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Abstract. We consider the Navier-Stokes equation in 3-D torus in

the stationary setup and prove that any weak solution of this problem is

actually smooth provided the stationary external force is also smooth.

1. Introduction

Time independent regimes of a flow to the Navier-Stokes equation are

important because of ergodicity and of their relations with the long time

behavior of solutions. The first existence and uniqueness theorems for

(time dependent) weak solutions were proven by Leray [2] and by Hopf

[1]. Regularity of time dependent solutions in 3-dimensional setup is still

open problem.

We consider the Navier-Stokes equation in 3-D torus in the stationary

setup and prove that any weak solution of this problem is actually smooth

provided the stationary external force is also smooth.

A proof of this assertion is short and obtained as a combination of

quite standard facts. Nevertheless, we regard as useful to publish this

note, since first, we do not know publications contained this assertion,

and secondly, it does not follow from general theory of nonlinear elliptic

equations [4].
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2. Main theorem

Consider 3-dimensional torus T
3 = R

3/(2πZ)3 with coordinates x =

(x1, x2, x3). We use a notation

∂j =
∂

∂xj

, j = 1, 2, 3.

In all the formulas we follow the Einstein summation convention for re-

peated subscripts. For example for a vector field v(x) = (v1, v2, v3)(x)

we write div v = ∂jv
j.

Application of any scalar operator to a vector-function implies that

this operator is applied to each component of the vector-function.

Let Hs,p(T3), 1 ≤ p, s ≥ 0 be the Sobolev spaces over Lp(T3). In

the sequel we drop the arguments of these notations and simply write

Hs,p, Lp.

Consider the Navier-Stokes equation in the stationary setup:

∂j(v
jvk) = −∂kp + ν∆vk + f k, k = 1, 2, 3, (2.1)

div v = 0, (2.2)

where ν is a positive constant.

The external force f(x) = (f 1, f 2, f 3)(x) ∈ C∞ is assumed to be di-

vergence free and of zero mean value:

divf = 0,

∫
T3

f(x) dx = 0.

Note that substitution p 7→ p + c (c is an arbitrary constant) in (2.1)

does not change the equation. So we will find the function p just up to

an additional constant.

Problem (2.1), (2.2) has a weak solution v ∈ H1 [3].

Theorem 1. Any weak solution v to problem (2.1), (2.2) is actually

smooth: v ∈ C∞.

3. Proof

Let k, x ∈ R
3, introduce some notations:

(k, x) = k1x1 + . . . + k3x3, |x|2 = |x1|
2 + . . . + |x3|

2, i2 = −1.

In the case of torus our knowledge about generalized functions is clearly

simplified. Any function u ∈ Lp, p ≥ 2 belongs also to L2 and thus

can be expanded to the Fourier series: u(x) =
∑

j∈Z3 uje
i(j,x). This series

converges in L2.
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The set of generalized functions consists of the formal Fourier series

h(x) =
∑

j∈Z3 hje
i(j,x) with polynomially growing coefficients: |hk| ≤

c|k|γ. It follows for example from the L. Schwartz theorem [5]. A gener-

alized function h takes its value of a test function

ϕ =
∑
j∈Z3

ϕje
i(j,x) ∈ C∞

by the rule:

(h, ϕ) =
∑
j∈Z3

hjϕ−j.

(Only real-valued functions are considered.)

According to this viewpoint a generalized derivative of a function from

Lp is expressed as a Fourier series:

∂mh(x) = i
∑
j∈Z3

jmhje
i(j,x), m = 1, 2, 3.

It is convenient to understand all the further arguments in this light.

Define the following operators:

∆u = −
∑
j∈Z3

uj|j|
2ei(j,x),

∆−1u = −
∑

j∈Z3\{0}

uj

|j|2
ei(j,x),

Ak
l u = (∆−1∂k∂l − δkl)u,

Pu = u − u0.

where δkl = 1 for k = l and 0 otherwise.

Such a form of the inverse Laplace operator ∆−1 needs a comment.

Actually the Laplace operator has the inverse only on the space of func-

tions with zero mean value. Nevertheless all the formulas appear in our

text include derivative operators standing before the operator ∆−1 and

misunderstanding does not appear.

Since ∂j = ∂jP = P∂j we can rewrite the operator Ak
l in the form:

Ak
l u = ∂k∂l∆

−1Pu − δklu.

Take the operator div from the right- and the left-hand sides of equa-

tion (2.1). Using equation (2.2) we get ∂i∂j(v
ivj) = −∆p. Thus

p = −∆−1∂i∂j(v
ivj).

Substituting this formula to equation (2.1) we obtain the following prob-

lem:

0 = Ak
l ∂j(v

jvl) + ν∆vk + f k. (3.1)



260 O. ZUBELEVICH

Taking the operator ∆−1 from the both sides of equation (3.1) we have

−νvk = Ak
l ∆

−1∂j(v
jvl) + ∆−1fk. (3.2)

or equivalently:

−νvk = Ak
l ∂j∆

−1P (vjvl) + ∆−1fk. (3.3)

Our plan of the Proof is as follows. We will show by induction on k

that the weak solution

v ∈
⋂
p≥2

Hk,p, k ∈ N. (3.4)

By Sobolev’s embedding theorem this proves Theorem 1.

Recall some facts from the Sobolev theory [4]. For p > 1 and k ≥ 0

we have

Hk,p ⊂ L3p/(3−kp), kp < 3, (3.5)

∂j : Hk+1,p → Hk,p, (3.6)

∆−1P : Hk,p → Hk+2,p. (3.7)

Particularly, the operators Ak
l , P maps Hk,p to itself.

Since the weak solution v belongs to H1 = H1,2 it belongs to L6 by in-

clusion (3.5). Thus the expression vjvl belongs to L3 and due to formulas

(3.6), (3.7) and by force of equation (3.3) we have v ∈ H1,3.

Diminishing ε > 0 in the formula H1,3 ⊂ H1,3−ε ⊂ L3(3−ε)/ε we obtain

that v ∈
⋂

p≥2 Lp. Thus the expression vjvl also belongs to
⋂

p≥2 Lp. By

equation (3.3) it follows that inclusion (3.4) holds with k = 1.

Assume that inclusion (3.4) holds with k > 1 and check it with k + 1.

By the chain rule and (2.2) we have

∂j(v
jvl) = vj∂jv

l ∈
⋂
p≥2

Hk−1,p.

By means of equation (3.2) this inclusion implies that v ∈
⋂

p≥2 Hk+1,p.

The Theorem is proved.
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