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Abstract. New algorithms for numerical continuation of Cauchy

problem solution for different forms of DAEs, and results of their imple-

mentations are presented.

1. Introduction

Differential-algebraic equations (DAEs) differ from other problems in

solutions given by smooth and continuous one-parametric sets. They

combine specifics of the nonlinear algebraic or transcendental equations

with ordinary differential ones in the normal form.

The first use of the parametric continuation idea for solution to non-

linear finite dimensional equations appears to be due to M. Lahaye [5, 6]

(1934). Another formulation of the continuation method was given by

D. Davidenko [2, 3] (1953). He was apparently the first who realized

the process of solution continuation as a process of moving, and applied

adequate mathematical apparatus of differential equations to it. The

following development of this method was presented in [8]. There was

raised a problem of choosing the best continuation parameter in it. It
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was found out that such a parameter was the arc length of the solution

curve of the Cauchy Problem for a system of DAEs.

We consider the Cauchy problem for a system of DAEs

{

F (y, ẏ, x, t) = 0, y(t0) = y0,

G(y, x, t) = 0, x(t0) = x0,
(1)

where y(t) = (y1(t), . . . , yn(t))T , x(t) = (x1(t), . . . , xm(t))T , F =

(F1, . . . , Fn)T , G = (G1, . . . , Gm)T , t ∈ R
1, y0 = (y10, . . . , yn0)

T ,

x0 = (x10, . . . , xm0)
T , ẏ =

dy
dt

=
(

dy1

dt
, . . . ,

dyn

dt

)T

.

The vectors y0, x0 and value t0 must be consistent, i.e., satisfy the

system of equations G(y0, x0, t0) = 0, and a solution of (1) exists and

unique on some interval containing t0.

The method of solution continuation with respect to a parameter [8]

for the problem (1) can described as follows. The integral of the problem

(1)

f(y, x, t) = 0, f(y0, x0, t0) = 0, f = (f1, . . . , fn+m)T (2)

specify a unique smooth integral curve K in the (n+m+1)-dimensional

Euclidean space R
n+m+1. The process of its construction may by viewed

as the process of continuation of the solution y = y(t), x = x(t) with

respect to the parameter t. Such approach brings us the problem of

choosing the best parameter of solution continuation of the system (2)

and, hence, the best argument of problem (1).

We will introduce the best argument locally, i.e., in a small neighbor-

hood of each point of the integral curve K. To find the best argument

we introduce in the neighborhood of the point under consideration a

parameter µ such that

dµ = αidyi + βjdxj + γdt, i = 1, n, j = 1, m. (3)

Here αi, βj, γ are components of the unit vector considered above

α = (α1, . . . , αn, β1, . . . , βm, γ)
T ∈ Rn+m+1 which specifies the

direction with respect to which the argument µ is measured. Hereafter

the summation in products with respect to repeating indexes within given

ranges is assumed.

The functions yi(µ), xj(µ), t(µ) are assumed to be differentiable. Di-

viding equation (3) by dµ and differentiating the first of relations (2)

with respect to µ, we obtain the following continuation equations for the
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problem (1)

αiyi,µ + βjxj,µ + γt,µ = 1,

f,yi
yi,µ + f,xj

xj,µ + f,t t,µ = 0.
(4)

Hereafter yi,µ = dyi/dµ, f,yi
= ∂f/∂yi, . . .

However, such approach is not constructive since integral (2) is un-

known until problem (1) is solved. In this work we describe a construc-

tive algorithm for numerical continuation of Cauchy problem solution for

different forms of DAEs. The paper is organized as follows. In Section 2 a

way to obtain the continuation equations is studied and the choice of the

best argument is investigated. The sections 3,4 present an algorithm for

numerical solution of explicit differential-algebraic equations and implicit

ordinary differential equations with respect to the best argument. For

the implicit DAEs two methods of numerical solution are presented in

Section 5. The numerical results are shown in Section 6. The conclusions

are given in Section 7.

2. The choice of the best argument

The continuation equations can be obtained in another way. Let us

linearize the vector function F with respect to ẏi in a neighborhood of

a certain value ẏi = ẏ∗i which is obtained, for example, at the previous

step of the iterative process of integration procedure. Then

F ∗ + F,∗ẏi
(ẏi − ẏ∗i ) = 0, i = 1, n.

Here the vector functions F ∗ and F,∗ẏi
are calculated at ẏi = ẏ∗i .

Taking into account the first equation of the system (4), the relations

ẏi = yi,µ/t,µ; ẏ∗i = y∗i,µ/t,
∗

µ, and differentiating the vector function G with

respect to µ, we arrive at the continuation equations:

αiyi,µ + βjxj,µ + γt,µ = 1,

t,∗µ F,
∗

ẏi
yi,µ +

(

F ∗t,∗µ −F,
∗

ẏi
y∗i,µ

)

t,µ = 0,

G,yi
yi,µ +G,xj

xj,µ +G,t t,µ = 0.

(5)

The integral curve for problem (1) can be constructed by integrat-

ing the system of ordinary differential equations obtained by solving the

continuation equations (5) with respect to derivatives with the initial

conditions

yi(0) = yi0, xj(0) = xj0, t(0) = t0. (6)
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We assume here that the argument µ is measured from the initial

point of the problem (1), and the system (5) is nonsingular with respect

to unknowns yi,µ, xj,µ, t,µ.

The conditionality of the system (5) depends on the choice of the

argument µ which, in turn, is determined by the vector α. It is known

[8] that the parameter that ensures the best conditionality for the system

of linear continuation equations is the arc length λ measured along the

curve of solutions of the system (2) which, in this case, is an integral curve

K for the problem (1) and the continuation parameter for the system (2)

is the argument of problem (1). The argument µ = λ which ensures the

best conditionality for the system of continuation equations (5), will be

called the best argument. Note that the value of the determinant of the

system divided by the product of the Euclidean norms of the matrix rows

is taken as the measure of conditionality. It was shown in [8] that errors

of numerical solution are minimal if the best argument is chosen.

By Kramer’s rule, the solution of the system (5) in this case can be

represented in the form

dyi

dλ
=

∆i

∆
,

dxj

dλ
=

∆n+j

∆
,

dt

dλ
=

∆n+m+1

∆
, (7)

i = 1, n, j = 1, m,

where ∆ is the determinant of the system; ∆k = (−1)k+1δk, (k =

1, n+m+1); δk is the determinant of the matrix that is obtained from

the matrix of the last n +m equations of the system by deleting its kth

column. These determinants satisfy the equation

∆2 = ∆k∆k, (k = 1, n+m+1). (8)

This equation shows that the Euclidean norm of the right hand side of

the system of ordinary differential equations (7) is always equal to one.

If the argument λ is measured from the initial point of the problem (1),

the initial conditions take the form (6).

Thus we have proved the following

Theorem. In order to formulate the Cauchy problem (1) for the sys-

tem of differential-algebraic equations with respect to the best argument,

it is necessary and sufficient to choose the arc length λ measured along

the integral curve of the problem as this argument. In this case the prob-

lem (1) is transformed into the problem (7), (6) and the right hand sides

of the problem (7) satisfy the relation (8).
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3. Explicit differential-algebraic equations

The Cauchy problem for the system of explicit DAEs is given by






dy
dt

= f(y, x, t), y(t0) = y0,

G(y, x, t) = 0, x(t0) = x0,

(9)

y : R
1 −→ R

n, x : R
1 −→ R

m, f : R
n+m+1 −→ R

n, G :

R
n+m+1 −→ R

m, G(y0, x0, t0) = 0.

This problem is a special case of the problem (1). Let us formulate

it with respect to the best argument λ assuming that functions y =

y(λ), x = x(λ), t = t(λ) are differentiable. Introduce the notation

dy

dλ
= Y,

dx

dλ
= X,

dt

dλ
= T, (10)

Y = (Y1, . . . , Yn)
T , X = (X1, . . . , Xm)T .

Differentiating the vector function G with respect to λ and taking into

account relations (10) and the definition of the best argument, let us

write the system (9) in the form


















Yi − fiT = 0,

G,yi
Yi + G,xj

Xj + G,t T = 0,

YiYi + XjXj + TT = 1,

(11)

i = 1, n, j = 1, m.

Because of the last equation, this system is nonlinear with respect to

functions Y, X, T . However, we can represent this system in linear

form in the iterative process using the solution obtained at the previous

(k−1)-th step. In order to get this representation, we rewrite the system

(11) in the form






















Y
(k)
i − fiT

(k) = 0,

G,yi
Y

(k)
i + G,xj

X
(k)
j + G,t T

(k) = 0,

Y
(k−1)
i Y

(k)
i + X

(k−1)
j X

(k)
j + T (k−1)T (k) = 1,

(12)

where k = 1, 2, . . ..

Let us denote by Z(k) = (Y (k), X(k), T (k))T a n+m+1-dimensional

vector. Because of the structure of the system (12), this vector is tan-

gential to the integral curve K of problem (9) at the point corresponding

to the kth step. Thus the last equation of the system (12) is a scalar
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product of vectors Z(k) and Z(k−1) tangential to the integral curve at kth

and (k−1)-th steps. This equation states that projection of the vector

Z(k) onto the direction of the unit vector Z (k−1) is equal to one. Replac-

ing the unknown vector Z(k) with the known vector Z(k−1) in (12), we

ensure a local choice of an argument which is close to the best one.

Clearly, the vector Z(k) which satisfies the system of linear equations

(12), in general, is not a unit vector, as it is required by the system (11).

Therefore, after finding a solution of the system (12) the obtained vector

Z(k) should be normalized:

Z∗

i
(k) =

Z
(k)
i

√

Z
(k)
j Z

(k)
j

, i, j = 1, n+m+1. (13)

This yields a solution to the system (11). Below we will omit the

asterisk in (13).

Since the initial point usually is not a limiting point with respect to t,

we can take initial approximation of the vector Z in the form

Z(0) = (0, . . . , 0, 1)T . (14)

Assuming that the argument λ is counted from the initial point of the

problem (9), the following algorithm for its solution can be proposed.

The solution of differential equations (10) satisfying the initial condi-

tions

y(0) = y0, x(0) = x0, t(0) = t0. (15)

is obtained. Right hand sides of the system (10) are determined from

the solution of the system of linear equations (12) by Gauss elimination

method. This solution is normalized by formulas (13).

Such an approach allows not only to overcome the difficulties associ-

ated with vanishing of the Jacobian G,xj
but also to solve systems (9)

in which the right hand sides f of differential equations become infinite

at some points. To overcome difficulties associated with the latter case,

it is sufficient to rewrite, where it is possible, first n equations of the

system (11) in the form QαYα − PαT = 0. Here α = 1, n, summation

with respect to this index is not performed, and functions Qα, Pα are

finite.

If the functions at the right hand side of the system of differential

equations (9) are finite, the dimension of the system (12) can be reduced
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by n, then we write this system in the form






G,xj
X

(k)
j + (G,t +G,yi

fi)T
(k) = 0,

X
(k−1)
j X

(k)
j + (1 + fifi)T

(k−1)T (k) = 1.

(16)

Given a solution to the system (16), the values Y
(k)
i are defined by

the formulas Y
(k)
i = fiT

(k). Then, the vector Z(k) should be normalized

according to (13), and the values obtained should be used as the right

hand sides for the system (10).

4. Implicit ordinary differential equations

Let us consider the problem

f(y, ẏ, t) = 0, y(t0) = y0, (17)

where f = (f1, . . . , fn)T , ẏ = dy/dt. If the Jacoby matrix ∂f/∂ẏ is not

singular then this system of implicit equations is a DAE of index zero.

We consider algorithm for numerical solution of the problem (17) with-

out its transformation to the form (9). Clearly, the problem (17) is a

particular case of problem (1). Let us formulate problem (17) in terms

of the best argument.

Let yi and t be functions of the best argument λ measured from the

initial point of problem (17). Let us introduce the notation

dyi

dλ
= Yi,

dt

dλ
= T, i = 1, n. (18)

It follows from the meaning of the best argument that the right hand

sides of these relations satisfy the equation

YiYi + T 2 = 1. (19)

We linearize the system (17) at k− 1-th step of iteration with respect

to ẏi and equation (19) with respect to functions Yi and T . Then, in

view of relations yi = Yi/T , we obtain the system of linear equations in

Y
(k)
i and T (k) at the k-th step of the iteration process







Y
(k−1)
i Y

(k)
i + T (k−1)T (k) = 1,

T (k−1)f,∗ẏi
Y

(k)
i + (f ∗T (k−1) − f,∗ẏi

Y
(k−1)
i )T (k) = 0.

(20)

Here the asterisk marks the vector functions calculated for

ẏi = Y
(k−1)
i /T (k−1).
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Whenever possible it is recommended to write the system (20) in the

form that does not include relations that tend to infinity and the terms

containing Yi and T in denominators.

If the initial point is not singular, then the value of the vector Z =

(Y1, . . . , Yn, T )T can be taken in the form

Z(0) = (0, . . . , 0, 1). (21)

Thus, the problem reduces to the integration of the system of ordinary

differential equations (18) that satisfy the initial conditions

yi(0) = yi0, t(0) = t0. (22)

The right hand sides of the system (18) are determined by the solution

of the system (20) normalized by formulas of the type (13).

Clearly, the last n equations of the system (20) determine the Newton-

Raphson procedure, thus, this system of equations should being solved

until it converges to a given accuracy ε : ‖Z (k) − Z(k−1)‖ < ε. Note

that if the system of ordinary differential equations (18) is solved by the

program PC1 [8], this condition is ensured by the predictor-corrector

method. The solution calculated at a certain step of the integration

process is taken as the initial approximation for the iteration procedure

at the next step.

Obviously, the system (20) takes the simplest form when the system of

ordinary differential equations (17) is linear with respect to the deriva-

tives ẏi, i.e., it is given by

aij(y1, . . . , yn, t)
dyj

dt
+ gi(y1, . . . , yn, t) = 0, i, j = 1, n.

It was mentioned above that, though the last equation in the system

(20) is approximate, we obtain, after normalization, the solution of the

nonlinear system






aijY
(k)
j + ai n+1T

(k) = 0,

Y
(k)
i Y

(k)
i + T (k)T (k) = 1, ai n+1 = gi,

which does not depend on Y
(k−1)
i , T (k−1).

Another algorithm can be proposed for solving the nonlinear problem

(17). This algorithm does not involve the linearization of equations but

requires an additional differentiation. Taking the relation ẏi = Yi/T into

account, let us rewrite equation (17) in the form

F (t, y1, . . . , yn, Y1, . . . , Yn, T ) = 0, F = (F1, . . . , Fn)
T , (23)
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such that, whenever possible, the terms containing Yi and T as the divi-

sors and the relations tending to infinity are eliminated.

Differentiating equations (19) and (23) with respect to λ, we obtain

the system of linear equations






F,Yi
Y ′

i + F,T T
′ = −F,yi

Yi − F,t T,

YiY
′

i + TT ′ = 0,
(24)

in the functions

dYi

dλ
= Y ′

i ,
dT

dλ
= T ′, i = 1, n. (25)

Now, the problem is to integrate the system of ordinary differential equa-

tions (18), (25) that satisfy the initial conditions (22) and the following

conditions

Yi(0) = Yi0, T (0) = T0, i = 1, n. (26)

The right hand sides of equations (25) are determined by the solution

of the linear system (24) and the initial values (26) of the functions Yi0

and T0 are obtained from the following system of equations






F (t0, y10, . . . , yn0, Y10, . . . , Yn0, T0) = 0,

Yi0Yi0 + T 2
0 = 0.

(27)

5. Implicit differential-algebraic equations

Consider implicit differential-algebraic equations defining the Cauchy

problem in the form (1), i.e.
{

F (y, ẏ, x, t) = 0, y(t0) = y0,

G(y, x, t) = 0, x(t0) = x0,
(28)

where y(t) = (y1(t), . . . , yn(t))
T , x(t) = (x1(t), . . . , xm(t))T .

By introducing new variables zi = ẏi one can transform this problem

into the explicit problem (9) in the extended space of variables. It was

shown above, however, that such an approach may result in computa-

tional difficulties.

We consider an algorithm for solving problem (28) without transfor-

mation of it to the form (9). For problem (1), or (28), we have proved

Theorem 1 which determines the best argument λ. Let us formulate the

problem with respect to this argument.

Let yi = yi(λ), xj = xj(λ), t = t(λ) be differentiable functions of the

argument λ that is counted along the integral curve from the initial point

of the Cauchy problem (28).
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Taking into account the notation (10) and the meaning of the best

argument we obtain the equations

YiYi +XjXj + T 2 = 1. (29)

Let us linearize the system (28) and the equation (29) with respect

to derivatives ẏi and quadratic terms, respectively. We also differentiate

the vector function G with respect to λ. Thus, we obtain the system of

equations that are linear with respect to the functions Yi, Xj, T calculated

at the k–th step of the iteration process






















T (k−1)f,∗ẏi
Y

(k)
i +

(

f ∗T (k−1) − f,∗ẏi
Y

(k−1)
i

)

T (k) = 0,

G,yi
Y

(k)
i +G,xj

X
(k)
j +G,t T

(k) = 0,

Y
(k−1)
i Y

(k)
i +X

(k−1)
j X

(k)
j + T (k−1)T (k) = 1.

(30)

Here the asterisk marks the functions calculated at the previous step,

i.e., for ẏi = Y
(k−1)
i /T (k−1).

If the initial point is not a singular point, initial value of the vector

Z = (Y, X, T )T can be taken in the form (14). Now the problem is to

integrate a system of ordinary differential equations (10) the right hand

sides of which are obtained by solving the system of linear equations

(30) with the help of the Newton – Raphson method followed by the

normalization (13) of the solution. Since the argument λ is measured

from the initial point of problem (28), the initial conditions for the system

(10) have the form

yi(0) = yi0, xj(0) = xj0, t(0) = t0, i = 1, n, j = 1, m. (31)

Clearly, if the system (28) is linear with respect to the derivatives ẏi,

then the solution of (30), which is obtained by means of this approach,

does not require iterative improvement, does not depend on the solution

found at the previous step, and satisfies the relation (29).

This algorithm was implemented in the DA1ILN program [8] in which

a system of differential equations is integrated by PC1 program [8] and

the system of linear equations is solved by the Gauss elimination method.

Note that, when equations of problems (17), or (28), are nonlinear

with respect to the derivatives ẏi, the procedure of prediction-correction

method in PC1 program provides more precise iterative determination

of the solution of the linearized systems (20).

Another algorithm for solving problem (28) is as follows. Taking into

account the relations ẏi = Yi/T and following the rules formulated in the
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previous section, we rewrite the first vector equation of the problem in

the form

F (t, y1, . . . , yn, x1, . . . , xm, Y1, . . . , Yn, T ) = 0. (32)

Let us differentiate equations (29) and (32) with respect to λ once and

with respect to the vector function G of the system (28) twice. Then

we obtain the following system of linear equations for the derivatives of

Yi, Xj and T






F,Yi
Y ′

i + F,T T
′ = −(F,yi

Yi + F,xj
Xj + F,t T ),

G,yi
Y ′

i +G,xj
X ′

j +G,t T
′ = −(G′,yi

Yi +G′,xj
Xj +G′,t T ),

YiY
′

i +XjX
′

j + TT ′ = 0.

(33)

Here prime denotes differentiation with respect to λ:

dYi

dλ
= Y ′

i ,
dXj

dλ
= X ′

j,
dT

dλ
= T ′. (34)

Thus, the problem is to solve the system of ordinary differential equa-

tions (10), (34) satisfying initial conditions (31) and the following condi-

tions:

Yi(0) = Yi0, Xj(0) = Xj0, T (0) = T0, (35)

i = 1, n, j = 1, m.

The right hand sides of equations (34) satisfy the system of linear

equations (33), and initial conditions (35) are determined as solutions of

nonlinear equations


















F (t0, y10, . . . , yn0, x10, . . . , xm0, Y10, . . . , Yn0, T0) = 0,

G,0yi
Yi0 +G,0xj

Xj0 +G,0t T0 = 0,

Yi0Yi0 +Xj0Xj0 + T 2
0 = 1,

where the superscript zero in the vector function G means that the de-

rivative is calculated at the initial point of problem (28).

6. Numerical examples

Example 1. We consider numerical integration of the implicit system

of Euler’s kinematic equations [8]




ω1

ω2

ω3



 =





sin θ sinϕ 0 cosϕ

sin θ cosϕ 0 − sinϕ

cos θ 1 0









ψ,t
ϕ,t
θ,t



 .
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The matrix of the system tends to be singular in neighborhood of

the value θ = 0, and solving this system by DE1ILN program [8] with

conditions ω1 = −100, ω2 = 1, ω3 = 0, ψ = ϕ = t = 0, θ = π/100 fails.

Performing the λ-transformation of the system, we write it as follows:









sin θ sinϕ 0 cosϕ −ω1

sin θ cosϕ 0 − sinϕ −ω2

cos θ 1 0 −ω3

z1 z2 z3 z4

















ψ,λ
ϕ,λ
θ,λ
t,λ









=









0

0

0

1









.

This system of equations is solved successfully for conditions ω1 =

−100, ω2 = 1, ω3 = 0, ψ = ϕ = t = 0, θ = π/100 , as well as for the

latter condition θ = 0, if the initial value of vector Z is Z (0) = (1, 0, 0, 0).

Note that in the same way one can solve the following system of kine-

matic equations for airplane angles [7]





sinϑ 0 1

cos ϑ cos γ sin γ 0

− cosϑ sin γ cos γ 0









ψ,t
ϑ,t
γ,t



 =





ω1

ω2

ω3



 ,

where ψ is the angle of yaw, ϑ is the pitch angle, and γ is the angle of

bank.

The matrix of this system becomes singular at ϑ = π/2. Performing

the λ-transformation, we write the latter system as follows:









sin ϑ 0 1 −ω1

cosϑ cos γ sin γ 0 −ω2

− cosϑ sin γ cos γ 0 −ω3

z1 z2 z3 z4

















ψ,t
ϑ,t
γ,t
t,λ









=









0

0

0

1









.

Example 2. The initial problem on the segment t ∈ [0, 1], for linear

DAEs A(t)ẋ+B(t)x = f(t) with

A(t) =

(

1 t

1 t

)

, B(t) =

(

−1 0

0 −1

)

, f(t) =

(

(t+ 1)2

(t+ 1)2 − 1

)

,

and x(0) = (1; 2)T . The exact solution of the problem is

x0(t) =
(

(t+ 1)2, (t+ 1)2 + 1
)T
.

This system has the singular matrix A(t) and the differentiation index 1.

This example was considered in [1] and [4].
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We used the method of solution continuation with respect to a param-

eter. The system of linear equations (12) in this case takes the form






Y (k) + tX (k) + (−y − (t+ 1)2)T (k) = 0,

Y (k) + −X (k) = 0,

Y (k−1)Y (k) + X(k−1)X(k) + T (k−1)T (k) = 1.

The linear system (11) was solved by the Gauss method and the mod-

ified Euler method was used to solve the system of differential equations

(10). To obtain inaccuracy 0,005 5 iterations were applied.

Conclusion. The method of solution continuation with respect to

a parameter can be applied to a great number of equations. The so-

lutions of ordinary differential equations and differential-algebraic equa-

tions given in the present paper demonstrate that using this method one

can overcome difficulties which appear when some of the famous numeri-

cal methods are used, and obtain enough high accuracy of calculation. In

particular, by this method one can solve differential-algebraic equations

of index 1 and higher.
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