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Abstract. The method of normal splines is specified for the initial

and boundary-value problems for systems of linear ordinary differential

equations of second order, possible being stiff or unresolved with respect

to derivatives (differential-algebraic equations), without their reduction

to first order ones. The algorithm of nonuniform collocation grid cre-

ation for stiff problems is described. Results of numerical solution to test

problems, including linear mathematical physics boundary-value prob-

lem of the second order are given. Numerical schemes for the last case

are based on the method of lines.

1. Introduction

Many of mechanical and physical problems are initially modeled as

systems of ordinary differential equations (ODEs) of second order that

can be stiff or unresolved with respect to derivatives. The last class

of ODEs is named implicit or differential-algebraic equations (DAEs).

Systems of second order can be reduced to ones of first order but such

transfer leads to increasing of the system dimension. Specifics of systems
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of higher order can be used for creation of more effective special numerical

methods (see, for example, [18]).

The problem of numerical methods’ construction for singular DAEs

(with arbitrary degenerate main part) is considered in literature as open

[13]. We know only theoretical investigations of such DAEs [16]. How-

ever, we note, there exists the parameterization method [5], [8], [9] that

can be applied for rather wide class of arbitrary degenerate nonlinear

ODEs and optimal control problems. The method of normal spline-

collocation (NS) presented below should be more effective in linear cases.

The NS method for linear ODEs and integro-differential equations

(IDEs) of first order, including implicit systems, has been created by

V.Gorbunov in [6], [7]. The theoretical basis of the NS method is the

classical functional analysis results: the embedding theorem of Sobolev

spaces in the Chebyshev ones [19], and Riesz’s theorem [2] of canonical

representation of linear continuous functionals in Hilbert spaces as inner

products. The last problem is the key one for effective NS algorithms

construction.

The NS method consists of minimization of some Hilbert-Sobolev (HS)

norm on the set of collocation system solutions. This set is a finite di-

mensional subset of the used solution space. Differently from the classical

collocation methods [15] here the basis system is not entered a priori, but

it is constructed according to the chosen norm and to coefficients of the

solving problem. The base functions are canonical images of point-wise

linear continuous functionals in the HS space (presented as inner prod-

uct). To find this images it is necessary to construct the corresponding

reproducing kernel [1] defined by the norm.

The NS method on the base of creation of adaptive nonuniform grids

had appeared effective for stiff problems [6], and for linear DAEs [10],

[11]. Significant examples of its application to stiff and singular problems

for ODEs and IDEs, including DAEs with variable degeneration of the

main part, were presented in these works. Also the NS yields natural

way for solving ODEs of arbitrary order provided that the problem is

posed in a Sobolev space with norm differentiation factor more than the

order of derivatives in the resolving equations.

The main purpose of this work is to specify the computational scheme

of the NS method for linear ODEs of second order. It particularly al-

lows applying this method for linear (or linearized) partial differential

equations (PDEs) of second order (possible singular) on the base of some

partial discretization.
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In the second section the initial/boundary-values problem for the com-

mon second order linear ODEs is posed in the HS space of sufficiently

smooth functions. The matrix under second derivatives can be arbitrary

degenerate. The third section is devoted to clarification of the problem

of canonical representation of linear point-wise functionals in the used

space. Such a problem arises at the NS’s algorithm developing. In the

forth section the NS scheme for second order ODEs is presented. The

fifth section is devoted to presentation of the algorithm of adaptive grids

creation for stiff systems. Some test numerical examples are given in

the last two sections. In the sixth one two singular and stiff problems

for scalar ODEs are resolved by the NS, and in the seventh our method

is applied for a boundary-value problem (BVP) for a singular parabolic

type equation in combination with the method of lines. Presented results

were partially published in [20], [12].

2. Problem statement

Let us consider the system of implicit linear differential equations of

second order

A(t)ẍ(t) +B(t)ẋ(t) + C(t)x(t) = f(t), 0 ≤ t ≤ 1, (1)

with conditions

D0x(0) + E0ẋ(0) = g0, D1x(1) + E1ẋ(1) = g1. (2)

Here x, f, g0, g1 ∈ Rn, A(t), B(t), C(t), D0, E0, D1, E1 are square n-order

matrices. The function f(t) and the matrix coefficients are continuous

and have so many derivatives as it is necessary to guarantee appropriate

smoothness of the solution x(t) that exists in assumption and belongs to

the HS space W l
2,n[0, 1] with norm
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where x
(r)
i (t) are derivatives of the order r, and the highest index of

derivatives l ≥ 3. Also notations ẋi = x
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i will be used below.
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These norm and inner product were introduced in [6].
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The matrices of the system (1) may be arbitrary degenerate. In gen-

eral case nontrivial degeneracy of the matrix A(t) generates obstacles for

applications of classical numerical methods to solving initial/boundary-

value problems for system (1). Such systems are named DAEs.

The complexity of a DAE is determined by a possibility of its trans-

formation to the regular normal form with the help of differentiation and

algebraic transformations. The minimal number of required differenti-

ations in such a transformation is called the differentiation index (DI)

of the DAE [13]. There are special methods [13], [3] for solving DAEs

having a finite DI. The matrix at the main part of such a system should

have a constant rank.

However, not any DAE can be transformed to the normal form of ODE.

Correspondingly, not any DAE has a finite DI. The simplest example such

a DAE is

tẋ(t) + x(t) = f(t), 0 ≤ t ≤ 1.

The known numerical methods for solving singular ODEs and DAEs [3],

[4], [13], [17], [18] cannot be applied for the initial value problem for this

equation with condition in t = 0. The assumption of arbitrary degeneracy

of the main part of system (1) covers DAEs of any DI, and singular DAEs

not having a finite DI.

3. The problem of normal splines for second order ODEs

The NS method is a collocation type one. Introduce some grid

0 ≤ t1 < t2 < ... < tm ≤ 1, (5)

and consider the collocation system

A(tk)ẍ(tk) +B(tk)ẋ(tk) + C(tk)x(tk) = f(tk), k = 1, . . . , m. (6)

For this system we pose the problem of the normal solution in norm

(3). In the case of the compatible system (1), (2) the solution exists and

is unique. It is clarified below, that this fact is the consequence of the

embedding theorem of Sobolev type mentioned above.
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Denote the left parts of the system (6), (2) as

lik(x) =
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aij(tk)ẍj(tk) + bij(tk)ẋj(tk) + cij(tk)xj(tk), 1 ≤ k ≤ m;

n
∑

j=1

d1
ijxj(1) + e1

ijẋj(1), k = m+ 1;

(7)

where 1 ≤ i ≤ n. Respectively, the system (6), (2) takes the form

li0(x) = g0
i , lik(x) = fi(tk), li(m+1)(x) = g1

i , 1 ≤ i ≤ n, 1 ≤ k ≤ m. (8)

In [6] it has been shown that the functions (7) may be considered

as composite linear continuous functionals in the vector-function space

W l
2,n[0, 1], composed as linear combinations of simple point-wise func-

tionals (values of coordinates xi(t), and their first and second derivatives

in collocation and boundary points t = tk) in the space W l
2,1[0, 1]. Re-

spectively, each equation of the system (8) defines a hyperplane and the

system solution set (an intersection of the hyperplanes) will be nonempty,

convex and closed. The minimal norm element xm of this intersection

exists and unique [2]. It has been named [7] the normal spline.

Also in [6] it has been shown that the sequence of the normal splines

xm converges to a normal solution x0 in the norm (3) when the maximal

step of the grid (5) tends to zero. It also provides the approximation

of the solution derivatives up to the (l − 1)-th order. We note that the

providing of the last property is a special nontrivial problem in the theory

of difference schemes for ODEs [17].

4. Pointwise functionals and reproducing kernel

As it is mentioned in introduction the key problem in the NS method is

the problem of canonical representation of linear continuous functionals

in HS spaces W l
2,n[0, 1], i.e. as the inner product (4). At implementation

of the NS method for ODEs point-wise functionals are defined as the

values of a seeking function coordinates xi(t) and their derivatives x
(r)
i (t)

in a given point τ

li,τ (x) = x
(r)
i (τ), r = 0, 1, . . . , (9)

arise. Such functionals have no canonical form. They define in the NS

schemes composite functionals (7) as linear combinations. In the case of

IDEs non-canonical integral functionals also arise [6], [11].
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It can be shown, like in the case of Banach-Sobolev spaces (see [19]),

that the convergence in W l
2,n[0, 1] implies the convergence in Chebyshev

spaces C l−1[0, 1], particularly, uniform convergence if l ≥ 1. Correspond-

ingly, the defined in (9) functionals li,τ (x) are linear continuous ones in

W l
2,n[0, 1] while 0 ≤ r ≤ l − 1, but their definition is not canonical. Ac-

cording to Riesz’s theorem [2] there exists an element hi,τ ∈ W l
2,n[0, 1]

such that the identity

li,τ(x) = 〈hi,τ , x〉(n), ∀x ∈ W l
2,n, (10)

holds. Here the inner product 〈·, ·〉(n) defined in (4).

In [6] (see also [7]) it has been shown that the problem of canonical

representation of point-wise functionals (10) (as well as integral function-

als) could be reduced to finding a Green function of some BVP. There

this problem has been resolved for IDEs of first order under l ∈ {1, 2}.

In terms of functional analysis the canonical representation of linear

continuous functionals in HS spaces are equivalent to construction of the

reproducing kernel corresponding to the space norm. Remind [1], that

the reproducing kernel (RK) is a function G(s, t) such that

1) G(·, t) ∈ W l
2,1[0, 1] for any t ∈ [0, 1];

2) xi(t) = 〈G(·, t), xi〉(1) for any xi(·) ∈ W l
2,1[0, 1] and any t ∈ [0, 1].

In [10] a general RK in HS spaces W l
2,n[0, 1] with arbitrary integer l

has been created. There it has been shown (V.Petrischev) that the RK

for the norm (3) was defined by the formula

G(s, t) =


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i!
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)
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G(t, s), 0 ≤ t < s ≤ 1.

(11)

The resolution of the RK construction problem for spaces of high

smoothness allows to solve a high-order systems without their reduction

to the first order ones.

5. The scheme of normal splines for second order ODEs

As it is mentioned above, according to the Riesz theorem a linear

continuous functional can be represented as an inner product (4), i.e.

lik(x) =
〈

hµ(i,k), x
〉

(n)
=

n
∑

j=1

〈

h
µ(i,k)
j , xj

〉

(1)
. (12)

Here µ(i, k) = nk + i, 1 ≤ i ≤ n, 0 ≤ k ≤ m + 1.

Elements hµ
j of the representation (12) may be found with the help of

RK G(s, t) of the space of scalar functions W l
2,1[0, 1]. According to the
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presented above definition of RK the equalities xj(tk) = 〈G(·, tk), xj〉(1),

ẋj(tk) = 〈G′

t(·, tk), xj〉(1), and ẍj(tk) = 〈G′′

tt(·, tk), xj〉(1) hold, hence

h
µ(i,k)
j (s) =
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d0
ijG(s, 0) + e0

ijG
′

t(s, 0), k = 0;

aij(tk)G
′′
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′
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1 ≤ k ≤ m;

d1
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(13)

By virtue of (7) and (12) system (8) is represented as

〈hµ, x〉(n) = f̄µ, f̄µ =







g0
i , k = 0;

fi(tk), 1 ≤ k ≤ m;

g1
i , k = m + 1;

(14)

According to the generalized Lagrange method, the normal solution of

the system of linear equations (14) can be written in the form

xm(s) =

(m+2)n
∑

µ=1

uµh
µ(s). (15)

Coefficients uµ are defined by the system

(m+2)n
∑

ν=1

gµνuν = f̄µ, 1 ≤ µ ≤ (m + 2)n, (16)

where gµν are the coefficients of the Gram matrix of the system {hµ}, i.e.

gµν = 〈hµ, hν〉(n) =

n
∑

i=1

〈hµ
i , h

ν
i 〉(1). (17)

Thus the realization of the NS method with given partitioning (5) is

reduced to the Gram matrix coefficients formation according to (17), to

solving the system of linear equation (16) with symmetric, positive de-

fined (as a rule) matrix {gµν}, and to the creation of the solution xm(s)

at arbitrary point s ∈ [0, 1] according to (13), (15). The different strate-

gies of the collocation grids improvement are based on the theoretical

estimate of the NS method precision [7] as it is shown below.

Effectiveness of the described scheme of the NS method can be essen-

tially increased in case of the initial problem for the equation (1) when

the condition (2) has the form x(0) = g0, ẋ(0) = g1. In this case the

problem can be solved on a sequence of partial adjoining subintervals

with a small number of nodes (up to two) on each of them. By such a

way total number of calculations ensuring the required precision will be

essentially reduced. Corresponding algorithm is described below.
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6. The adaptive grid construction

Consider a discrepancy of the equation (1) on the function xm:

ϕ(t; t1, . . . , tm) = A(t)ẍm(t) +B(t)ẋm(t) + C(t)xm(t) − f(t). (18)

In the book [7] the following evaluation of deviation of the spline xm

from the exact solution x0 has been obtained:
∥

∥xm − x0
∥

∥

l,n
≤ ĉ ‖ϕ‖(l−2),n . (19)

Here ĉ is a constant that is depended only on the coefficients of the sys-

tem (1), (2). The index l−2 corresponds to the inclusion ϕ ∈ W l−2
2,n [0, 1].

The evaluation (19) opens a way for creation of the optimal nonuniform

grids under given number of nodes m, that is very important for solution

of stiff problems. Denote

ψl−2(t1, . . . , tm) = ‖ϕ(·; t1, . . . , tm)‖2
(l−2),n. (20)

The grid (5) providing the minimum of the function ψl−2(t1, . . . , tm) is

named optimal.

Accordingly, a strategy of creation of the optimal grid with fixed nodes

number is based on minimization of the function ψl−2(t1, . . . , tm) with the

constrains (5). If the system (1),(2) has a finite differentiation index, it

is equivalent to some normal system [13]. Such a system is regular, its

solution is a smooth function of nodes tk, and smoothness of function ψl−2

is determined by the order of the norm derivative l and by properties of

the function G(s, t). The last function has continuous derivatives up to

the order 2l− 2. As it has been shown in [20] (for first order systems) it

provides for l ≥ 3 the differentiability of the function ψl−2 with respect to

tk. In this case the appropriate analytic formulas for partial derivatives

have been obtained. We omit them because of their complexity. In

general case one may use some direct method (e.g. Hooke-Jeeves [14])

for minimization the function ψl−2.

Another, more simpler and more effective scheme of the grid improve-

ment is the next. The convergence in the norm ‖·‖l,n implies the uniform

convergence, therefore we should pass to better grids decreasing the value

‖ϕ‖(l−2),n during calculations.

In the collocation nodes tk the equalities ϕ(tk; t1, . . . , tm)) = 0 hold,

hence an approximate minimization of the discrepancy norm ‖ϕ‖ may

be achieved by adding nodes into subintervals with the greatest values

of |ϕ(t; t1, . . . , tm))| between nodes. The detailed algorithm of the step-

by-step concentration of the grids has been offered in [7]. The process
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of creation of such an adaptive condensing grid has two parameters: the

initial number of nodes and the number of adding nodes on each step.

Consider an initial problem for the equation (1), when condition (2)

has the form x(0) = g0, ẋ(0) = g1. In this case an effective scheme of the

NS method is the sequential normal spline creation on partial adjoining

subintervals with a small number of nodes (up to two). The effectiveness

is achieved as a result of reducing of the Gram matrix dimension since

the calculation of its elements and solving the linear equation system are

the most time-consuming parts of the NS construction.

If partial interval is sufficiently small we can create the spline on two

boundary nodes of segments {tk−1, tk} on each step. The initial values

on the second and following subintervals are defined as final values of

the created spline on the previous subinterval. The right nodes tk in the

created sequence of segments can be chosen so that to provide required

precision of the solution.

It is natural to expect, that sequential suppression of a discrepancy

(18) in the norms of W l
2,n(tk−1, tk) can be obtained by passing to the

simpler norms of L2,n(tk−1, tk). It means the suppression of the functions

ψk
0(tk−1, tk) =

n
∑

i=1

tk
∫

tk−1

(ϕi(s; tk−1, tk))
2 ds. (21)

Introduce an admissible level ε0 of the value ψk
0(t1, . . . , tm) and define

values

E(tk−1, tk) =
√

ψk
0(tk−1, tk)/(tk − tk−1).

This values can be estimated by usage of some quadrature formula for

integrals in (21). It is easy to see that the condition

ψ0(t1, . . . , tm) ≤ ε0 (22)

will hold provided

E(tk−1, tk) ≤ ε0 (23)

for all k = 1, . . . , m.

The algorithm of creation of adaptive condensed grid is the next. De-

fine the maximum level of the grid step h.

(1) k := 1, t0 := 0.

(2) tk := min{tk−1 + h, 1}.

(3) To construct the NS for the Cauchy problem (1) on (tk−1, tk).

(4) If (23) holds then go to 6.

(5) tk := (tk + tk−1)/2, go to 3.

(6) If tk = 1, then end, else tk−1 := tk.
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(7) k := k + 1, go to 2.

If the estimation (22) will not be obtained for acceptable number of

tk diminution, then one can pass to the method of the grid condensation

described above.

7. Numerical solution to stiff equations

In this section we demonstrate the problem of solving stiff equations

of second order by the NS method on two test examples.

Example 1. Consider the initial problem of second order

a(t)ẍ(t) + b(t)ẋ(t) + c(t)x(t) = f(t), 0 ≤ t ≤ 1,

x(0) = g0, ẋ(0) = g1,

where a(t) = sin(10t), b(t) = 10cos(10t), c(s) = −1. The function f(t)

corresponds to the solution x(t) = te−t + e−kt, k > 1.

The coefficients a(t), b(t) have zero values on the interval [0, 1] and the

solution is stiff under large k. The variable degeneracy of the coefficients

makes difficulties for application of the known methods of solution to

stiff and differential-algebraic equations [3], [4], [13], [18], except for the

parameterization method [5], [8]. The last one can be applied for arbi-

trary degenerate nonlinear problems, however, the NS method should be

more effective in linear cases.

The NS method allows different numerical schemes. In [11] this prob-

lem had been solved by reducing the initial second order equation to the

equivalent integro-differential equation of first order. Such a way in some

cases is more effective with respect to the transformation of the initial

equation to the normal system of two equations of first order [6].

Table 1 presents some results for two variants of the NS method: the

sequential scheme with eight nodes on each subinterval, and the scheme

with uniform grid. The problem has been solved in the space W 3
2 with

ε0 = 0.01 in the sequential scheme. The last two column presents devia-

tions of obtained normal splines from the exact solution on the doubled

grids.

Table 1

k m sequential uniform

10 8*4=32 3.43e-03 1.16e-02

100 8*14=112 1.38e-03 2.10-01

1000 8*42=336 8.58e-04 4.47e+00
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Comparison of these results with ones of [11] shows approximate equiv-

alence of the new scheme and the integro-differential reduction, however

the problem of canonical transformation and Gram matrix formation in

the approach presented here is easier.

Example 2. Consider the BVP arising at the solution to steady-

state heat conductivity equations with the property of central spherical

symmetry [17]:

(ε

t

)2 d

dt

(

t2
dx

dt

)

+ c(t)x(t) = f(t), t ∈ (0, 1),

ẋ(0) = 0, d1x(1) + e1εẋ(1) = g1, ε ∈ (0, 1].

Parameters of this singular problem with degenerate coefficient (ε/t)2

at the higher derivative are the next: c(t) = (1 + 0.1t2), d1 = 5, g1 = 1,

e1 = 0. Function f(t) corresponds to the solution

x(t) = −1 + 6/5sh(t/ε)/(tsh(1/ε)) + 10t2(1 − t)2.

This solution has initial layers with increasing sharpness when param-

eter ε vanishes.

It is accepted to characterize quality of numerical methods for such

problems by notions of classical and uniform convergence of approxima-

tions with respect to small parameter ε [4]. Following to [17] we use here

the next convergence measures. Let x0
ε is the precise solution to initial

problem, xm
ε is the normal spline considered on uniform grid with step

h ∈ H ≡ {h0/2
j|j = 0, 1, . . . , k}, and ε ∈ E ≡ {ε0/2

j|j = 0, 1, . . . , 8}.

Denote

δ(h, ε) = max|x0
ε − xm

ε |, ∆(h) ≡ max{δ(h, ε) : ε ∈ E}.

Here the difference is calculated on the condensed grid (in ten times).

The experimental orders p of uniform convergence and p0 of classical one

are defined by the formulas

p =
1

ln(2)
ln

{

1

k

k−1
∑

j=0

[∆(h0/2
j)/∆(h0/2

j+1)]

}

,

p0 =
1

ln(2)
ln

{

1

k

k−1
∑

j=0

[δ(h0/2
j, ε0)/δ(h0/2

j+1, ε0)]

}

for h0 = 1/8, ε0 = 1/2, k = 7.

These characteristics of the NS method as well as ones from [17] are

presented in table 2.
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Table 2

Method x(t) ẋ(t)

p p0 p p0

[17] 1,04 2 0,61 1,97

NS 2,33 1,29 1,55 0,92

One can note that NS method has advantage with respect to method

[17] in uniform convergence and conversely in classical one.

This problem also has been solved on adaptive condensed grid. The

start grid had 8 points and on each step 6 points has been added on

the interval with maximum discrepancy. Corresponding deviation of the

normal spline xm
ε from the precise solution x0

ε is presented in table 3.

The last row marked by (*) corresponds to the uniform grid.

Table 3

m\ ε 0.015625 0.0078125 0.00390625 0.001953125

8 3.54e+00 1.55e+01 6.36e+01 2.56e+02

14 4.06e-02 2.43e-01 1.37e+00 6.63e+00

20 9.81e-03 2.59e-02 1.58e-02 3.88e-02

26 8.89e-03 4.60e-03 3.41e-03 3.81e-02

32 8.01e-03 4.02e-03 2.92e-03 2.89e-02

128* 2.66e-03 1.39e-02 8.82e-02 5,38E-01

8. The NS method for a BVP of a parabolic type equation

In this section we demonstrate the application of the NS method for

solving BVP for partial differential equations (PDE) with two variables

by the combination of the lines method (LM) with the NS. The LM

consists of discretization of one of variables and the transition from the

PDE to the system of ODEs. The last can be solved by the NS.

Consider the parabolic type differential equation with respect to func-

tion u(x, t):

x
∂u

∂t
= a2

(

x
∂2u

∂x2
+
∂u

∂x

)

+ f(x, t), (24)

in the unit square Ω = {x, t : 0 ≤ x, t ≤ 1} with initial and boundary

conditions:

u(x, 0) = ϕ(x), u(0, t) = ψ0(t), u(1, t) = ψ1(t). (25)
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Note, that the equation (24) is singular. Let us assume, the functions

f(x, t), ϕ(x), ψ0(t), ψ1(t) are sufficiently smooth, and the singular BVP

(24), (25) is solvable in the space W 3
2 (Ω).

There are two version of the LM application to PDEs with two vari-

ables (x, t) which are defined by the choice of the discretized variable.

Since the presented above NS method is directly applicable to equations

of second order then it is seemed efficient to discretize the equation (24)

on t - variable.

Introduce a uniform grid on t - variable with the step h = 1/n and

nodes ti = ih, i = 0, n. Define the x-variable functions vi(x) = u(x, ti).

In view of the first condition (25),

v0(x) = ϕ0(x) (26)

the approximating problem can be stated with respect to n-vector func-

tion

v(x) = (v1(x), ..., vn(x)). (27)

Taking into consideration the initial condition (26), we approximate

derivatives ∂u(x, ti)/∂t by finite differences:

∂u(x, ti)

∂t
≈























v1(x) − ϕ0(x)

h
, i = 0,

vi+1(x) − vi−1(x)

2h
, i = 1, n− 1,

vn(x) − vn−1(x)

h
, i = n.

Substitution of these differences in equalities (24) under t = ti in view of

(26) provides under i = 0 the finite equality

xv1(x) = ϕ(x) + ha2
(

xϕ”(x) + ϕ
′

(x)
)

+ hf(x, 0), (28)

and under i > 0 the system of ODEs of second order with respect to the

seeking function (27):














2ha2
(

xv”
1(x) + v

′

1(x)
)

− xv2(x) = −xϕ(x) − 2hf(x, t1);

2ha2
(

xv”
i (x) + v

′

i(x)
)

− xvi+1(x) + xvi−1(x) = −2hf(x, ti),

i = 2, n− 1;

ha2
(

xv”
n(x) + v

′

n(x)
)

− xvn(x) + xvn−1(x) = −hf(x, tn).

(29)

Thus, the singular PDE (24) on the unit square Ω is changed by the

system of one finite equation (28) and n ODEs (29) on the unit seg-

ment Σ = {0 ≤ x ≤ 1}. All these equations have singularity in the

initial point x = 0. Matrix of the system (29) main part A(x) =

ha2diag {2x, ..., 2x, x} is the zero-matrix at x = 0, and it is regular one

under x > 0.
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The last pare of conditions (25) provides boundary conditions on the

seeking functions (27):

vi(0) = ψ0(ti), vi(1) = ψ1(ti), i = 1, n. (30)

Formally, the system (28), (29), (30) is the overdetermined one. It con-

tains on one equality more then it is necessary for existence and unique-

ness of a solution in a regular case. However, there is not a theory of

singular BVP that guarantees correctness of the obtained problem. So

we can use heuristically only the system of ODEs (29) with boundary

conditions (30) for numerical creation of the seeking solution by the NS

method. The last problem for the singular ODEs belongs to the type

(1), (2). The variability of its rank encumbers or makes impossible the

application of other known numerical methods besides the NS one.

In the case of a possible failure the equation (28) can be used as an

additional condition. Particularly, it can be used in the second equation

of the system (29) for a substitution of the term xv1(x) by the known

right hand of (28).

In table 4 results of numerical solution to the problem (24), (25) are

presented. The free function f(x, t) in (24) and the right-hand functions

in (25) were constructed on the solution u(x, t) = x2t+ 1.

We have used the classical finite-differences (FD) method realized in

the software MATLAB, and the combination of the NS one presented

above with the LM. In both cases the uniform grids with equal nodes n

along two variables were chosen for simplicity. Note, for the used variant

of the combined LM+NS method the t-grid corresponds to the LM, and

the x-grid is the NS collocation one. Values ∆ present the maximal

absolute deviations of the obtained approximations (the grid-function in

the FD or the spline in the LM+NS) from exact solution on the grids.

Table 4

FD LM+NS

n ∆ n ∆

10 0.02 5 0.0023

20 0.005 7 0.0013

100 0.0003 10 0.0006

One can note that accuracy of the LM+NS method for this problem

on the same net (n=10) overcome the accuracy of classical FD method

on two order.



THE METHOD OF NORMAL SPLINE 73

9. Conclusions and future work

Presented above numerical results also as results of [6], [7], [10], [11],

[12], [20] demonstrate the ability of the NS method to obtain appropriate

approximation of solutions to arbitrary degenerate problems of linear

differential and integral equations. Particularly for equations that can

not be reduced to the normal Cauchy form, i.e. equations which are not

having of a finite differentiation index. Such a kind of nonlinear problems

can be resolved also by the parameterization method [5], [8]. We know

only theoretical works of another authors devoted to such kind of ODEs

problems [16].

We are inclined to explain the success of the presented NS method by

passage from an initial singular problem to the approximate variational

problem to minimize the Hilbert-Sobolev norm on the set of solutions of

a collocation system. Usage of two classical results of functional analysis,

namely, of embedding of Sobolev’s spaces in Chebyshev’s ones, and the

Riesz theorem of canonical representation of linear continuous functionals

in Hilbert spaces, has allowed to construct effective algorithm for solving

this robust variational problem.

In future work in the area of numerical methods for hard problems

of differential and integral equations we plan to develop the NS method

for singular problems on infinite intervals, particularly, for numerical in-

version of the Laplace and the Fourier transformations, for nonlinear

equations, and multi-dimensional problems.
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