemma. It is evident that the map T : SA(C) −→ SA(C) defined on

objects and arrows by T (δ) = δ∗ and T (f) = f ∗ is an endofunctor on

SA(C) and since σ is a symmetry we have T ◦T = 1SA(C). This show that

the category SA(C) has a nontrivial action by the group S2 = 〈t | t2 = 1〉.

The action have at least one fixed-point

Proposition 53. Let a = {δA, δA} be unit the object for the monoidal

structure ⊗Aon SA(C) Then we have a∗ = a.

Proof. Recall that δA : A −→ A ⊗ A defines a commutative coalgebra

structure on A. But then we have

a∗

= {δA, δA}
∗

= {σA,A ◦ δA, σA,A ◦ δA}

= {δA, δA}

= a.

�

The nontrivial group of symmetries must be taken into account when

the notion of a symmetry for the product structures �
Aand ⊗A in SA(C)

are defined. We have previously shown that for a symmetric monoidal

category in the usual sense we have an interpretation of the Yang-Baxter

equation and the unit symmetry conditions in terms of invariance with

respect to the group H = {Tt(σ), 1⊗}. This whole construction was

based on a certain choice of action by the group S2 = {1, t} on the
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category C, C2 and C3 generated by the functors T1 = 1C ,T2 = τ and

T3 = (1C × τ) ◦ (τ × 1C) ◦ (1C × τ). What is new for the category of

relations is that we have a nontrivial action of S2. We will generalize

this and consider monoidal categories 〈C,⊗, Ke, α, β, γ〉 where we have a

nontrivial action of S2 generated by a functor T1 : C −→ C. We use this

action together with τ to define actions of S2 on the categories C2 and C3

generated by T2 = τ ◦ (T1 ×T1) and T3 = (T1 ×T2) ◦ (T2 ×T1) ◦ (T1 ×T2).

It is easy to see that T2◦T2 = 1C2 and T3◦T3 = 1C3 so that these functors

really defines an action of S2. Note that if T1 = 1C we get the action

we discussed previously in the section on symmetries and group action.

We now lift this action to the functor categories [C2, C] and [C3, C] in

the usual way. From this point we proceed in a way that is exactly

parallel to what we did in the section on symmetries and group action.

In general one could imagine that the functor T1 does not fix the unit so

that T1(e) 6= e. In this general situation we would assume the existence

of a natural isomorphism θ : Ke −→ tKe in addition to the isomorphism

σ : ⊗ −→ t⊗. We would thus allow the constant functor Ke to be fixed

only up to natural isomorphism. In this paper we will not consider such

a possibility. This is because the unit is fixed both for the usual case

with trivial action and for the case of the category of relations SA(C) as

proved in proposition 53. Allowing the unit to move would also make all

formulas and derivations more complicated. With this out of the way we

can now state that all results derived in the section on symmetries and

group actions,up to and including corollary 12 ,also holds for the current

situation if we substitute the S2 action from this section in all statements.

The proofs of these results are of course different since they must take

into account the more general action considered in this section. We do

not reproduce these proofs here since they are long and rather similar to

the ones already given in the section on symmetries and group action.

We now reverse proposition 12 that characterized symmetric monoidal

categories in terms of invariance and is lead to the following definition of

symmetries for monoidal categories with a action of the group S2.

Definition 54. Let C be a category where there is defined an action of the

group S2. Then 〈C,⊗, Ke, α, β, γ, σ〉 is a symmetric monoidal category if

〈C,⊗, Ke, α, β, γ〉 is a monoidal category and σ : ⊗ −→ t⊗ is a natural
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isomorphism such that the following identities holds.

σ ◦ (11C
× σ) = (tα) · (σ ◦ (σ × 11C

)) · α,

β = (tγ) · (σ ◦ 1Ke×1C
),

γ = (tβ) · (σ ◦ 11C×Ke),

tσ = σ−1.

We say that σ is the symmetry for the monoidal category 〈C,⊗, Ke, α, β, γ〉.

The first condition is equivalent to the Yang-Baxter equation if we

consider symmetric monoidal categories in the usual sense with trivial

action of S2. We will in all cases call the first condition for the Yang-

Baxter equation. Note that even for the case of trivial action our notion

of symmetric monoidal category is more general than the standard one.

The standard definition of symmetry for a monoidal category implies

that the Yang-Baxter equation holds but the fact that the Yang-Baxter

equation holds for σ does not necessarily imply that σ is a symmetry in

the usual sense.

We say that 〈C,⊗, α, σ〉 is a symmetric semimonoidal category if 〈C,⊗, α〉

is a semimonoidal category and the first and last of the above conditions

hold.

We will now apply the definition of symmetry for the case of the cat-

egory of relations. For this case we denoted the map T1 by ∗. Let us

first consider the structure �
A. In terms of objects, the definition of a

symmetry for the semimonoidal category 〈SA(C),�A,MA〉 is as follows.

Definition 55. A symmetry for the semimonoidal category 〈SA(C),�A,MA〉

is an isomorphism SA
δ,γ : δ �

A γ −→ (γ∗ �
A δ∗)∗ that is natural in δ and

γ and such that the following identities are satisfied for all δ, γ and ρ.

(MA
ρ∗,γ∗,δ∗)

∗ ◦ (1∗ρ �
A (SA

δ,γ)
∗)∗ ◦ SA

δ�Aγ,ρ ◦M
A
δ,γ,ρ = ((SA

γ,ρ)
∗
�

A 1∗δ)
∗ ◦ SA

δ,γ�Aρ,

(SA
γ∗,δ∗)

∗ ◦ SA
δ,γ = 1δ�Aγ.

In general many symmetric semimonoidal structures may exist for

SA(C) with the product �
A. We will now show there is always at least

one.

Proposition 56. Let δ, γ and ρ be objects in SA(C) with underlying

objects B,E and D. Define

MA
δ,γ,ρ = αB,E,D,

SA
δ,γ = σB,E .
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where α and σ are the associativity constraint and symmetry for the

category C. Then 〈SA(C),�A,MA, SA〉 is a symmetric semimonoidal

category.

Proof. We already know that 〈SA(C),�A,MA〉 is a semimonoidal cate-

gory. First we need to prove that SA
δ,γ is a morphism in SA(C). Note

that the underlying object for (γ∗ �
A δ∗)∗ is E ⊗ B. If we use the fact

that σ is a symmetry in C we have

((γ∗ �
A δ∗)∗)l ◦ SA

δ,γ

= σE⊗B,A ◦ (γ∗ �
A δ∗)r ◦ σB,E

= σE⊗B,A ◦ αE,B,A ◦ (1E ⊗ (δ∗)r) ◦ σB,E

= σE⊗B,A ◦ αE,B,A ◦ (1E ⊗ σA,B ◦ δl) ◦ σB,E

= σE⊗B,A ◦ αE,B,A ◦ (1E ⊗ σA,B) ◦ (1E ⊗ δl) ◦ σB,E

= σE⊗B,A ◦ αE,B,A ◦ (1E ⊗ σA,B) ◦ σA⊗B,E ◦ (δl ⊗ 1E)

= (1A ⊗ σB,E) ◦ α−1
A,B,E ◦ (δl ⊗ 1E)

= (1A ⊗ SA
δ,γ) ◦ (δ �

A γ)l.

and this proves that SA
δ,γ is a morphism in SA(C). It is clearly an

isomorphism and naturality is evident. The condition for SA to be a

symmetry in SA(C) is satisfied since it turns into the condition for σ

being is a symmetry in the category C. �

The previous proposition leads us to make the following definition.

Definition 57. A symmetric semimonoidal structure 〈SA(C),�A,MA, SA〉

on the category SA(C) is external if for all objects δ, γ and ρ we have

MA
δ,γ,ρ = αB,E,D,

SA
δ,γ = σB,E .

where B,E and D are the underlying objects for δ, γ and ρ and where

α and σ are the associativity constraint and symmetry for the category

C.

The previous proposition then proves that an external symmetries on

SA(C) with product �
Aalways exists.

We now turn to the definition of symmetries for SA(C) with the prod-

uct ⊗A. In terms of objects the general definition now takes the form

Definition 58. A symmetry for the monoidal category〈SA(C),⊗A, a,mA, lA, rA〉

is an isomorphism sA
δ,γ : δ ⊗A γ −→ (γ∗ ⊗A δ∗)∗ that is natural in δ and
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γ and such that the following identities are satisfied for all δ, γ and ρ.

(mA
ρ∗,γ∗,δ∗)

∗ ◦ (1∗ρ ⊗
A (sA

δ,γ)
∗)∗ ◦ sA

δ⊗Aγ,ρ ◦m
A
δ,γ,ρ = ((sA

γ,ρ)
∗ ⊗A 1∗δ)

∗ ◦ sA
δ,γ⊗Aρ,

(lAδ∗)
∗ ◦ sA

δ,a = rA
δ ,

(rA
δ∗)

∗ ◦ sA
a,δ = lAδ ,

(sA
δ∗,γ∗)∗ ◦ sA

δ,γ = 1δ⊗Aγ .

Note that identity two and three are not independent. One can be

derived from the other by using identity four and the fact that the neu-

tral object a is fixed by the action of S2. There are several equivalent

formulations of the first symmetry condition

Proposition 59. Let sA be a natural isomorphism sA
δ,γ : δ ⊗A γ −→

(γ∗ ⊗A δ∗) such that the following identities hold

(lAδ∗)
∗ ◦ sA

δ,a = rA
δ ,

(sA
δ∗,γ∗)∗ ◦ sA

δ,γ = 1δ⊗Aγ.

Then the following statements are equivalent:

(1) sA is a symmetry.

(2) (mA
ρ∗,γ∗,δ∗)

∗ ◦ (1∗ρ ⊗
A (sA

δ,γ)
∗)∗ ◦sA

δ⊗Aγ,ρ
◦mA

δ,γ,ρ = sA
δ,(ρ∗⊗Aγ∗)∗ ◦ (1δ ⊗

A

sA
γ,ρ).

(3) (mA
ρ∗,γ∗,δ∗)

∗ ◦ sA
(γ∗⊗Aδ∗)∗,ρ

◦ (sA
δ,γ ⊗

A 1ρ) ◦m
A
δ,γ,ρ = ((sA

γ,ρ)
∗ ⊗A 1∗δ)

∗ ◦

sA
δ,γ⊗Aρ

.

(4) (mA
ρ∗,γ∗,δ∗)

∗ ◦sA
(γ∗⊗Aδ∗)∗,ρ

◦ (sA
δ,γ ⊗

A 1ρ)◦m
A
δ,γ,ρ = sA

δ,(ρ∗⊗Aγ∗)∗ ◦ (1δ ⊗
A

sA
γ,ρ).

Proof. By naturality of sA we have the following two identities

((sA
γ,ρ)

∗ ⊗A 1∗δ)
∗ ◦ sA

δ,γ⊗Aρ = sA
δ,(ρ∗⊗Aγ∗)∗ ◦ (1δ ⊗

A sA
γ,ρ),

(1∗ρ ⊗
A (sA

δ,γ)
∗)∗ ◦ sA

δ⊗Aγ,ρ = sA
(γ∗⊗Aδ∗)∗,ρ ◦ (sA

δ,γ ⊗
A 1ρ).

The proposition now follows directly from these identities. �

Let us now consider the existence of symmetries.

Definition 60. A symmetry for the monoidal category 〈SA(C),⊗A, a,mA, lA, rA〉

is induced by a symmetry SA of the semimonoidal category 〈SA(C),�A,MA〉

if for all objects δ, γ in SA(C) the following diagram commute
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δ �
A γ

SA
δ,γ - (γ∗

�
A δ∗)∗

δ ⊗
A γ

πA
δ,γ

6

sA
δ,γ

- (γ∗
⊗

A δ∗)∗

(πA
γ∗,δ∗)∗

6

We will in the following show that an induced symmetry exists in the

external case and is uniquely determined by the symmetry SA.

Recall that for any pair of objects δ and γ in SA(C), the diagram PA
δ,γ

was given by

δ �
A (a �

A γ)
MA

δ,a,γ - (δ �
A a) � γ

I@
@

@1δ �A γl
�

�
�
δr �A 1γ

�

δ � γ

From the general theory of categories it is well known that isomor-

phisms of categories preserve universal cones. By definition 〈γ∗ ⊗A

δ∗, πA
γ∗,δ∗〉 is a universal cone on the diagram PA

γ∗,δ∗and therefore 〈(γ∗ ⊗A

δ∗)∗, (πA
γ∗,δ∗)

∗〉 is a universal cone on the diagram (PA
γ∗,δ∗)

∗. But we have

the following result

Lemma 61. Let the symmetric semimonoidal category 〈SA(C),�A,MA, SA〉

be external, then 〈δ ⊗A γ, SA
δ,γ ◦ π

A
δ,γ〉 is a universal cone on (PA

γ∗,δ∗)
∗.

Proof. Let us first prove that it is a cone. For this we must prove that

the following identity

(MA
γ∗,a,δ∗)

∗ ◦ (1γ∗ �
A (δ∗)l)∗ ◦ SA

δ,γ ◦ π
A
δ,γ = ((γ∗)r

�
A 1δ∗)

∗,

holds in SA(C). Since the semimonoidal structure on SA(C) is exter-

nal, the previous identity is for the strict case equivalent to the following

identity in C

αE,A,B ◦ (1E ⊗ (δ∗)l) ◦ σB,E ◦ πA
δ,γ = ((γ∗)r ⊗ 1B) ◦ σB,E ◦ πA

δ,γ.
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But this identity follows from the Yang Baxter equation and the fact

that 〈δ ⊗A γ, πA
δ,γ〉 is a cone on PA

δ,γ .

αE,A,B ◦ (1γ∗ �
A (δ∗)l)∗ ◦ σB,E ◦ πA

δ,γ

= αE,A,B ◦ (1E ⊗ σB,A) ◦ (1E ⊗ δr) ◦ σB,E ◦ πA
δ,γ

= αE,A,B ◦ (1E ⊗ σB,A) ◦ σB⊗A,E ◦ (δr ⊗ 1E) ◦ πA
δ,γ

= αE,A,B ◦ (1E ⊗ σB,A) ◦ σB⊗A,E ◦ αB,A,E ◦ (1B ⊗ γl) ◦ πA
δ,γ

= αE,A,B ◦ (1E ⊗ σB,A) ◦ σB⊗A,E ◦ αB,A,E ◦ σA⊗E,B ◦ (γl ⊗ 1B) ◦ σB,E ◦ πA
δ,γ

= αE,A,B ◦ (1E ⊗ σB,A) ◦ σB⊗A,E ◦ αB,A,E ◦ σA⊗E,B ◦ (σE,A ⊗ 1B)

◦ ((γ∗)r ⊗ 1B) ◦ σB,E ◦ πA
δ,γ

= ((γ∗)r ⊗ 1B) ◦ σB,E ◦ πA
δ,γ.

Let now 〈θ, u〉 be any cone on (PA
γ∗,δ∗)

∗. The proposition is proved if

we can show that the following equations has a unique solution ϕ : θ −→

δ ⊗A γ

SA
δ,γ ◦ π

A
δ,γ ◦ ϕ = u.

The equation has at most one solution since SA
δ,γ ◦ π

A
δ,γ is a monomor-

phism. In a calculation very similar to previous one we can prove that

〈θ, (SA
δ,γ)

−1 ◦ u〉 is a cone on PA
δ,γ. But 〈δ ⊗A γ, πA

δ,γ〉 is a universal cone

on PA
δ,γ and therefore there exists a morphism h : θ −→ δ⊗A γ in SA(C)

such that πA
δ,γ ◦h = (SA

δ,γ)
−1 ◦u. Composing on both sides with SA

δ,γ show

that SA
δ,γ ◦ π

A
δ,γ ◦ ϕ = u and the proposition is proved. �

We can now prove the existence of induced symmetries in the external

case.

Theorem 62. Let the symmetric semimonoidal category 〈SA(C),�A,MA, SA〉

be external, then there exists a induced symmetry for the monoidal cate-

gory 〈SA(C),⊗A, a,mA, lA, rA〉.

Proof. The previous lemma show that both 〈δ⊗Aγ, SA
δ,γ◦π

A
δ,γ〉 and 〈(γ∗⊗A

δ∗)∗, (πA
γ∗,δ∗)

∗〉 are universal cones on (PA
γ∗,δ∗)

∗. We can therefore conclude

that there exists a unique morphism sA
δ,γ : δ ⊗A γ −→ (γ∗ ⊗A δ∗)∗ such

that (πA
γ∗,δ∗)

∗ ◦ sA
δ,γ = SA

δ,γ ◦ πA
δ,γ. We will show that sA

δ,γ is a symmetry

for the monoidal category 〈SA(C),⊗A, a,mA, lA, rA〉 on SA(C). The first

symmetry condition for sA follows from the first symmetry condition for

SA, the identity (πA
γ∗,δ∗)

∗◦sA
δ,γ = SA

δ,γ◦π
A
δ,γ and the fact that mA is induced
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by MA. For the second symmetry condition we have for the strict case

(lAδ∗)
∗ ◦ sA

δ,a

= βB ◦ (εA ⊗ 1B) ◦ πA
a,δ∗ ◦ s

A
δ,a

= βB ◦ (εA ⊗ 1B) ◦ SA
δ,a ◦ π

A
δ,a

= βB ◦ (εA ⊗ 1B) ◦ σB,A ◦ πA
δ,a

= βB ◦ σB,e ◦ (1B ⊗ εA) ◦ πA
δ,a

= γB ◦ (1B ⊗ εA) ◦ πA
δ,a

= rA
δ ,

where we have used the fact that the symmetry SA is external. The

last symmetry condition follows easily from the commutative diagram

defining sA in terms of SAand from the fact that SA is a symmetry. �

3.9. Commutative monoids in the category of relation. We will

define the notion of a commutative monoid for categories with an action

of S2 and then apply this definition to the case of relations. Let now

〈C,⊗, Ke, α, β, γ, σ〉 be a symmetric monoidal category with an action

of S2 generated by the functor T1 : C −→ C. The conditions from

definition 3 thus holds for α, β, γ and σ.

Our definition of a commutative monoid is a natural extension and

categorization of the notion of a commutative monoids in algebra. Let

〈M, ·, e〉 be a monoid in the usual algebraic sense, so that M is a set

and · is an associative product on M with unit element e. Define a new

associative product on M by x∗y = y ·x. Then 〈M, ∗, e〉 is a new monoid

on the same underlying set. The monoid M is said to be commutative

if 〈M, ∗, e〉 is the same monoid as 〈M, ·, e〉 and this is equivalent to the

condition x · y = y · x for all x and y in M . The previous condition is

really too strict since in algebra we consider isomorphic monoids to be

essentially the same. Thus it would be more natural to require that the

two monoids 〈M, ·, e〉 and 〈M, ∗, e〉 are isomorphic. From a categorical

point of view the last condition is the only one that really makes sense

since the relation of equality exists only between arrows and not between

objects. If we now recall that the symmetry σ is the categorization of

the idea of changing order in the category C we arrive at our definition

of commutativity.

Let X be a monoid in the category C with product µ : X ⊗X −→ X

and unit u : e −→ X. Define morphisms µσ : T1(X) ⊗ T1(X) −→ T1(X)
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and us : e −→ T1(X) by

µσ = T1(µ) ◦ σT1(X),T1(X),

us = T1(u).

Proposition 63. 〈T1(X), µσ, us〉 is a monoid in C.

Proof. The Yang-Baxter equation and the naturality of σ implies when

evaluated on (T1(X), T1(X), T1(X)) the following relation

σT1(X),T1(X⊗X) ◦ (1T1(X) ⊗ σT1(X),T1(X)) = T1(αX,X,X) ◦ σT1(X⊗X),T1(X)

◦ (σT1(X),T1(X) ⊗ 1T1(X)).

Using this relation we have

µσ ◦ (1T1(X) ⊗ µσ)

= T1(µ) ◦ σT1(X),T1(X) ◦ (1T1(X) ⊗ (T1(µ) ◦ σT1(X),T1(X)))

= T1(µ) ◦ σT1(X),T1(X) ◦ (1T1(X) ⊗ T1(µ)) ◦ (1T1(X) ⊗ σT1(X),T1(X))

= T1(µ) ◦ T1(µ⊗ 1X) ◦ σT1(X),T1(X⊗X) ◦ (1T1(X) ⊗ σT1(X),T1(X))

= T1(µ ◦ (µ⊗ 1X)) ◦ T1(αX,X,X) ◦ σT1(X⊗X),T1(X) ◦ (σT1(X),T1(X) ⊗ 1T1(X))

= T1(µ) ◦ T1(1X ⊗ µ) ◦ σT1(X⊗X),T1(X) ◦ (σT1(X),T1(X) ⊗ 1T1(X))

= T1(µ) ◦ σT1(X),T1(X) ◦ ((T1(µ) ◦ σT1(X),T1(X)) ⊗ 1T1(X))

= µσ ◦ (µσ ⊗ 1T1(X)),

so the morphism µσ is associative. The first unit condition evaluated

at the pair of objects (e, T1(X)) given the identity

βe,T1(X) = T1(γX,e) ◦ σe,T1(X).

From the naturality of σ and the fact that 〈X, µ, u〉 is a monoid we

have

µσ ◦ (us ⊗ 1T1(X))

= T1(µ) ◦ σT1(X),T1(X) ◦ (T1(u) ⊗ 1T1(X))

= T1(µ) ◦ T1(1X ⊗ u) ◦ σe,T1(X)

= T1(µ ◦ (1X ⊗ u)) ◦ σe,T1(X)

= T1(γX,e) ◦ σe,T1(X)

= βe,T1(X),

and this is the left condition on the unit. The proof for the right

condition is similar. �
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Recall that ϕ : X −→ Y is a morphism of monoids ϕ : 〈X, µ, u〉 −→

〈Y, µ′, u′〉 if the following two diagrams commute

X ⊗ X
φ ⊗ φ - Y ⊗ Y

X

µ

?

φ
- Y

µ′

?

X
φ - Y

I@
@

@u �
�

�
u′

�

e

We are now ready to define the notion of a commutative monoid in

the symmetric monoidal category C.

Definition 64. Let 〈C,⊗, Ke, α, β, γ, σ〉 be a symmetric monoidal cate-

gory. A monoid 〈X, µ, u〉 in C is commutative if there exists an isomor-

phism of monoids

ϕ : 〈X, µ, u〉 −→ 〈T1(X), µσ, us〉.

We will now apply these definitions to the Sets. For this case there is

only one possible choice that makes Sets into a C-category. Let r(x) =

(f(x), g(x)) and s(y) = (h(y), k(y)) be two relations with domains B and

E. Then r∗(x) = (g(x), f(x)) and s∗(y) = (k(y), h(y)). If X and Y are

the underlying sets for r ⊗A s and (s∗ ⊗A r∗)∗ we have

X = {(x, y) | g(x) = h(y)},

Y = {(y, x) | h(y) = g(x)},

and the relations are given by

(r ⊗A s)(x, y) = (f(x), k(y)),

(s∗ ⊗A r∗)∗(y, x) = (f(x), k(y)).

Define sA
r,s(x, y) = (y, x). Then clearly we have sA

r,s : X −→ Y and also

((s∗ ⊗A r∗)∗ ◦ sA
r,s)(x, y)

= (s∗ ⊗A r∗)∗(y, x)

= (f(x), k(y))

= (r ⊗A s)(x, y),

so that we have a morphism in sA
r,s : r⊗As −→ (s∗⊗Ar∗)∗. It is straight

forward to prove that sA is a symmetry on the category of relations. It

is in fact induced by the symmetry of the external category Sets. Since

a relation r : B −→ A×A is a directed labelled graph it is clear that we

get the relation r∗ : B −→ A× A by reversing all arrows in the relation

r. We have seen that r is a monoid if there exists an associative rule of
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composition for composable arrows in r such that for each object x ∈ A

there exists an arrow with source and target given by x and that acts as

right and left unit for the composition. Let b and b′ be two objects in B.

Then the rule of composition for the relation r∗is defined by first reversing

both arrows, then composing them as arrows in r and then reversing the

result to get an arrow in r∗. Now an isomorphism ϕ : r −→ r∗ is a

bijective map with domain and codomain given by B and such that

g(ϕ(x)) = f(x),

f(ϕ(x)) = g(x),

for all x ∈ B. If ϕ is also an isomorphism of the monoids 〈r, µ, u〉 and

〈r∗, µs, us〉 we must have

ϕ(µ((x, y))) = µ((ϕ(y), ϕ(x))),

for all objects (x, y) ∈ A×A such that g(x) = f(y). These conditions

are in general impossible to satisfy for the identity map ϕ = 1B. Let

B ⊂ A × A be a relation in the usual sense. Then B corresponds to a

relation in our sense if we define r : B −→ A×A by r((x, y)) = (x, y) so

that f((x, y)) = x and g((x, y)) = y. We know that if r is a monoid in

the category of relations then B is a reflexive and transitive relation in

the usual sense. Assume that B is also symmetric so that it is in fact an

equivalence relation. Thus we have (x, y) ∈ B if and only if (y, x) ∈ B.

Then we can define a map ϕ : B −→ B by ϕ((x, y)) = (y, x). For this

map we have

g(ϕ((x, y))) = g((y, x)) = x = f((x, y)),

f(ϕ((x, y))) = f((y, x)) = y = g((x, y)),

so that ϕ : r −→ r∗. We have seen that the rule of composition and

unit maps for r are given by

µr(((x, y), (y, z))) = (x, z),

ur(x) = (x, x),

but then the composition and unit maps for r∗ must be given by

µs(((y, x), (z, y))) = (z, x),

us(x) = (x, x).



QUANTIZATIONS IN A CATEGORY OF RELATIONS 131

It is evident that ϕ preserve that unit and the following computation

show that ϕ : 〈r, µ, u〉 −→ 〈r∗, µs, us〉 also preserve the product

ϕ(µ(((x, y), (y, z))))

= ϕ((x, z))

= (z, x)

= µs(((y, x), (z, y))).

We have thus proved the following result

Proposition 65. Let B ⊂ A × A be an equivalence relation. Define

r : B −→ A×A by r((x, y)) = (x, y). Then r is a commutative monoid in

the category of relations with respect to the symmetry in RA(C) induced

by the symmetry σ(x, y) = (y, x) in Sets.

Note that this result show that relations that are not equivalence rela-

tions in the usual sense might correspond to commutative monoids with

respect to a different symmetry than the standard one used in the propo-

sition. Such a class of relations would corresponds to an extension of the

notion of equivalence that might be of interest.

4. Quantization of relations

In this section we apply our ideas of quantization as properties of

functors in categories of representations of constraints. The constraints

here are the system of functors and natural transformations defining a

symmetric monoidal category where we have an action of the group S2.

Morphisms in this category of representations are what we call quantized

functors. These are determined by a functor and a triple of natural

isomorphisms that satisfy certain conditions that ensure that the functors

behave in a natural way with respect to the representations. Properties

of relations are coded in terms of commutative diagrams of arrows in

the category of relations. Equivalence relations appears as commutative

associative algebras with unit. In the last section we show how we can

quantize relations by mapping them with quantized functors.

4.1. Quantized functors. Quantization has in our view its most nat-

ural formulation as a property of functors between categories. We will

define quantization in the context of symmetric monoidal categories with

an action of the group S2. The symmetries are supposed to be symme-

tries in our modifies sense, they are natural isomorphisms that satisfy

the conditions given in definition 54 .



132 P.K. JAKOBSEN, V.V. LYCHAGIN

Let now 〈Ci,⊗i, Pei
, αi, βi, γi, σi〉 for i = 1, 2 be two symmetric monoidal

categories and let F : C1 −→ C2 be a functor.

Definition 66. A quantization of the functor F is a triple of natural

isomorphisms 〈λ, µ, η〉

λ : ⊗2 ◦ (F × F ) −→ F ◦ ⊗1,

µ : F −→ tF,

η : Ke2
−→ F ◦Ke1

,

such that the following relations hold

α2 ◦ 1F×F×F = (1⊗2
◦ (λ−1 × 1F )) · (λ−1 ◦ 1⊗1×1C1

) · (1F ◦ α1)

· (λ ◦ 11C1
×⊗1

) · (1⊗2
◦ (1F × λ)),

β2 ◦ 1F×F = (1F ◦ β1) · (λ ◦ 1Ke1×1C1
) · (1⊗2

◦ (η × 1F )),

γ2 ◦ 1F×F = (1F ◦ γ1) · (λ ◦ 11C1
×Ke1

) · (1⊗2
◦ (1F × η)),

σ2 ◦ 1F×F = (1t⊗2
◦ (µ−1 × µ−1)) · (tλ−1) · (µ ◦ σ1) · λ,

tµ = µ−1.

The only true justification of this definition, as for any mathematical

definition, lies in the importance and depth of its consequences. We will

now start investigating some of those consequences. We will first show

that quantized functors are composable.

Proposition 67. Let F : C1 −→ C2 and G : C2 −→ C3 be quantized

functors with quantizations 〈λF , µF , ηF 〉 and 〈λG, µG, ηG〉. Then G ◦F is

a quantized functor with quantization 〈λG◦F , µG◦F , ηG◦F 〉 where

λG◦F = (1G ◦ λF ) · (λG ◦ 1F×F ),

µG◦F = µG ◦ µF ,

ηG◦F = (1G ◦ ηF ) · ηG.



QUANTIZATIONS IN A CATEGORY OF RELATIONS 133

Proof. For the first condition we have

α3 ◦ 1G◦F×G◦F×G◦F

= α3 ◦ 1G×G×G ◦ 1F×F×F

= [(1⊗3
◦ (λ−1

G × 1G) ◦ 1F×F×F ) · (λ−1
G ◦ 1⊗2×1C2

◦ 1F×F×F )

· (1G ◦ α2 ◦ 1F×F×F ) · (λG ◦ 1C2×⊗2◦1F×F×F
)

· (1⊗3
◦ (1G × λG) ◦ 1F×F×F )]

= (1⊗3
◦ (λ−1

G ◦ 1F×F × 1G◦F )) · (λ−1
G ◦ (1⊗2◦(F×F ) × 1F ))

· (1G ◦ 1⊗2
◦ (λ−1

F × 1F )) · (1G ◦ λ−1
F ◦ 1⊗1×1C1

)

· (1G ◦ 1F ◦ α1) · (1G ◦ λF ◦ 1C1×⊗1
)

· (1G ◦ 1⊗2
◦ (1F × λF )) · (λG ◦ (1F × 1⊗2◦(F×F )))

· (1⊗3
◦ (1G◦F × (λG ◦ 1F×F )))

= (1⊗3
◦ ((λ−1

G ◦ 1F×F ) × 1G◦F )) · (λ−1
G ◦ (1⊗2◦(F×F ) × 1F ))

· (1G◦⊗2
◦ (λ−1

F × 1F )) · (1G ◦ λ−1
F ◦ (1⊗1

× 11C1
))

· (1G◦F ◦ α1) · (1G ◦ λF ◦ (11C1
× 1⊗1

)) · (1G◦⊗2
◦ (1F × λF ))

· (λG ◦ (1F × 1⊗2◦(F×F ))) · (1⊗3
◦ (1G◦F × (λG ◦ 1F×F )))

= (1⊗3
◦ ((λ−1

G ◦ 1F×F ) × 1G◦F )) · (λ−1
G ◦ (λ−1

F × 1F ))

· (1G ◦ λ−1
F ◦ (1⊗1

× 11C1
)) · (1G◦F ◦ α1)

· (1G ◦ λF ◦ (1C1
× 1⊗1

)) · (λG ◦ (1F × λF ))

· (1⊗3
◦ (1G◦F × (λG ◦ 1F×F ))

= (1⊗3
◦ ((λ−1

G ◦ 1F×F ) × 1G◦F )) · (1⊗3
◦ 1G×G ◦ (λ−1

F × 1F ))

· (λ−1
G ◦ (1F◦⊗1

× 1F )) · (1G ◦ λ−1
F ◦ (1⊗1

× 11C1
))

· (1G◦F ◦ α1) · (1G ◦ λF ◦ (11C1
× 1⊗1

))

· (λG ◦ (1F × 1F◦⊗1
)) · (1⊗3

◦ 1G×G ◦ (1F × λF ))

· (1⊗3
◦ (1G◦F × (λG ◦ 1F×F )))

= (1⊗3
◦ ([(λ−1

G ◦ 1F×F ) · (1G ◦ λ−1
F )] × 1G◦F )

· ([(λ−1
G ◦ 1F×F ) · (1G ◦ λ−1

F )] ◦ (1⊗1
× 11C1

))

· (1G◦F ◦ α1) · ([(1G ◦ λF ) · (λG ◦ 1F×F )] ◦ (11C1
× 1⊗1

))

· (1⊗3
◦ (1G◦F × [(1G ◦ λF ) · (λG ◦ 1F×F )])

= (1⊗3
◦ (λ−1

G◦F × 1G◦F )) · (λ−1
G◦F ◦ 1⊗1×1C1

)

· (1G◦F ◦ α1) · (λG◦F ◦ 11C1
×⊗1

) · (1⊗3
◦ (1G◦F × λG◦F )).



134 P.K. JAKOBSEN, V.V. LYCHAGIN

The proof for the second and third conditions are the similar and we

only show the proof for the third condition

γ3 ◦ 1G◦F×1T

= γ3 ◦ 1G×1T
◦ 1F×1T

= [(1G ◦ γ2) · (λG ◦ 11C2
×Ke2

) · (1⊗3
◦ (1G × ηG))] ◦ 1F×1T

= (1G ◦ γ2 ◦ 1F×1T
) · (λG ◦ 11C2

×Ke2
◦ 1F×1T

) · (1⊗3
◦ (1G × ηG) ◦ 1F×1T

)

= (1G ◦ [(1F ◦ γ1) · (λF ◦ 11C1
×Ke1

) · (1⊗2
◦ (1F × ηF ))])

· (λG ◦ 11C2
×Ke2

◦ 1F×1T
) · (1⊗3

◦ (1G × ηG) ◦ 1F×1T
)

= (1G ◦ 1F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

) · (1G ◦ 1⊗2
◦ (1F × ηF ))

· (λG ◦ 11C2
×Ke2

◦ 1F×1T
) · (1⊗3

◦ (1G × ηG) ◦ 1F×1T
)

= (1G◦F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

)

· (1G◦⊗2
◦ (1F × ηF )) ◦ (λG ◦ (1F × 1Ke2

)) · (1⊗3
◦ (1G◦F × ηG))

= (1G◦F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

) · (λG ◦ (1F × ηF )) · (1⊗3
◦ (1G◦F × ηG))

= (1G◦F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

) · (λG ◦ (1F × ηF ))

· (1⊗3
◦ (1G◦F × 1G◦Ke2

)) · (1⊗3
◦ (1G◦F × ηG))

= (1G◦F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

) · (λG ◦ (1F × ηF ))

· (1⊗3
◦ (1G◦F × ηG))

= (1G◦F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

) · (λG ◦ (1F × 1F◦Ke1
))

· (1⊗3
◦ (1G × 1G) ◦ (1F × ηF )) · (1⊗3◦(1G◦F

× ηG))

= (1G◦F ◦ γ1) · (1G ◦ λF ◦ 11C1
×Ke1

) · (λG ◦ 1F×F ◦ (11C1
× 1Ke1

))

· (1⊗3
◦ (1G◦F × (1G ◦ ηF ))) · (1⊗3

◦ (1G◦F × ηG))

= (1G◦F ◦ γ1) · ([(1G ◦ λF ) · (λG ◦ 1F×F )] ◦ 11C1
×Ke1

)

· (1⊗3
◦ (1G◦F × [(1G ◦ ηF ) · ηG]))

= (1G◦F ◦ γ1) · (λG◦F ◦ 11C1
×Ke1

) · (1⊗3
◦ (1G◦F × ηG◦F )).
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For the fifth condition we have

σ3 ◦ 1G◦F×G◦F

= σ3 ◦ 1G×G ◦ 1F×F

= [(1t⊗3
◦ (µ−1

G × µ−1
G )) · (tλ−1

G ) · (µG ◦ σ2) · λG] ◦ 1F×F

= (1t⊗3
◦ (µ−1

G × µ−1
G ) ◦ 1F×F ) · (tλ−1

G ◦ 1F×F ) · (µG ◦ σ2 ◦ 1F×F )

· (λG ◦ 1F×F )

= (1t⊗3
◦ (µ−1

G × µ−1
G ) ◦ 1F×F ) · (tλ−1

G ◦ 1F×F )

· (µG ◦ [(1t⊗2
◦ (µ−1

F × µ−1
F )) · (tλ−1

F ) · (µF ◦ σ1) · λF ]) · (λG ◦ 1F×F )

= (1t⊗3
◦ (µ−1

G × µ−1
G ) ◦ 1F×F ) · (tλ−1

G ◦ 1F×F ) · (1t(G◦⊗2) ◦ (µ−1
F × µ−1

F ))

· (1tG ◦ (tλ−1
F )) · (µG ◦ µF ◦ σ1) · (1G ◦ λF ) · (λG ◦ 1F×F )

= (1t⊗3
◦ (µ−1

G × µ−1
G ) ◦ 1F×F ) · ((tλ−1

G ) ◦ (µ−1
F × µ−1

F )) · (1tG ◦ (tλ−1
F ))

· (µG ◦ µF ◦ σ1) · (1G ◦ λF ) · (λG ◦ 1F×F )

= (1t⊗3
◦ (µ−1

G × µ−1
G ) ◦ 1F×F ) · (1t⊗3

◦ (1tG × 1tG) ◦ (µ−1
F × µ−1

F ))

· ((tλ−1
G ) ◦ (1tF × 1tF )) · (1tG ◦ (tλ−1

F )) · (µG ◦ µF ◦ σ1)

· (1G ◦ λF ) · (λG ◦ 1F×F )

= (1t⊗3
◦ ((µG ◦ µF )−1 × (µG ◦ µF )−1)) · (t[(1G ◦ λF ) · (λG ◦ 1F×F )]−1)

· (µG ◦ µF ◦ σ1) · [(1G ◦ λF ) · (λG ◦ 1F×F )]

= (1t⊗3
◦ (µ−1

G◦F × µ−1
G◦F )) · (tλ−1

G◦F ) · (µG◦F ◦ σ1) ◦ λG◦F .

The last condition is clearly satisfied because action by t pass through

horizontal composition. �

As a consequence of this proposition the class of symmetric monoidal

categories form a category where arrows are four tuples 〈F, λF , µF , ηF 〉

and where composition of four tuples is defined using the previous propo-

sition.

〈G, λG, µG, ηG〉 ◦ 〈F, λF , µF , ηF 〉 = 〈G ◦ F, λG◦F , µG◦F , ηG◦F 〉.

A given category C with a product bifunctor ⊗ and unit functor Ke is

a symmetric monoidal category if the conditions on α, β, γ, σ and θ stated

in definition 54 are satisfied. These conditions are equations that may

have none or many solutions depending on the category C and the choice

of functors ⊗ and Ke. We thus in general have a set of solutions. Let

this set be denoted by S. We will now show that there is a group acting

on S. The definition of this group action is derived from the formulas
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defining a quantized functor. Let G be the following group of natural

isomorphisms

G = {(λ, µ, η) | λ : ⊗ −→ ⊗, µ : 1C −→ 1C , η : Ke −→ Ke},

where the product is taken componentwise. The size of this group

depends on the category C and functors ⊗ and Pe. Let now (λ, µ, η) be

any element of the group G and define a mapping Fλ,µ,η on S by

Fλ,µ,η(α, β, γ, σ) = (α̂, β̂, γ̂, σ̂),

where

α̂ = (λ−1 ◦ (λ−1 × 11C
)) · α · (λ ◦ (11C

× λ)),

β̂ = β · (λ ◦ (η × 11C
),

γ̂ = γ · (λ ◦ (11C
× η)),

σ̂ = (1t⊗ ◦ (µ−1 × µ−1)) · (tλ−1) · (µ ◦ σ) · λ.

Let H be the subgroup of G defined by the relations

tµ = µ−1,

µ ◦ 1⊗ ◦ (µ−1 × 1Ke) = 1⊗◦(1C×Ke),

µ ◦ 1⊗ ◦ (1Ke × µ−1) = 1⊗◦(Ke×1C),

tη = (µ ◦ 1Ke) · η.

Then we have the following important result.

Theorem 68. Fλ,µ,η : S −→ S and defines an action of the group H on

the set S.

Proof. In order to prove that (α̂, β̂, γ̂, σ̂) ∈ S we must show that (α̂, β̂, γ̂, σ̂)

defines a symmetric monoidal structure. There are eight such condi-

tions. For the first condition we have (this is also a proof that the map

T1(σ) from section 2.2 maps associativity constraints to associativity con-

straints)
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(α̂ ◦ 1⊗×1C×1C
) · (α̂ ◦ 11C×1C×⊗)

= (λ−1 ◦ (λ−1 × 11C
) ◦ 1⊗×1C×1C

) · (α ◦ 1⊗×1C×1C
)

· (λ ◦ (1C × λ) ◦ 1⊗×1C×1C
) · (λ−1 ◦ (λ−1 × 1C) ◦ 11C×1C×⊗)

· (α ◦ 11C×1C×⊗) · (λ ◦ (1C × λ) ◦ 11C×1C×⊗)

= (λ−1 ◦ (λ−1 × 11C
) ◦ 1⊗×1C×1C

) · (λ ◦ (1⊗ × λ)) · (λ−1 ◦ (λ−1 × 1⊗))

· (α ◦ 1C × 1C ×⊗) · (λ ◦ (1C × λ) ◦ 11C×1C×⊗)

= (λ−1 ◦ (λ−1 × 11C
) ◦ 1⊗×1C×1C

) · (1⊗ ◦ (λ−1 × λ)) · (α ◦ 11C×1C×⊗)

· (λ ◦ (1C × λ) ◦ 11C×1C×⊗)

= (λ−1 ◦ ((λ−1 ◦ (1⊗ × 11C
)) × 11C

)) · (α ◦ 1⊗×1C×1C
) · (1⊗ ◦ (λ−1 × λ))

· (α ◦ 11C×1C×⊗) · (λ ◦ (11C
× (λ ◦ (11C

× 1⊗))))
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= ([(λ−1 ◦ (λ−1 × 11C
)) · α] ◦ (1⊗ × 11C

× 11C
))

· ((1⊗ ◦ (11C
× 1⊗)) ◦ (λ−1 × 11C

× 11C
))

· ((1⊗ ◦ (1⊗ × 11C
)) ◦ (11C

× 11C
× λ))

· ([α · (λ ◦ (11C
× λ))] ◦ (11C

× 11C
× 1⊗))

= ([(λ−1 ◦ (λ−1 × 11C
)) · α] ◦ (λ−1 × 11C

× 11C
))

· ([α · (λ ◦ (11C
× λ))] ◦ (11C

× 11C
× λ))

= (λ−1 ◦ (λ−1 × 11C
) ◦ (λ−1 × 11C

× 11C
)) · (α ◦ (1⊗ × 11C

× 11C
))

· (α ◦ (11C
× 11C

× 1⊗)) · (λ ◦ (11C
× λ) ◦ (11C

× 11C
× λ))

= (λ−1 ◦ ((λ−1 ◦ (λ−1 × 11C
)) × 11C

)) · (α ◦ 1⊗×1C×1C
)

· (α ◦ 11C×1C×⊗) · (λ ◦ (11C
× (λ ◦ (11C

× λ))))

= (λ−1 ◦ ((λ−1 ◦ (λ−1 × 11C
)) × 11C

)) · (1⊗ ◦ (α× 11C
)) · (α ◦ 11C×⊗×1C

)

· (1⊗ ◦ (11C
× α)) · (λ ◦ (11C

× (λ ◦ (11C
× λ))))

= (λ−1 ◦ ((λ−1 ◦ (λ−1 × 11C
)) × 11C

)) · (1⊗ ◦ (α× 11C
))

· (1⊗ ◦ (1⊗ × 11C
) ◦ (11C

× λ× 11C
)) · (α ◦ (11C

× 1⊗ × 11C
))

· (1⊗ ◦ (11C
× 1⊗) ◦ (11C

× λ−1 × 11C
)) · (1⊗ ◦ (11C

× α))

· (λ ◦ (11C
× (λ ◦ (11C

× λ))))

= (1⊗ ◦ ((λ−1 ◦ (λ−1 × 11C
)) × 11C

)) · (λ−1 ◦ ((1⊗ ◦ (1⊗ × 11C
)) × 11C

))

· (1⊗ ◦ (α× 11C
)) · (1⊗ ◦ ((1⊗ ◦ (11C

× λ)) × 11C
)) · (α ◦ 11C×⊗×1C

)

· (λ ◦ (11C
× (1⊗ ◦ (λ−1 × 11C

)))) · (1⊗ ◦ (11C
× α))

· (1⊗ ◦ (11C
× (λ ◦ (11C

× λ))))

= (1⊗ ◦ ((λ−1 ◦ (λ−1 × 11C
)) × 11C

)) · (1⊗ ◦ (α× 11C
))

· (λ−1 ◦ (1⊗ × 11C
) ◦ (11C

× λ× 11C
)) · (α ◦ 11C×⊗×1C

)

· (λ ◦ (11C
× 1⊗) ◦ (11C

× λ−1 × 11C
)) · (1⊗ ◦ (11C

× α))

· (1⊗ ◦ (11C
× (λ ◦ (11C

× λ))))
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This proves the first condition. For the second condition we have

(1⊗ ◦ (γ̂ × 11C
)) · (α̂ ◦ 11C×Ke×1C

)

= (1⊗ ◦ ([γ · (λ ◦ 11C×Ke) · (1⊗ ◦ (11C
× η))] × 11C

)) · ([1⊗ ◦ (λ−1 × 11C
))

· (λ−1 ◦ 1⊗×1C
) · α · (λ ◦ 11C×⊗) · (1⊗ ◦ (11C

× λ))] ◦ 11C×Ke×1C
)

= (1⊗ ◦ ((γ × 11C
) · ((λ ◦ 11C×Ke) × 11C

) · ((1⊗ ◦ (11C
× η)) × 11C

)))

· (1⊗ ◦ (λ−1 × 11C
) ◦ 11C×Ke×1C

) · (λ−1 ◦ 1⊗×1C
◦ 11C×Ke×1C

)

· (α ◦ 11C×Ke×1C
) · (λ ◦ 11C×⊗ ◦ 11C×Ke×1C

) · (1⊗ ◦ (11C
× λ) ◦ 11C×Ke×1C

)

= (1⊗ ◦ (γ × 11C
)) · (1⊗ ◦ ((λ ◦ 11C×Ke) × 11C

)) · (1⊗ ◦ ((1⊗ ◦ (11C
× η)) × 11C

))

· (1⊗ ◦ (λ−1 × 11C
) ◦ 11C×Ke×1C

) · (λ−1 ◦ 1⊗×1C
◦ 11C×Ke×1C

)

· (α ◦ 11C×Ke×1C
) · (λ ◦ 11C×⊗ ◦ 11C×Ke×1C

) · (1⊗ ◦ (11C
× λ) ◦ 11C×Ke×1C

)
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= (1⊗ ◦ (γ × 11C
)) · (1⊗ ◦ ((λ ◦ (11C

× 1Ke)) × 11C
))

· (1⊗ ◦ ((λ−1 ◦ (11C
× η)) × 11C

)) · (λ−1 ◦ 1⊗×1C
◦ 11C×Ke×1C

)

· (α ◦ 11C×Ke×1C
) · (λ ◦ 11C×⊗ ◦ 11C×Ke×1C

) · (1⊗ ◦ (11C
× λ) ◦ 11C×Ke×1C

)

= (1⊗ ◦ (γ × 11C
)) · (1⊗ ◦ ((1⊗ ◦ (11C

× η)) × 11C
))

· (λ−1 ◦ ((1⊗ ◦ (11C
× 1Ke)) × 11C

)) · (λ ◦ 11C×⊗ ◦ 11C×Ke×1C
)

· (1⊗ ◦ (11C
× λ) ◦ 11C×Ke×1C

)

= (1⊗ ◦ (γ × 11C
)) · (1⊗ ◦ ((1⊗ ◦ (11C

× η)) × 11C
))

· (λ−1 ◦ ((1⊗ ◦ (11C
× 1Ke)) × 11C

)) · (λ ◦ (11C
× (λ ◦ 1Ke×1C

)))

= (λ−1 ◦ (γ × 11C
)) · (1⊗ ◦ ((1⊗ ◦ (11C

× η)) × 11C
))

· (α ◦ 11C×Ke×1C
) · (λ ◦ (11C

× (λ ◦ 1Ke×1C
)))

= (λ−1 ◦ (1G × 11C
)) · (1⊗ ◦ (γ × 11C

))

· (1⊗ ◦ (1⊗ × 11C
) ◦ (11C

× η × 11C
)) · (α ◦ 11C×Ke×1C

)

· (λ ◦ (11C
× (λ ◦ 1Ke×1C

)))

= (λ−1 ◦ (1G × 11C
)) ◦ (1⊗ ◦ (γ × 11C

))

· (1⊗ ◦ (1⊗ × 11C
) ◦ (11C

× η × 11C
)) · (α ◦ (11C

× 1Ke × 11C
))

· (λ ◦ (11C
× (λ ◦ 1Ke×1C

)))

= (λ−1 ◦ (1G × 11C
)) · (1⊗ ◦ (γ × 11C

))

· (α ◦ (11C
× 1Ke × 11C

) ◦ (11C
× η × 11C

))

· (λ ◦ (11C
× (λ ◦ 1Kec)))

= (λ−1 ◦ (1G × 11C
)) · (1⊗ ◦ (γ × 11C

))

· (α ◦ 11C×Ke×1C
◦ (11C

× η11C
))

· (λ ◦ (11C
× λ) ◦ (11C

× 1Ke × 11C
))

= (λ−1 ◦ (1G × 11C
)) · (1⊗ ◦ (γ × 11C

)) · ([(α ◦ 11C×Ke×1C
)

· (λ ◦ (11C
× λ))] ◦ (11C

× η × 11C
))

= (λ−1 ◦ (11C
× 1B)) · (1⊗ ◦ (γ × 11C

)) · (α ◦ 11C×Ke×1C
)

· ((λ ◦ (11C
× λ)) ◦ (11C

× η × 11C
))

= (λ−1 ◦ (11C
× 1B)) · (1⊗ ◦ (11C

× β))

· (λ ◦ (11C
× λ) ◦ (11C

× η × 11C
))

= (λ−1 ◦ (11C
× β)) · (λ ◦ (11C

× λ) ◦ (11C
× η × 11C

))

= (λ−1 ◦ (11C
× β)) · (λ ◦ (11C

× λ ◦ (η × 11C
)))
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= (1⊗ ◦ (11C
× (β · (λ ◦ (η × 11C

)))))

= 1⊗ ◦ (11C
× (β · (λ ◦ 1Ke×1C

) · (1⊗ ◦ (η × 11C
))))

= 1⊗ ◦ (11C
× β̂).

This proves the second condition. For the third condition we have

β̂ ◦ 11C×Ke

= [β · (λ ◦ 1Ke×1C
· (1⊗ ◦ (η × 11C

))] ◦ 11C×K

= (β ◦ 11C×K) · (λ ◦ (1Ke × 11C
) ◦ 11C×K) · (1⊗ ◦ (η × 11C

) ◦ 11C×K)

= (γ ◦ 1K×1C
) · (λ ◦ (1Ke × 1Ke)) · (1⊗ ◦ (η × 1Ke))

= (γ ◦ 1K×1C
) · (λ ◦ (11C

× 1Ke) ◦ (1Ke × 11C
)) · (1⊗ ◦ (1Ke × η))

= (γ ◦ 1K×1C
) · (λ ◦ (11C

× 1Ke) ◦ 1K×1C
) · (1⊗ ◦ (11C

× η) ◦ 1K×1C
)

= [(γ · (λ ◦ 11C×Ke) · (1⊗ ◦ (11C
× η))] ◦ 1K×1C

= γ̂ ◦ 1Ke×1C
.

This proves the third condition. The proof of the fourth condition is

very technical. In the proof we will use the following symbols

L1 = (1t⊗ ◦ (11C
× tλ−1) · (tλ−1 ◦ 1t⊗×1C

) · (tα) · (tλ ◦ 1t⊗×1C
),

L2 = (1t⊗ ◦ (11C
× tλ−1) · (tλ−1 ◦ 1t⊗×1C

) · (tα),

L3 = (1t⊗ ◦ (11C
× tλ−1) · (tλ−1 ◦ 1t⊗×1C

),

L4 = (1t⊗ ◦ (11C
× tλ−1),

R = ((tλ−1) ◦ (tλ−1 × 11C
)) · ((µ ◦ σ) ◦ ((µ ◦ σ) × 11C

)) · (λ ◦ (λ× 11C
)),

R1 = ((µ ◦ σ) ◦ ((µ ◦ σ) × 11C
)) · (λ ◦ (λ× 11C

)),

R2 = (λ ◦ (λ× 11C
)),

S1 = α−1 · (λ ◦ 1⊗×1C
) · (1⊗ ◦ (λ× 11C

)),

S2 = (λ−1 ◦ 11C×⊗) · α−1 · (λ ◦ 1⊗×1C
) · (1⊗ ◦ (λ× 11C

)).
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Using these symbols we have for the fourth condition

(tα̂) · (σ̂ ◦ (σ̂ × 11C
))

= (tα̂) · ([(1t⊗ ◦ (µ−1 × µ−1)) · (tλ−1) · (µ ◦ σ) · λ] ◦ ([(1t⊗ ◦ (µ−1 × µ−1))

· (tλ−1) · (µ ◦ σ) · λ] × 11C
))

= L1 · (1t⊗ ◦ (tλ× 11C
))

· ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((1t⊗ ◦ (µ−1 × µ−1)) × 11C
)) ·R

= L1 · ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((tλ ◦ (µ−1 × µ−1)) × 11C
)) ·R

= L1 · ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((tλ ◦ (µ−1 × µ−1)) × 11C
))

· (tλ−1 ◦ (tλ−1 × 11C
)) ·R1

= L1 · ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((1t⊗ ◦ (µ−1 × µ−1)) × 11C
)) ·R1

= L2 · (tλ ◦ (1t⊗ × 11C
))

· ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((1t⊗ ◦ (µ−1 × µ−1)) × 11C
)) ·R1

= L2 · ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((1t⊗ ◦ (µ−1 × µ−1)) × 11C
)) ·R1
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= L2 · ((1t⊗ ◦ (µ−1 × µ−1)) ◦ ((1t⊗ ◦ (µ−1 × µ−1)) × 11C
))

· ((µ ◦ σ) ◦ ((µ ◦ σ) × 11C
)) ·R2

= L2 · ((11C
◦ 1t⊗ ◦ (µ−1 × µ−1)) ◦ ((11C

◦ 1t⊗ ◦ (µ−1 × µ−1)) × 11C
))

· ((µ ◦ σ ◦ (11C
× 11C

)) ◦ ((µ ◦ σ ◦ (11C
× 11C

)) × 11C
)) ·R2

= L2 · ((µ ◦ σ ◦ (µ−1 × µ−1)) ◦ ((µ ◦ σ ◦ (µ−1 × µ−1)) × 11C
)) ·R2

= L2 · ((µ ◦ σ ◦ (µ−1 × µ−1)) ◦ ((µ ◦ σ ◦ (µ−1 × µ−1)) × 11C
)) ·R2

= L2 · ((µ ◦ σ ◦ (µ−1 × µ−1)) ◦ ((µ ◦ σ ◦ (µ−1 × µ−1)) × (µ ◦ 11C
◦ µ−1))) ·R2

= L2 · ((1µ ◦ σ ◦ (µ−1 × µ−1)) ◦ (µ× µ) ◦ (σ × 11C
) ◦ (µ−1 × µ−1 × µ−1)) ·R2

= L2 · (µ ◦ σ ◦ ((σ ◦ (µ−1 × µ−1)) × µ−1)) ·R2

= L3 · (11C
◦ tα) · (µ ◦ σ ◦ (σ × 11C

)) · (1⊗ ◦ ((1⊗ ◦ (µ−1 × µ−1)) × µ−1))

· (λ ◦ (λ× 11C
))

= L3 · (µ ◦ (tα · (σ ◦ (σ × 11C
)))) · (λ ◦ ((λ ◦ (µ−1 × µ−1)) × µ−1)

= L3 · (µ ◦ ((σ ◦ (11C
× σ)) · α−1)) · (λ ◦ ((λ ◦ (µ−1 × µ−1)) × µ−1)

= L3 · (µ ◦ ((σ ◦ (11C
× σ)) · α−1)) · (λ ◦ (λ× 11C

) ◦ (µ−1 × µ−1 × µ−1))

= L3 · (µ ◦ σ ◦ (11C
× σ)) · α−1 · (λ ◦ (λ× 11C

) ◦ (µ−1 × µ−1 × µ−1))

= L3 · (µ ◦ σ ◦ (11C
× σ)) · ((α−1 · (λ ◦ (λ× 11C

))) ◦ (µ−1 × µ−1 × µ−1))

= L3 · (µ ◦ σ ◦ (11C
× σ)) · ((1⊗ ◦ (11C

× 1⊗)) ◦ (µ−1 × µ−1 × µ−1))

· (α−1 · (λ ◦ (λ× 11C
)))

= L3 · (µ ◦ σ ◦ (11C
× σ)) · (1⊗ ◦ (µ−1 × (1⊗ ◦ (µ−1 × µ−1)))) · S1

= L3 · (µ ◦ σ ◦ (µ−1 × (σ ◦ (µ−1 × µ−1)))) · S1

= L3 · (((11C
◦ 1⊗) · (µ ◦ σ)) ◦ ((µ−1 × (σ ◦ (µ−1 × µ−1)))

· ((11C
× (1t⊗ ◦ (11C

× 11C
)))))) · S1

= L3 · ((11C
◦ 1t⊗) ◦ (µ−1 × (σ ◦ (µ−1 × µ−1))))

· ((µ ◦ σ) ◦ (11C
× (1t⊗ ◦ (11C

× 11C
)))) · S1

= L3 · (1t⊗ ◦ (µ−1 × µ−1) ◦ (11C
× (µ ◦ σ ◦ (µ−1 × µ−1))))

· ((µ ◦ σ) ◦ (11C
× (1t⊗ ◦ (11C

× 11C
)))) · S1

= L3 · (1t⊗ ◦ (µ−1 × µ−1) ◦ (11C
× (µ ◦ σ ◦ (µ−1 × µ−1))))

· ((µ ◦ σ) ◦ (11C
× 1t⊗)) · S1

= L3 · (1t⊗ ◦ (µ−1 × µ−1) ◦ (11C
× [(1t⊗ ◦ (µ−1 × µ−1)) · (µ ◦ σ)]))

· ((µ ◦ σ) ◦ 11C×⊗) · S1
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= L4 · (tλ
−1 ◦ (11C

× 1t⊗)) · (1t⊗ ◦ (µ−1 × µ−1) ◦ (11C
× [(1t⊗ ◦ (µ−1 × µ−1))

· (µ ◦ σ)])) · ((µ ◦ σ) ◦ 11C×⊗) · S1

= L4 · (tλ
−1 ◦ (µ−1 × µ−1) ◦ (11C

× [(1t⊗ ◦ (µ−1 × µ−1)) · (µ ◦ σ)]))

· ((µ ◦ σ) ◦ 11C×⊗) · S1

= L4 · (tλ
−1 ◦ (µ−1 × µ−1) ◦ (11C

× [(1t⊗ ◦ (µ−1 × µ−1)) · (µ ◦ σ)]))

· ([(µ ◦ σ) · λ] ◦ 11C×⊗) · S2

= (1t⊗ ◦ (11C
× tλ−1)) · (tλ−1 ◦ (µ−1 × µ−1) ◦ (11C

× [(1t⊗ ◦ (µ−1 × µ−1))

· (µ ◦ σ)])) · ([(µ ◦ σ) · λ] ◦ 11C×⊗) · S2

= (tλ−1 ◦ (µ−1 × µ−1) ◦ (11C
× [tλ−1 · (1t⊗ ◦ (µ−1 × µ−1)) · (µ ◦ σ)]))

· ([(µ ◦ σ) · λ] ◦ 11C×⊗) · S2

= ([(1t⊗ · tλ−1) ◦ ((µ−1 × µ−1) · (11C
× 11C

))] ◦ (11C
× [(tλ−1 ◦ (µ−1 × µ−1))

· (µ ◦ σ)])) · ([(µ ◦ σ) · λ] ◦ 11C×⊗) · S2

= ([(1t⊗ ◦ (µ−1 × µ−1)) · tλ−1] ◦ (11C
× [(1t⊗ ◦ (µ−1 × µ−1)) · tλ−1 · (µ ◦ σ)]))

· ([(µ ◦ σ) · λ] ◦ 11C×⊗) · S2

= (σ̂ ◦ (11C
× [(1t⊗ ◦ (µ−1 × µ−1)) · tλ−1 · (µ ◦ σ)]))

· ([(µ ◦ σ) · λ] ◦ 11C×⊗) · S2

= (σ̂ ◦ (11C
× σ̂)) · (1⊗ ◦ (11C

× λ−1)) · S2

= (σ̂ ◦ (11C
× σ̂)) · α̂−1.

This proves the fourth condition. The fifth and sixth condition is

proved in a similar way and we only prove the sixth.

(tβ̂) · (σ̂ ◦ 11C×Ke)

= tβ · (tλ ◦ (11C
× tη)) · (((1t⊗ ◦ (µ−1 × µ−1)) · (tλ−1) · (µ ◦ σ) · λ) ◦ 11C×Ke)

= γ · (tσ ◦ 11C×Ke) · (tλ ◦ (11C
× tη)) · (1t⊗ ◦ (µ−1 × µ−1) ◦ 11C×Ke)

· (tλ−1 ◦ 11C×Ke) · (µ ◦ σ ◦ 11C×Ke) · (λ ◦ 11C×Ke)

= γ · (µ ◦ λ ◦ (µ−1 × (µ−1 ◦ tη)))

= γ · (µ ◦ λ ◦ (µ−1 × η))

= γ · (λ ◦ (11C
× η)) · (µ ◦ 1⊗ ◦ (µ−1 × 1Ke))

= γ · (λ ◦ (11C
× η))

= γ̂.



QUANTIZATIONS IN A CATEGORY OF RELATIONS 145

For the seventh condition we have

tσ̂

= t((1t⊗ ◦ (µ−1 × µ−1)) · tλ−1 · (µ ◦ σ) · λ)

= (1⊗ ◦ (µ× µ)) · λ−1 · (µ−1 ◦ σ−1) · tλ

= (1⊗ ◦ (µ× µ)) · (λ−1 ◦ (11C
× 11C

)) · ((µ−1 ◦ σ−1) ◦ (11C
× 11C

))

· (tλ ◦ (11C
× 11C

))

= (λ−1 · (µ−1 ◦ σ−1) · tλ · 1t⊗) ◦ (11C×1C
· (µ× µ))

= λ−1 · (µ−1 ◦ σ−1) · tλ · (1t⊗ ◦ (µ× µ))

= σ̂−1.

�

From this point of view the quantizations of the identity functor on

a symmetric monoidal category 〈C,⊗, Ke, α, β, γ, σ〉 is exactly equal to

the subgroup of H that fix the point (α, β, γ, σ).

4.2. Quantization of algebraic structures. Let 〈Ci,⊗i, Pei
, αi, βi, γi, σi〉

be symmetric monoidal categories for i = 1, 2 and let F : C1 −→ C2 be

a quantized functor with quantization (λ, µ, η). Let the S2 action on C1

and C2 be generated by the functors T1 : C1 −→ C1 and T2 : C2 −→ C2.

In this section we will work with objects and need the object formulation

of the conditions defining a symmetric monoidal category and quantized

functors. We collect these conditions in the following proposition whose

proof consists of applying the definition of vertical composition and hor-

izontal composition.

Proposition 69.

(α2)F (X),F (Y ),F (Z) = (λ−1
X,Y ⊗2 1F (Z)) ◦ λ

−1
X⊗1Y,Z ◦ F ((α1)X,Y,Z)

◦ λX,Y ⊗1Z ◦ (1F (X) ⊗2 λY,Z),

(β2)F (X),F (Y ) = F (βX;Y ) ◦ λe1,Y ◦ (ηX ⊗2 1F (Y )),

(γ2)F (X),F (Y ) = F ((γ1)X,Y ) ◦ λX,e1
◦ (1F (X) ⊗2 ηY ),

(σ2)F (X),F (Y ) = T2(T2(µ
−1
Y ) ⊗2 T2(µ

−1
X )) ◦ T2(λ

−1
T1(Y ),T1(X))

◦ µT1(T1(Y )⊗1T1(X)) ◦ F (σX;Y ) ◦ λX,Y .

Quantized functors preserve algebraic structures. Let 〈X, ν, u〉 be a

monoid in the symmetric monoidal category C1 and Define arrows in C2
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νλ : F (X) ⊗2 F (X) −→ F (X),

uη : e2 −→ F (X),

by νλ = F (ν) ◦ λX,X and uη = F (u) ◦ η. In

Proposition 70. 〈F (X), νλ, uη〉 is a monoid in C2.

Proof. Since 〈X, ν, u〉 is a monoid in C1 we have the identities

ν ◦ (1X ⊗1 ν) = ν ◦ (ν ⊗1 1X) ◦ (α1)X,X,X ,

ν ◦ (u⊗1 1X) = (β1)X,X ,

ν ◦ (1X ⊗1 ν) = (γ1)X,X .

If we use these identities and the relations from proposition 69 we have

νλ ◦ (1F (X) ⊗2 ν
λ)

= F (ν) ◦ λX,X ◦ (1F (X) ⊗2 F (ν)) ◦ (1F (X) ⊗2 λX,X)

= F (ν) ◦ F (1X ⊗1 ν) ◦ λX,X⊗1X ◦ (1F (X) ⊗2 λX,X)

= F (ν ◦ (1X ⊗1 ν)) ◦ λX,X⊗1X ◦ (1F (X) ⊗2 λX,X)

= F (ν) ◦ F (ν ⊗1 1X) ◦ F ((α1)X,X,X) ◦ λX,X⊗1X ◦ (1F (X) ⊗2 λX,X)

= F (ν) ◦ F (ν ⊗1 1X) ◦ λX⊗1X,X ◦ (λX,X ⊗2 1F (X)) ◦ (α2)F (X),F (X),F (X)

= F (ν) ◦ λX,X ◦ (F (ν) ⊗2 1F (X)) ◦ (λX,X ⊗2 1F (X)) ◦ (α2)F (X),F (X),F (X)

= νλ ◦ (νλ ⊗2 1F (X)) ◦ (α2)F (X),F (X),F (X),

and

νλ ◦ (uλ ⊗2 1F (X))

= F (ν) ◦ λX,X ◦ (F (u) ⊗2 F (1X)) ◦ (ηX ⊗2 1F (X))

= F (ν) ◦ F (u⊗1 1X) ◦ λe1,X ◦ (ηX ⊗2 1F (X))

= F (ν ◦ (u⊗ 1X)) ◦ λe1,X ◦ (ηX ⊗2 1F (X))

= F ((β1)X,X) ◦ λe1,X ◦ (ηX ⊗2 1F (X))

= (β2)F (X),F (X).

�

We call the monoid 〈F (X), νλ, uη〉 a quantization of the monoid 〈X, ν, u〉

in C1. Quantization of comonoids is defined by duality. Let us assume

that the monoid 〈X, ν, u〉 is commutative. This property is preserved by

quantization.
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Proposition 71. Let 〈X, ν, u〉 be a commutative monoid in C1. Then

〈F (X), νλ, uη〉 is a commutative monoid in C2.

Proof. Using the exchange identity for horizontal and vertical composi-

tion of natural transformations, the two last conditions in the definition

of quantized functors 66 and the symmetry conditions tσi = σ−1
i , i = 1, 2

we get the following identity

t(1F ◦ σ1) · (tλ) · (1t⊗2
◦ (µ× µ)) = (µ ◦ 1⊗) · λ · (tσ2 ◦ 1F×F ).

The (X,X,X) component of this identity is gives after application of

the functor T2 the following relation

F ((σ1)T1(X),T1(X)) ◦ λT1(X),T1(X) ◦ (T2(µX) ⊗2 T2(µX))

= T2(µX⊗1X) ◦ T2(λX,X) ◦ (σ2)T2(F (X)),T2(F (X)).

But then we have

T2(µX) ◦ (νλ)σ2

= T2(µX) ◦ T2(F (ν)) ◦ T2(λX,X) ◦ (σ2)T2(F (X)),T2(F (X))

= F (T1(ν)) ◦ T2(µX⊗1X) ◦ T2(λX,X) ◦ (σ2)T2(F (X)),T2(F (X))

= F (T1(ν)) ◦ F ((σ1)T1(X),T1(X)) ◦ λT1(X),T1(X) ◦ (T2(µX) ⊗2 T2(µX))

= (νσ1)λ ◦ (T2(µX) ⊗2 T2(µX)).

Since 〈X, ν, u〉 is commutative in C1 there exists an isomorphism ϕ :

T1(X) −→ X such that the following identity holds

ϕ ◦ νσ1 = ν ◦ (ϕ⊗1 ϕ).

Let the isomorphism ϕ̂ : T2(F (X)) −→ F (X) be defined by ϕ̂ =

F (ϕ) ◦ T2(µX). For this isomorphism in C2 we have

ϕ̂ ◦ (νλ)σ2

= F (ϕ) ◦ T2(µX) ◦ (νλ)σ2

= F (ϕ) ◦ (νσ1)λ ◦ (T2(µX) ⊗2 T2(µX))

= F (ϕ) ◦ F (νσ1) ◦ λT1(X),T1(X) ◦ (T2(µX) ⊗2 T2(µX))

= F (ν) ◦ F (ϕ⊗1 ϕ) ◦ λT1(X),T1(X) ◦ (T2(µX) ⊗2 T2(µX))

= F (ν) ◦ λX,X ◦ (F (ϕ) ⊗2 F (ϕ)) ◦ (T2(µX) ⊗2 T2(µX))

= νl ◦ (ϕ̂⊗2 ϕ̂),

and this proves that 〈F (X), νλ, uλ〉 is a commutative monoid. �

Commutative comonoids will by duality also be preserved by quantiza-

tion. Similar results holds for other algebraic structures like modules and
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comodules. As a special case of the above constructions let F = IC and

let 〈X, ρ, u〉 be a commutative monoid in C. Then any element (λ, µ, η)

in the group H described in the previous section defines a quantization

〈X, ρλ, uη〉 of the given monoid. We thus get a whole family of quan-

tized product and unit structures on the object X. Each such quantized

product and unit does not define a commutative monoid with respect

to the original structure 〈α, β, γ, σ〉, but with respect to the structure

〈α̂, β̂, γ̂, σ̂〉.

References

[1] Fronsdal C. Lichnerowicz A. Bayen F., Flato M. and Sternheimer D. Deformation

theory and quantization , II. Ann. Phys. (NY), 111:61–110,111–151, 1978.

[2] Louise De Broglie. Ondes et quanta. Comptes rendus de l’Academie des Sciences,

177:507–510, September 1923.

[3] Louise De Broglie. Recherches sur la Theorie Des Quanta. PhD thesis, University

of Paris, 1924.

[4] Louise De Broglie. Phase wave of louise deBroglie. A. J. Phys., 40(9):1315–1320,

September 1972.

[5] Albert Einstein. Zur theorie der lichterzeugung and lichtabsorption. Annalen der

Physik, page 1, 1906.

[6] W. Heisenberg. Uber quantentheoretische umdentung kinematischer und mech-

anischer beziehungen. Zeitschrift fur physik, 33:879–893, Juli 1925.

[7] Woodhouse N. M. J. Geometric Quantization. Oxford Mathematical Mono-

graphs. Oxford Science Publications, 2 edition, 1992.

[8] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of

Graduate Texts in Mathematics. springer, 1998.

[9] V. V. Lychagin. Colour calculus and colour quantizations. geometric and alge-

braic structures in differential equations. Acta Appl. Math., 41(1-3):193 – 226,

1995.

[10] V. V. Lychagin. Calculus and quantizations over hopf algebras. Acta Appl. Math.,

51(3):303–352, 1998.

[11] V. V. Lychagin. Quantum mechanics on manifolds. geometrical aspects of non-

lineardifferential equations. Acta Appl. Math., 56(2-3):231–251, 1999.

[12] M. Planck. Zur theorie des gesetzes der energieverteilung im normalspectrum.

Verhandl. Dtsch. phys. Ges., 2:237, 1900.

[13] Jakub Rembielinski, editor. Deformation Quantization: Twenty Years After.

Amer. Inst. Phys., Woodbury, Ny., 1998.

[14] B. L. Van Der Waerden. Sources of Quantum Mechanics. Dover, 1967.

Faculty of science, University of Tromsø, Tromsø 9037, Norway

E-mail address: perj@math.uit.no

E-mail address: Valentin.Lychagin@matnat.uit.no

Received November 10, 2004


