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Abstract. We consider general bounded derivations on the Banach

algebra of Hilbert-Schmidt operators on an underlying complex infinite

dimensional separable Hilbert space H. Their structure is described by

means of unique infinite matrices. Certain classes of derivations are

identified together in such a way that they correspond to a unique ma-

trix derivation. In particular, Hadamard derivations, the action of gen-

eral derivations on Hilbert-Schmidt and nuclear operators and questions

about innerness are considered.

1. Introduction

Throughout this article H will be a separable infinitely dimensional

complex Hilbert space. Let B (H), K (H), S (H) and N (H) be the classes

of bounded, compact, Hilbert-Schmidt and nuclear operators on H re-

spectively. As it is well known, K (H) is the only non-trivial closed

self-adjoint two-sided ideal in B(H) (cf. [5]). Furthermore, by the po-

lar decomposition theorem any A ∈ B(H) can be written uniquely as

A = U ◦ |A|, where U is a partial isometry and |A| is a positive opera-

tor (see [8], Vol. 2, Th. 6.1.2, p. 401). Remember that if A ∈ K(H)

and {ρn} is the sequence of eigenvalues of |A| then A is said to be a

Hilbert-Schmidt operator (resp. a nuclear operator) if
∑

ρ2
n < ∞ (resp.

if
∑

ρn < ∞). Moreover, an operator A is of Hilbert-Schmidt type if

2000 Mathematical Subject Classification. 46H05, 46J45, 47B47.
Key words and phrases. Hilbert-Schmidt and nuclear operator, Nearly-

inner matrices, Hadamard products.

21



22 A. L. BARRENECHEA, C. C. PEÑA

and only if the series
∑

‖Afn‖
2 converges for at least one orthonormal

basis {fn} of H. In that case it is readily seen that
∑

ρ2
n =

∑

‖Agn‖
2 if

{gn} is any orthonormal basis of H. So, if {en} is an orthonormal basis

of H and A, B ∈ S(H) then

〈A, B〉2 =
∑

〈Aen, Ben〉

defines an inner product on S(H). If ‖A‖2 = 〈A, A〉1/2
2 then (S(H), 〈◦, ◦〉2)

becomes a Hilbert space. Indeed, (S(H), ‖◦‖2) is a Banach ∗ - algebra

without unit. Analogously, if A ∈ N (H) and {en} is an orthonormal

basis of H then
∑

〈Aen, en〉 =
∑

ρn, i.e. the sum of the former series

does not depend on the choice of {en} . This value is known as the trace

of A and it is denote as tr (A) . Further, if we let ‖A‖1 = tr (|A|) then

(N (H) , ‖◦‖1) is a Banach algebra. If A ∈ B (H) then A ∈ N (H) if and

only if |A|1/2 ∈ S (H). For more details on this matter the reader can see

[7], Ch. I. §2. In this article, by a derivation on a Banach algebra U we

will mean any linear operator δ : U → U so that the usual Leibnitz rule

δ (a · b) = δ (a) · b + a · δ (b) holds for all a, b ∈ U. In particular, given

a ∈ U the maps [a, b] = a · b − b · a defined for all b ∈ U are the so called

inner derivations. We will say that a derivation is outer if it is not inner.

The authors previously studied the existence and structure of general

derivations in the frame of weight sequence Banach algebras (cf. [1]).

Our matter in this article is to consider questions concerning to inner-

ness of bounded derivations on S (H). This problem has been solved in

other contexts; for instance in the frame of von Neumann algebras every

bounded derivation is inner (cf. [10], [11]). In Section 2 we consider the

structure of general (bounded) derivations on S(H). We develop, in Th.

2 and Prop. 5, the intrinsic relationship between bounded derivations

on S(H) and derivations on a Hilbert space of infinite complex matri-

ces (cf. [2], [3]). The precise structure of derivations on S(H) is given

in Prop. 7 and Prop. 8 allows us to define an equivalence relation on

them. So, in Corollary 11 we see how each infinite matrix derivation

determines a unique equivalence class of bounded derivations on S(H).

In particular, from this development it follows the simple structure of

the so called Hadamard derivations. Finally, in Section 3 we describe the

action of bounded derivations on self-adjoint Hilbert-Schmidt operators.

Hadamard derivations and their restrictions to nuclear operators on H

are considered in Prop. 15. In Prop. 16 we realize certain derivations

on S(H), in general not inner, as certain series of inner derivations on

S(H).
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Notation 1. Throughout this article ω will be an infinite countable set

and, if A is a Banach algebra, D(A) will denote the class of bounded

derivations on A. Let l2 (ω × ω) be the Hilbert space of infinite matrices

a = (an,m)n,m∈ω endowed with the norm ‖a‖2 =
(

∑

n,m∈ω |an,m|
2
)1/2

. We

will write by means of a, at and a∗ the conjugate, the transpose and the

adjoint of a respectively. If m, n ∈ ω it is easy to see that a∗
n,m = am,n,

as usual at
n,m = am,n and a = a∗t.

2. On the structure of general derivations on S(H)

Theorem 2. (cf. [2], [4]) A bounded linear endomorphism ∆ of l2 (ω × ω)

is a derivation if and only if there are matrices α = {αn,m}n,m∈ω and

β = {βn,m}n,m∈ω of complex numbers uniquely determined so that

(i) For any n ∈ ω, αn,n = 0.

(ii) sup
n,m∈ω

|βn,m| < ∞.

(iii) The matrix α is nearly-inner, i.e. the formal mapping Lα : z →

α · z − z · α defines a bounded linear operator on l2 (ω × ω) .

(iv) For any n, m, p ∈ N the identities βn,m + βm,p = βn,p hold.

Then

∆ (z) =
∑

n,m∈ω

(

∑

p∈ω

(zp,m αn,p − αp,m zn,p) + zn,m βn,m

)

en,m (1)

for z ∈ l2 (ω × ω), where for all n, m ∈ ω we are writing en,m =
(

δp,q
n,m

)

p,q∈ω

and δp,q
n,m denotes the usual Kronecker´s function. In particular, we can

denote ∆ = ∆α,β .

Remark 3. Let ∆ ∈ D (l2 (ω × ω)). So, the corresponding entries of

the matrices α and β related to ∆ according to Th.2 are defined by the

relations

∆ (en,m) =
∑

p∈ω

(αp,n ep,m − αm,p en,p) + βn,m en,m, n, m ∈ ω.

In particular, observe that

sup
n,m∈ω

∑

p∈ω

(

|αp,n|
2 + |αm,p|

2)+ |βn,m|
2 ≤ ‖∆‖2 < ∞,

i.e. all rows and columns of a nearly-inner matrix are bounded and square

summable.

Proposition 4. Let α, α1, α2 be nearly-inner matrices with null diagonals

and let β, β1, β2 be bounded matrices that verify condition (iv) of Th.2.

So, the following formulae hold:
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(i) [∆α1,0, ∆α2,0] = ∆α(α1,α2),β(α1,α2), where for each n, m ∈ ω

α (α1, α2)n,m = (1 − δn,m) · [α1, α2]n,m ,

β (α1, α2)n,m = [α1, α2]n,n + [α2, α1]m,m .
(2)

(ii) [∆α,0, ∆0,β] = −∆α�β,0, where α�β = {αn,m · βn,m}n,m∈ω denotes

the Hadamard product of the matrices α and β.

(iii) [∆0,β1
, ∆0,β2

] = 0.

(iv) [∆α1,β1
, ∆α2,β2

] = ∆α(α1,α2)−α1�β2+α2�β1,β(α1,α2).

Proof. Given n, m ∈ ω we obtain that

[∆α1,0, ∆α2,0] (en,m)

=
∑

p∈ω

(

δp
n [α1, α2]p,n · ep,m + δp

m [α2, α1]m,p · en,p

)

+
(

[α1, α2]n,n + [α2, α1]m,m

)

· en,m. (3)

By Remark 3 the infinite matrix
{

[α1, α2]n,m

}

n,m∈ω
is defined. Hence,

relations (2) will be established if we show that α (α1, α2) and β (α1, α2)

satisfy the conditions of Th.2. For, by Remark 3 and the definitions in

(2) they do for β (α1, α2) . By definition α (α1, α2) has null diagonal. In

order to see that α (α1, α2) is nearly-inner let z ∈ l2 (ω × ω) be a matrix

with only a finite number of non zero entries. If n, m ∈ ω we have

(Lα1
◦ Lα2

−Lα2
◦ Lα1

) (z)n,m

= Lα(α1,α2) (z)n,m + zn,m · β (α1, α2)n,m . (4)

In consequence, the formal operator Lα(α1,α2) is defined and obviously

linear on the dense subspace of matrices with finite support of l2 (ω × ω) .

Since α1 and α2 are nearly-inner matrices by (4) the restriction of Lα(α1,α2)

to this subspace is continuous. Thus by completeness it extends to

a unique bounded operator on l2 (ω × ω) , i.e. the matrix α (α1, α2) is

nearly-inner and (i) follows. Since Lα�β = − [Lα, ∆0,β] and Lα, ∆0,β ∈

B (l2 (ω × ω)) then Lα�β is also bounded. So α � β is a nearly-inner

matrix and as it has null diagonal (ii) holds. Now, the proofs of (iii) and

(iv) are straightforward.

Proposition 5. Let e = {en}n∈ω, f = {fm}m∈ω be orthonormal basis of

H, let U ∈ B (H) be the unitary operator so that Uen = fn if n ∈ ω and

let A ∈ S (H) .

(i) If Je,f (A) = {〈Aen, fm〉}n,m∈ω then Je,f defines an isometric iso-

morphism of S(H) onto l2 (ω × ω) .
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(ii) Je,f(A) = Je,e (U∗A) = Jf,f(AU∗).

(iii) The map Se,f(A) = Je,f(UA∗) is an ∗-algebraic isometric isomor-

phism of S (H) onto l2 (ω × ω).

Proof. Since
∑

n,m∈ω

|〈Aen, fm〉|
2 =

∑

n∈ω

‖Aen‖
2 = ‖A‖2

2 < ∞

then Je,f is well defined and it is clearly an ∗- isometry from S(H) into

l2 (ω × ω) . If a = (an,m)n,m∈ω belongs to l2 (ω × ω) it is easy to see that

h → Ah =
∑

m

fm

∑

n

an,m 〈h, en〉

defines a Hilbert - Schmidt operator on H so that Je,f (A) = a. Hence by

the open mapping theorem (i) holds. For (ii) it suffices to observe that

for all n, m ∈ ω is

〈Aen, fm〉 = 〈Aen, Uem〉 = 〈AU∗fn, fm〉 .

Moreover,

Se,f(A)∗n,m = Se,f (A)m,n = 〈UA∗em, fn〉

= 〈em, Aen〉 = 〈UAen, fm〉 = Je,f(UA)n,m

= Se,f(A
∗)n,m

It is clear that Se,f is linear and as ‖UA∗‖2 = ‖A‖2 if A ∈ S (H) by

(i) Se,f becomes an isometry. On the other hand, if a ∈ l2 (ω × ω) it is

easily seeing that S−1
e,f(a) = J−1

e,f (a)∗◦U and S−1
e,f becomes also isometric.

Finally, if A, B ∈ S(H) and m, n ∈ ω we have

(Se,f(A) · Se,f(B))n,m =
∑

p∈ω

Se,f(A)n,p · Se,f(B)p,m

=
∑

p∈ω

〈fp, UA∗en〉 · 〈fm, UB∗ep〉 =
∑

p∈ω

〈Aep, en〉 · 〈Bem, ep〉

=

〈

∑

p∈ω

〈Bem, ep〉Aep, en

〉

= 〈ABem, en〉 = 〈U∗fm, (AB)∗en〉

= 〈U(AB)∗en, fm〉 = Se,f (AB)n,m

and (iii) follows.

Remark 6. In what follows, if a, b ∈ H we will write a∗ ⊗ b to denote

the vector map

(a∗ ⊗ b) (h) = 〈h, a〉 · b, (h ∈ H).
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It is easy to see that

(1) a∗ ⊗ b is a Hilbert-Schmidt if a, b ∈ H since it is a finite rank

operator.

(2) 〈Aa, b〉 = 〈A, a∗ ⊗ b〉2 if a, b ∈ H and A ∈ S(H).

(3) (a1 + a2)
∗ ⊗ b = a∗

1 ⊗ b + a∗
2 ⊗ b if a1, a2, b ∈ H .

(4) a∗ ⊗ (b1 + b2) = a∗ ⊗ b1 + a∗ ⊗ b2 if a, b1, b2 ∈ H.

(5) (λa)∗ ⊗ b = λ̄ (a∗ ⊗ b) = a∗ ⊗
(

λ̄b
)

if a, b ∈ H and λ ∈ C.

(6) (a∗ ⊗ b)∗ = b∗ ⊗ a if a, b ∈ H.

(7) If e = {en}n∈ω and f = {fm}m∈ω are orthonormal basis of H the

set {e∗n ⊗ fm}n,m∈ω becomes orthonormal basis of S(H). In fact,

the class of finite rank operators is dense in S (H), (cf. [7], p. 36).

Proposition 7. Let δ ∈ D (S (H)), A ∈ S (H) and let e = {en}n∈ω be

an orthonormal basis of H . There exist a unique set of bounded linear

forms {γn,m
e }n,m∈ω on S (H) so that δ (A) can be written in S (H) as

δ (A) =
∑

m,n∈ω

γn,m
e (A) e∗n ⊗ em. (5)

Further, there exist unique matrices α and β as in Th. 2 so that for

each n, m ∈ ω is γn,m
e (A) = 〈A, Bn,m

e 〉2,

Bn,m
e = e∗n ⊗

[

e(ᾱm) + β̄m,n · em

]

− e(αn)∗ ⊗ em,

e(αm) =
∑

p∈ω αm,p · ep and αn =
∑

p∈ω αp,n · ep.

Proof. Given two orthonormal basis e = {en}n∈ω, f = {fm}m∈ω of H,

by (iii) of Prop. 5 there is a 1-1 correspondence

Ψe,f : D
(

l2 (ω × ω)
)

→ D(S(H)), Ψe,f (∆) = S−1
e,f ◦ ∆ ◦ Se,f . (6)

So, if δ ∈ D(S(H)) there are unique matrices α = (αm,n)m,n∈ω , β =

(βm,n)m,n∈ω in the conditions of Th. 2 so that Se,f ◦ δ ◦ S−1
e,f = ∆α,β.

Now, with the above notation if A ∈ S (H) then

δ (A) =
(

S−1
e,f ◦ ∆

)

(

Je,f(UA∗)
)

=
∑

m,n∈ω

(

∑

p∈ω

(〈Aen, ep〉 αm,p − αp,n 〈Aep, em〉) + 〈Aen, em〉 βm,n

)

· S−1
e,f (em,n) (7)
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=
∑

m,n∈ω

(〈Aen, e (αm)〉 − 〈Ae (αn) , em〉 + 〈Aen, em〉 βm,n) · e∗n ⊗ em

=
∑

m,n∈ω

〈A, Bn,m
e 〉2 · e

∗
n ⊗ em

and so (5) follows.

Proposition 8. Let e = {en}n∈ω , f = {fm}m∈ω , g = {gn}n∈ω , h =

{hm}m∈ω be orthonormal basis of H, ∆ ∈ D (l2 (ω × ω)), A ∈ S(H).Then

Ψe,f (∆) (V ∗AU) = V ∗Ψg,h (∆) (A) U, (8)

where U, V ∈ B(H) are the unitary operators so that Uen = gn and

V fm = hm if n, m ∈ ω.

Proof. Observe that both sides in (8) are defined because S(H) is a

two-sided ideal of B(H) (cf. [6], §15.4.8, p. 335). The proof follows

observing that

e∗n ⊗ fm = V ∗ (g∗
n ⊗ hm)U and γn,m

e,f (V ∗AU) = γn,m
g,h (A)

for each m, n ∈ ω and all A ∈ S(H).

Notation 9. Let δ1, δ2 ∈ D (S (H)) . We will write δ1 ∼ δ2 if and only if

there are unitary operators U, V on H so that δ1 (V ∗AU) = V ∗δ2 (A) U

if A ∈ S (H) . It is readily seeing that ∼ defines an equivalence relation

on D (S (H)) .

Corollary 10. Given δ1, δ2 ∈ D(S(H)), δ1 ∼ δ2 if and only if for all or-

thonormal basis e = {en}n∈ω , f = {fm}m∈ω of H there are orthonormal

basis g = {gn}n∈ω , h = {hm}m∈ω of H so that Ψ−1
e,f (δ1) = Ψ−1

g,h(δ2).

Proof.

(⇒): Let U, V unitary operators on H so that δ1 (V ∗AU) = V ∗δ2 (A) U

for all A ∈ S (H) . Given orthonormal basis e = {en}n∈ω , f =

{fm}m∈ω of H there exists ∆ ∈ D (l2 (ω × ω)) so that Ψe,f (∆) =

δ1. If we write Uen = gn and V fm = hm if n, m ∈ ω then

g = {gn}n∈ω , h = {hm}m∈ω are orthonormal basis of H. So, by

Prop. 8 we have Ψg,h (∆) = δ2 and the condition is necessary.

(⇐): Let e = {en}n∈ω , g = {gn}n∈ω , h = {hm}m∈ω be fixed or-

thonormal basis of H so that Ψ−1
e,e (δ1) and Ψ−1

g,h(δ2) determine a

same element ∆ in D (l2 (ω × ω)) . Hence δ1 ∼ δ2 since by Prop. 8

there are unitary operators U, V ∈ B(H) so that for all A ∈ S(H)

is

δ1 (V ∗AU) = Ψe,e (∆) (V ∗AU) = V ∗Ψg,h (∆) (A) U = V ∗Ψg,h (∆) (A) U.
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Corollary 11. There is a 1-1 correspondence between D(S(H))/ ∼ onto

D (l2 (ω × ω)) , i.e. D(S(H))/ ∼ ≡ D (l2 (ω × ω)) .

Proof. Let us write

Ψ : D
(

l2 (ω × ω)
)

→ D(S(H))/ ∼, Ψ (∆) = [Ψe,f (∆)]∼ ,

where ∆ ∈ D (l2 (ω × ω)) , e and f are orthonormal basis of H and

[Ψe,f (∆)]∼ denotes the ∼ equivalence class of Ψe,f (∆) in D(S(H))/ ∼ .

By Prop. 8 the function Ψ is well defined, i.e. Ψ (∆) does not depend on

the choice of the orthonormal basis e nor f . If ∆1, ∆2 ∈ D (l2 (ω × ω))

and Ψ (∆1) = Ψ (∆2) then Ψe,e (∆1) = Ψe,e (∆2) . By Prop. 8 we have

∆1 = ∆2, i.e.Ψ is injective. We have already seen that for any orthonor-

mal basis e and f of H the map Ψe,f , introduced in (6), defines a bijection

between D (l2 (ω × ω)) and D(S(H)). Therefore Ψ is also surjective.

Notation 12. From now on we’ll denote any bounded derivation δ on

D(S(H)) as δ = δα,β, where α, β are the unique infinite matrices de-

termined by δ as we have pointed out in Prop. 7. This matrices are

uniquely by means of Th. 2 and they identify the corresponding ∼ equiv-

alence class of δ as in Corollary 11. So, δ is intrinsically determined

by these matrices while its coordinate representation changes according

to the rules of Prop. 4 and (8) of Prop. 8. In particular, we shall say

that any bounded derivation δ0,β on S (H) is a Hadamard derivation.

Remark 13. Any Hadamard derivation is induced by bounded sequences

of complex numbers. For, if {bn}n∈ω is such a sequence and

b = {bn − bm}n,m∈ω ,

then δo,b is a Hadamard derivation. On the other hand, given δ0,β we

already know that βn,m = βn,l + βl,m for all n, l, m ∈ ω. In consequence

β has null diagonal and βn,m = βn,1 + β1,m = −β1,n + β1,m, i.e. the first

row determines the whole β. Of course, although β defines δ0,β uniquely

it does not give rise to a unique bounded sequence.

3. On certain particular derivations

Proposition 14. Let δα,β ∈ D (S (H)) and A be a self-adjoint Hilbert-

Schmidt operator on H. If e = {en}n∈ω is the orthonormal basis of H
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induced by the sequence {ρn}n∈ω of eigenvalues of A then

δα,β (A) =
∑

n∈ω

e∗n ⊗ (A − ρn · IdH) e (αn)

= −
∑

n∈ω

((A − ρn · IdH) e (αn))∗ ⊗ en

Proof. If n ∈ ω then

δα,β (e∗n ⊗ en) = Ψe,e (∆α,β) (e∗n ⊗ en) (9)

= S−1
e,e (∆α,β (en,n)) =

∑

m∈ω

(αm,n e∗n ⊗ em − αn,m e∗m ⊗ en)

Since A =
∑

n∈ω ρn e∗n ⊗ en in S (H) by (9) we obtain that

δα,β (A) =
∑

n,m∈ω

αn,m · (ρm − ρn) e∗n ⊗ em. (10)

Now from (10) our claim follows easily.

Proposition 15. (i) Any Hadamard derivation on S (H) is the re-

striction of an inner one on B (H) .

(ii) The restriction of any Hadamard derivation to N (H) belongs to

D(N (H)).

Proof.

(i) Let δ0,β be a Hadamard derivation and let e = {en}n∈ω be an

orthonormal basis in H. By Remark (13) we can assume that

β = {βm − βn}m,n∈ω, where {βn}n∈ω is a bounded sequence in C.

Let us prove that if A ∈ S(H) then

δ0,β (A) =

[

∑

p∈ω

(

βp · ep

)∗
⊗ ep, A

]

. (11)

For, if n, m ∈ ω then
[

∑

p∈ω

(

βp · ep

)∗
⊗ ep, e

∗
n ⊗ em

]

= (βm − βn) · (e∗n ⊗ em)

=
∑

p,q∈ω

γp,q
e (e∗n ⊗ em) e∗p ⊗ eq

= δ0,β (e∗n ⊗ em) ,

i.e. (11) holds by Prop.7. Indeed, δ0,β (◦) = [h (β) , ◦] , where

h (β) ∈ B(H) is the diagonal operator h (β) =
∑

p∈ω βp ·
(

e∗p ⊗ ep

)

.
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(ii) With the notation of (i), since N (H) is an ideal our claim is

clear if h (β) ∈ N (H) (for instance, if {βn}n∈ω ∈ l1 (ω)). For

the general case, let A ∈ N (H). Actually, let A = U ◦ |A| be the

polar decomposition of A and {ρn}n∈ω the sequence of eigenvalues

of |A| associated to an orthonormal basis e = {en}n∈ω . Since

|A| =
∑

n∈ω

ρn · (e∗n ⊗ en) in S(H), we get

δ0,β(|A|) =
∑

n∈ω

ρn · δ0,β (e∗n ⊗ en) = 0

as follows by Prop. 14. Consequently we see that

δ0,β(A) = [h (β) , U ◦ |A|]

= [h (β) , U ] ◦ |A| + U ◦ [h (β) , |A|] = [h (β) , U ] ◦ |A| . (12)

But for all S, T ∈ B(H) we have ‖SAT‖1 ≤ ‖S‖ ‖A‖1 ‖T‖ (cf.

[9], §3.34 (xi), p. 133). Accordingly we obtain

‖δ0,β(A)‖1 ≤ ‖[h (β) , U ]‖ · ‖A‖1 ≤ 2 ‖h (β)‖ · ‖A‖1

and ‖h (β)‖ = supn∈ω |βn| < ∞, i.e. δ0,β |N (H) ∈ D(N (H)).

Proposition 16. Let α be a nearly-inner matrix with null diagonal.

Given an orthonormal basis e = {en}n∈ω of H and A ∈ S(H) then

δα,0 (A) =
∑

p∈ω

[

e∗p ⊗ e (αp) , A
]

. (13)

Proof. By Prop. 7, (7) we have

δα,0 (A) =
∑

n,m∈ω

∑

p∈ω

(〈Aen, ep〉 αm,p − αp,n 〈Aep, em〉) · e
∗
n ⊗ em. (14)

Hence, if A belongs to the finite linear span of {e∗n ⊗ em}n,m∈ω by (14)

we obtain that

δα,0 (A) =
∑

p∈ω

{

(A∗ep)
∗ ⊗ e (αp) − e∗p ⊗ Ae (αp)

}

. (15)

Since {e∗n ⊗ em}n,m∈ω is a basis of the complete space S(H) and δα,0 ∈

B(S(H)) then (15) holds for all A ∈ S(H). Now, it is straightforward to

see that each summand in (15) defines a bounded derivation on S(H).

Indeed, those derivations are all inner, if p ∈ ω is

(A∗ep)
∗ ⊗ e (αp) − e∗p ⊗ Ae (αp) =

[

e∗p ⊗ e (αp) , A
]

and we get (13).
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Example 17. Let H = l2 (N) and let α be the nearly-inner matrix so

that αn,m is 0 or 1, according as m 6= n + 1 or m = n + 1 respectively.

On identifying e∗0 with the zero form on H then α induces the bounded

derivation

δα,0 (A) =
∑

n≥1,m≥1

〈

A, e∗n ⊗ em+1 − e∗n−1 ⊗ em

〉

2
· e∗n ⊗ em

defined for A ∈ S(H). Let us assume that δα,0 is inner, say δα,0 (◦) =

[C, ◦] for same C ∈ S(H). So, if r, s ∈ N we get

[C, e∗r ⊗ es] = e∗r ⊗ Ces − (C∗er)
∗ ⊗ es (16)

and

δα,0 (e∗r ⊗ es) =

{

−e∗r+1 ⊗ e1 if s = 1,

e∗r ⊗ es−1 − e∗r+1 ⊗ es if s > 1.
(17)

From (16) and (17), if r ≥ 1 and s > 1 we deduce that

[C, e∗r ⊗ es] (er) = Ces − 〈Cer, er〉 · es = es−1.

Hence if r 6= s is 〈Ces, er〉 = δs−1
r . Thus {〈Ces, er〉}s,r∈N

becomes not

square summable, which contradicts Prop. 5. So δα,0 is not inner, al-

though it is realized as a generalized series of inner derivations as stated

in Prop. 16.
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[6] Dieudonné, J.: Treatyse on analysis. Volume 2. Acad. Press Inc., London, (1976).

[7] Gel´fand, I. M. & Vilenkin, N.: Generalized Functions. Volume 4, Academic

Press, USA, (1964).

[8] Kadison, R. V. & Ringrose, J. R.: Fundamentals of the theory of operator alge-

bras. Volumes 1 and 2. Graduate Studies in Math., 15/16, AMS, (1997).

[9] Peña, C.: Sobre análisis funcional, variable compleja, topoloǵıa, álgebra y teoŕıa
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