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Abstract. Using a new characterization of uniform spaces via Fam-

ilies of generalized quasi-metrics, we present a variant of Ekeland’s vari-

ational principle for vector-valued maps being a consequence of minimal

point theorem.

1 Introduction

Ekeland’s variational principle [9] is an important tool in nonlinear

analysis. In the last decades various theorems had been presented which

turned out to be equivalent to Ekeland’s principle. One of them, a lemma

due to R. R. Phelps (see [30] and especially the version of ([31] from 1989)

can be considered as the first minimal point theorem. Phelp’s lemma

yields the existence of minimal point with respect to a partial ordering

in a subset of X×R, where X is a Banach space and R denotes the reals.

Minimal point theorems in a product space X × Y were established

by Gopfert and Tammer [13], 1995 and generalized by Gopfert, Tammer

and Zalinescu in [15], 2000 and in [14], 1999. In the latest version, X is a

complete metric space and Y is a separated locally convex space. These
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theorems are useful tools in vector optimization. In [15], [14] a variational

principle for vector-valued functions f : X → Y was presented to be an

easy consequence of the minimal point theorem.

A generalization of Ekeland’s variational principle with respect to the

space X was given by Fang [10], 1996. He introduced the concept of

“F-type topological spaces” generating the topology by families of quasi-

metrics. Andreas Hamel and Andreas Lohne proved in [1] that the class

of Fang’s F-type spaces coincides with the class of separated uniform

spaces introduced by Weil [34], 1937.

In this paper we present a variant of Ekeland’s variational principle

for vector-valued maps as a consequence of minimal point theorem. The

proof of the result is based on the Characterization of Uniform Spaces

via Families of generalized quasi-metrics.

2 Family of generalized quasi-metrics and Uniform Spaces

In this section we present a characterization of uniform spaces via

families of generalized quasi-metrics.

Initially, we shall recall the concept of uniform space. For further

details see Kelly [22] or Kothe [23].

Let X be a nonempty set. We consider a system R of subsets N of

X × X. For N ⊂ X × X we denote N−1 := {(y, x) : (x, y) ∈ N}

and N ◦ N := {(x, y) ∈ X × X : ∃z ∈ X (x, z), (z, y) ∈ N}. The set

∆ := {(x, x) : x ∈ X} is called the diagonal. The set X is said to be an

uniform space if and only if there exists a filter R on X × X satisfying

(N1) ∀N ∈ R ∆ ⊂ N ;

(N2) ∀N ∈ R N−1 ∈ R;

(N3) ∀N ∈ R ∃M ∈ R M ◦ M ⊂ N.

The system R is called a uniformity on X. By the sets

θ(x) := {UN(x) : N ∈ R},

where UN(x) = {y ∈ X : (x, y) ∈ N}, a topology is given, which is called

the uniform topology on X. Of course, an uniform space is already well-

defined by a base of its uniformity R, i.e a filter base B of the uniformity

R. The topology of an uniform space is separated if and only if

(N4)
⋂

N∈R

N = ∆.

For a proof see ([23],p. 32).

We recall a well-established result, the characterization of uniform

spaces using families of pseudo-metrics see [22].
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Definition 1. Let X be a nonempty set. A function p : X × X →

[0, +∞[ is called pseudo-metric on X if and only if for all x, y, z ∈ X the

following conditions are satisfied:

(P1) p(x, x) = 0;

(P2) p(x, y) = p(y, x);

(P3) p(x, z) ≤ p(x, y) + p(y, z).

Let (`,≺) be a directed set. A system {pλ}λ∈` of pseudo-metrics pλ :

X × X → [0, +∞[ satisfying

(P4) λ ≺ µ ⇒ ∀x, y ∈ X pλ(x, y) ≤ pµ(x, y)

is called a family of pseudo-metrics. If additionally the condition

pλ(x, y) = 0 ∀λ ∈ ` ⇒ x = y

holds, the family of pseudo-metrics is said to be separating.

Proposition 1. A topological space (X, τ) is a separated uniform

space if and only if its topology τ can be generated by a separating

family of pseudo-metrics.

Proof. See ([22],p. 188, Theorem 15).

Fang [10] introduced so-called F− type topological using families of

quasi-metrics.

Definition 2. Let X be a nonempty set and let (`,≺) be a directed

set. A system {qλ}λ∈` of functions qλ : X × X → [0, +∞[ satisfying

(Q1) ∀λ ∈ ` ∀x ∈ X qλ(x, x) = 0;

(Q2) ∀λ ∈ ` ∀x, y ∈ X qλ(x, y) = qλ(y, x);

(Q3) ∀λ ∈ ` ∃µ ∈ ` such that λ ≺ µ and

∀x, y, z ∈ Xqλ(x, z) ≤ qµ(x, y) + qµ(y, z);

(Q4) λ ≺ µ ⇒ ∀x, y ∈ Xqλ(x, y) ≤ qµ(x, y)

is called a family of quasi-metrics. If in addition the condition

(qλ(x, y) = 0 ∀λ ∈ `) ⇒ x = y

is satisfied, the family of quasi-metrics is said to be separating.

Proposition 2. A topological space (X, τ) is a separated uniform

space if and only if its topology τ can be generated by a separating

family of quasi-metrics.

Proof. See ([1],p. 3, Theorem 4).
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Definition 3. Let X be a nonempty set. A system {qλ}λ∈` of functions

qλ : X × X → [0, +∞[ satisfying

(Q′1) ∀λ ∈ ` ∀x ∈ X qλ(x, x) = 0;

(Q′2) ∀λ ∈ ` ∀x, y ∈ X qλ(x, y) = qλ(y, x);

(Q′3) ∃{µ1(λ)}λ∈`, {µ2(λ)}λ∈` ⊂ ` such that ∀λ ∈ ` ∀x, y, z ∈ X

z 6= y, y 6= x qλ(x, z) ≤ qµ1(λ)(x, y) + qµ2(λ)(y, z)

is called a family of generalized quasi-metrics. In this case, (X, {qλ}λ∈`)

is called a generalized quasi-metric space. If in addition the condition

(qλ(x, y) = 0 ∀λ ∈ `) ⇒ x = y

is satisfied, the family of generalized quasi-metrics is said to be separat-

ing.

Our definition is slightly more general because on the one hand ` has

not to be directed set in our case and on the other hand, the assumption

(Q3) in Definition 2 is an optional condition, not automatically satisfied

in our Definition.

Our first result clarifies the relation between separated uniform spaces

and topological spaces generated by separating families of generalized

quasi-metrics.

Proposition 3. A topological space (X, τ) is a separated uniform

space if and only if its topology τ can be generated by a separating

family of generalized quasi-metrics.

Proof. Let (X, τ) be a topological space where τ is generated by a

separating family {qλ}λ∈` of generalized quasi-metrics, i.e. τ is given by

℘(x) = {U(x, n, λ1, .., λn, t) : t > 0, n ∈ N, λ1, .., λn ∈ `}

where

U(x, n, λ1, .., λn, t) = {y ∈ X : qλi
(x, y) < t, 1 ≤ i ≤ n}.

We claim that a base of a uniformity is given by the system

ℵ := {S(n, λ1, .., λn, t) : t > 0, n ∈ N, λ1, .., λn ∈ `}

where

S(n, λ1, .., λn, t) := {(x, y) ∈ X × X : qλi
(x, y) < t, 1 ≤ i ≤ n}.

To show that ℵ is a filter base let t1 > 0, n ∈ N, λ1, .., λn ∈ ` and t2 >

0, p ∈ N, β1, .., βp ∈ ` be arbitrarily given. Set t3 := min(t1, t2),r = n+ p.

Consider the sequence λ1, .., λn, β1.., βp. Then S(r, λ1, .., λn, β1.., βp, t3) ⊂

S(n, λ1, .., λn, t1)
⋂

S(p, β1, .., βp, t2).

Furthermore, ∅ 6∈ ℵ since each S(n, λ1, .., λn, t) contains the diagonal.
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Let < be the filter generated by ℵ. We shall show that ℵ is a base

of uniformity on X. The axioms (N1) and (N2) are satisfied for ℵ. To

verify (N3) let t > 0, n ∈ N, λ1, .., λn ∈ ` be arbitrarily given. Taking

(µ1 = µ1(λ1), µ2 = µ2(λ1)), .., (µ2n−1 = µ1(λn), µ2n = µ2(λn)) from (Q’3)

we set M := S(3n, λ1, .., λn, µ1, µ2, µ3, µ4, .., µ2n−1, µ2n,
t
2
).

Then we have M ◦ M ⊂ S(n, λ1.., λn, t). Indeed, let (x, y) ∈ M ◦ M ,

i.e.

∃z ∈ X : (x, z), (z, y) ∈ M.

If z = y or z = x, then (x, y) ∈ M . Therefore,

qλi
(x, y) <

t

2
< t for all i such that 1 ≤ i ≤ n.

Hence, (x, y) ∈ S(n, λ1, .., λn, t).

If now z 6= y and z 6= x, then qµi
(x, z) < t

2
, qµi

(z, y) < t
2
, 1 ≤ i ≤ 2n.

Hence

qλi
(x, y) ≤ qµ2i−1

(x, z) + qµ2i
(z, y) < t, 1 ≤ i ≤ n.

Therefore, < is a uniformity generating the topology τ . If additionally

the family {qλ}λ∈` of generalized quasi-metrics is separating, then the

uniform space (X, τ) is separated.

The opposite assertion follows by Proposition 1 taking into account

that a family of pseudo-metrics is in particular a family of generalized

quasi-metrics.

An important class of uniform spaces is the class of topological vector

spaces. Indeed, For topological vector space the topology can be gener-

ated by a family of quasi-norms. This result is due to Hyers [19], 1939

who used the term ”pseudo-norms” instead of ”quasi-norms”.

3. Main Tools

For the convenience of the reader we present the main tools for the

proof of our minimal point theorem. The first one is the Brézis-Browder

principle.

Theorem 1. Let (W,�) be a quasi-ordered set (i.e. � is a reflexive

and transitive relation) and let φ : W → R be a function satisfying

(A1) φ is bounded below ;

(A2) w1 � w2 ⇒ φ(w1) ≤ φ(w2);

(A3) For every � – decreasing sequence {wn}n∈N ⊂ W there exists

some w ∈ W such that w � wn for all n ∈ N.

Then, for every w0 ∈ W there exists some w̄ ∈ W such that

(i) w̄ � w0; (ii) ŵ � w̄ ⇒ φ(ŵ) = φ(w̄).
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In particular, if we strengthen (A2) to (A′2) (w1 � w2, w1 6= w2) ⇒

φ(w1) < φ(w2) it holds

(ii′) ŵ � w̄ ⇒ ŵ = w̄, i.e. w̄ is �–minimal in W.

Proof. See [[3], Corollary 1].

Note that A’2 implies the antisymmetry of the relation �.

A second important tool is a scalarization method established by Ger-

stewitz (Tammer), Iwanow [12] and Gerth (Tammer), Weidner [11].

Theorem 2. Let Y be a topological vector space, K ⊂ Y a convex

cone and k0 ∈ K \ −cl K. The functional z : Y → R
⋃
{+∞}, defined

as z(y) := inf{t ∈ R : y ∈ tk0 − cl K} has the following properties

(H1) z is sublinear;

(H2) y1 �K y2 ⇒ z(y1) ≤ z(y2);

(H3) ∀y ∈ Y ∀α ∈ R z(αk0 + y) = z(y) + α;

(H4) If Y0 ⊂ Y is �K bounded below, then z is bounded below on Y0.

Proof. See [[15], Lemma 7] taking into account that Y has not to be

separated for the proof. Moreover, in the definition of the functional the

closed cone can be replaced by the closure of a not necessarily closed

cone (since y1 �K y2 implies y1 �clK y2). Then, if Y is not separated, we

have to choose k0 ∈ K \ −cl K to avoid k0 ∈ cl{0}. If Y is separated it

suffices to suppose k0 ∈ K \ −K.

Let Y be a topological vector space and K ⊂ Y a convex cone. We

use the following assumption to derive strong (in [15] called ”authentic”)

variants of the minimal point theorem.

(C) There exists a proper cone convex C ⊂ Y satisfying K \ {0} ⊂

int C.

Theorem 3. Let Y be a topological vector space, K ⊂ Y a convex

cone satisfying assumption (C). Let k0 ∈ K \ {0}. The functional zC :

Y → R, defined as zC(y) := inf{t ∈ R : y ∈ tk0−cl C} has the following

properties

(H ′1) zC is sublinear;

(H ′2) (y1 �K y2, y1 6= y2) ⇒ zC(y1) < zC(y2);

(H ′3) ∀y ∈ Y ∀α ∈ R zC(αk0 + y) = zC(y) + α;

(H ′4) For Y0 ⊂ Y, ỹ ∈ Y the condition Y0

⋂
(ỹ − int C) = ∅

implies that zC is bounded below on Y0.

Proof. See [[15], Lemma 7] taking into account that zC(y) = ∞ is not

possible under our assumptions. Note that we have k0 ∈ int C \ −cl C.

Therefore, as above, Y has not to be separated.
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4. Minimal Point Theorem

Minimal point theorems in product spaces X×Y presented by Gopfert

and Tammer [13], by Gopfert, Tammer and Zalinescu [15], [14], and

by Andreas Hamel and Andreas Lohne [1] give useful generalizations of

Ekeland’s variational principle. We wish to generalize some of theorems

in [1] with respect to the space X. Instead of family of quasi-metrics we

consider a family of generalized quasi-metrics.

In what follows let (X, {qλ}λ∈`) be a separated uniform space generated

by the separating family {qλ}λ∈` of generalized quasi-metrics and let Y

be a topological vector space. We write w = (w1, w2) ∈ W to deal with

the two components of an element w of the product space W := X × Y .

It is well-known that a convex cone K ⊂ Y generates a quasi-ordering

on Y by

y1 �K y2 ⇔ y2 − y1 ∈ K.

If K is pointed, the relation is also antisymmetric, therefore a partial

ordering. Using an element k0 ∈ K \ −cl K we introduce a relation �k0

on W :

(x1, y1) �k0
(x2, y2) ⇔ ∀λ ∈ ` y1 + qλ(x1, x2)k0 �K y2.

Lemma 1. If K ⊂ Y is a convex cone, the relation �k0
is reflexive

and transitive on W . If additionally K is pointed, the relation �k0
is

antisymmetric and thus partial ordering on W .

Proof. Exemplary, we prove the transitivity. Let wi = (xi, yi) ∈

W (i = 1, 2, 3) satisfying (x1, y1) �k0
(x2, y2) and (x2, y2) �k0

(x3, y3).

Therefore,

∀λ ∈ ` y1 + qλ(x1, x2)k0 �K y2 and y2 + qλ(x2, x3)k0 �K y3.

The transitivity of the relation �K yields

∀λ ∈ ` y1 + (qλ(x1, x2) + qλ(x2, x3))k0 �K y3.

If x2 = x1 or x2 = x3, then the assumption w1 �k0
w3 holds. Otherwise,

using Q’3 we deduce that

∀λ ∈ ` y1 + qλ(x1, x3)k0 �K y3.

Hence, w1 �k0
w3.

We continue with our main result, the minimal point theorem in uni-

form spaces. Just as the Brézis-Browder principle (Theorem 5), the fol-

lowing theorem (as well as its equivalent formulations, Theorems [11],

[13], [14]) consists of two parts. The ”weak” assertion (ii) yields the

existence of an element w̄ of a certain set A such that some ŵ which
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is dominated by w̄ with respect to a quasi-ordering necessarily has the

same X− component. However, the Y − component may be distinct. The

”strong” (authentic) assertion (ii) yields the minimality of some w̄ ∈ A

in A with respect to a partial ordering. Note that assumption (C) of

section 3 ensures that we deal in fact with a partial ordering. It plays

the key role in establishing the strong assertion and can be traced back

to the early work of Bishop and Phelps.

Theorem 4. (Minimal point theorem) Let (X, {qλ}λ∈`) be a separated

uniform space generated by the separating family {qλ}λ∈` of generalized

quasi-metrics, Y a topological vector space, K ⊂ Y a convex cone and

k0 ∈ K \ −cl K. Let A ⊂ W be a nonempty subset of the product

space W := X × Y and let w0 ∈ A be given such that for the set

W0 := {w ∈ A : w �k0
w0} the following assumptions hold true

(M1) The set (W0)Y := {y ∈ Y : there exists x ∈ X such that

(x, y) ∈ W0} is �K – bounded below;

(M2) For any �k0
- decreasing sequence {wn}n∈N ⊂ W0 there exists

some w ∈ W0 such thatw � wn for all n ∈ N.

Then there exists some w̄ ∈ A such that

(i) w̄ �k0
w0; (ii) (ŵ ∈ A, ŵ �k0

w̄) ⇒ ŵ = w̄.

Under the additional assumption (C) we can relax assumption (M1) to

(M ′1) There exists some ỹ ∈ Y such that (W0)Y

⋂
(ỹ − int C) = ∅ and

(iii) w̄ is �k0
minimal point in A

Proof. By Lemma 1, the relation �k0
is reflexive and transitive on W0.

We apply the Brézis-Browder principle (Theorem 1) on the quasi-ordered

set (W0,�k0
) using the functional φ : W0 → R, φ(w) = z(wY − (w0)Y ),

where z : Y → R
⋃
{+∞} is the scalarization functional of Theorem

2. First, we must have φ(w) 6= +∞. Indeed, for w ∈ W0 it holds

wY �K (w0)Y . Hence wY − (w0)Y ∈ −K ⊂ −cl K. By the definition of

z we have φ(w) ≤ 0.

By (M1) and property (H4) of z (Theorem 2), φ is bounded below on

W0. Let be w1 �k0
w2, w1, w2 ∈ W0, hence (w1)Y �K (w2)Y . Property

(H2) of z implies assumption (A2) of Theorem 1. Of course, (M2) implies

assumption (A3) of Theorem 1.

Theorem 1 yields the existence of some w̄ ∈ W0 such that

w̄ �k0
w0 and ŵ �k0

w̄ ⇒ φ(ŵ) = φ(w̄).
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Let us show (ii). Take ŵ ∈ A such that ŵ �k0
w̄. The transitivity of

�k0
yields ŵ ∈ W0. This implies

∀λ ∈ ` (ŵ)Y − (w0)Y + qλ((ŵ)X , (w̄)X)k0 �K (w̄)Y − (w0)Y .

Applying properties (H2) and (H3) of z we get

∀λ ∈ ` qλ((ŵ)X , (w̄)X) ≤ φ(w̄) − φ(ŵ) = 0.

Consequently,

∀λ ∈ ` qλ((ŵ)X , (w̄)X) = 0.

Since (X, {qλ}λ∈`) is separated, then (ŵ)X = (w̄)X .

Now, let assumption (C) be satisfied. We can replace (M1) by (M’1)

and proceed analogously, but using the functional zC of Theorem 3 in-

stead of z. In particular, the corresponding functional φC : W0 → R,

φC(w) = zC(wY ) (the functional can be chosen slightly simpler than

before, because zC(y) 6= ∞ ∀y ∈ Y ) is even strict �k0
–monotone, i.e.

w1 �k0
w2, w1 6= w2 implies φC(w1) < φC(w2). Indeed, let w1 �k0

w2,

and w1 6= w2. If (w1)X 6= (w2)X then, since (X, {qλ}λ∈`) is separated,

there exists some λ ∈ ` satisfying qλ((w1)X , (w2)X) > 0, thus,

(w2)Y − (w1)Y ∈ {qλ((w1)X , (w2)X)k0}+K ⊂ K \−cl K +K ⊂ K \ {0}.

Otherwise, if (w1)X = (w2)X , we have (w1)Y 6= (w2)Y and it also holds

(w2)Y − (w1)Y ∈ K \ {0}. Property H’2 of zC yields φ(w1) < φ(w2).

Therefore, assumption A’2 in Theorem 1 is satisfied too. The �k0
–

minimality of w̄ in A follows from (Theorem 1, (ii’)) taking into account

the transitivity of the relation �k0
.

5 Ekeland’s principle for vector-valued maps

In this section we present a variant of Ekeland’s variational principle

for vector-valued functions. As proposed in [15], [14], we extend the space

Y by an element ∞ such that y �K ∞ for all y ∈ Y .

Theorem 5. (Variational Principle) Let (X, {qλ}λ∈`) be a separated

uniform space generated by the separating family {qλ}λ∈` of generalized

quasi-metrics, Y a topological vector space, K ⊂ Y a convex cone and

k0 ∈ K \ −cl K. Let f : X → Y ∪ {∞} be a proper function which is

�K–bounded below and let for every x ∈ dom f the set

S(x) := {u ∈ X : ∀λ ∈ ` f(u) + qλ(u, x)k0 �K f(x)}

be sequentially closed.

Then, for each x0 ∈ dom f there exists x̄ ∈ dom f such that

(i) ∀λ ∈ ` f(x̄) + qλ(x̄, x0)k0 �K f(x0);
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(ii) ∀x ∈ X such that x 6= x̄ ∃β ∈ ` f(x) + qβ(x̄, x)k0 6�K f(x̄).

Proof. We consider the set-valued mapping F : X → 2Y , F (x) := {f(x)}

if f(x) 6= ∞ and F (x) := ∅ otherwise. Let dom F denote the domain

of F , i.e. dom F := {x ∈ X : F (x) 6= ∅} and let gr F denote the

graph of F , i.e. gr F := {(x, y) ∈ X × Y : y ∈ F (x)}. Setting A :=

gr F , w0 = (x0, f(x0)) all assumptions coincide with those of Theorem

4. Indeed, it remains to show that (M2) of Theorem 4 is satisfied. Let

{(xn, yn)}n∈N ⊂ W0 be a �k0
– decreasing sequence and let ε > 0, λ ∈ `.

Then for any m, n ∈ N with m ≥ n we have

ym − f(x0) + qλ(xm, xn)k0 �K yn − f(x0).

The properties of z (Theorem 2) yield

φ(ym) + qλ(xm, xn) ≤ φ(yn),

where φ(y) = z(y − f(x0)). Thus {φ(yn)}n∈N is nonincreasing sequence.

On the other hand, {φ(yn)}n∈N is bounded below, hence there exists

some n0 ∈ N such that for all n, m ≥ n0 it holds

qλ(xm, xn) ≤ φ(yn) − φ(ym) < ε.

Hence, qλ(xn, xm) < ε. This means, that {xn} is a Cauchy sequence in

(X, {qλ}λ∈`) and by the sequentially completeness of X convergent to

some x ∈ X.

On the other hand, we have xm ∈ S(xn) for all n, m ∈ N with m ≥ n.

Since S(xn) is sequentially closed, it follows that x ∈ S(xn) for all n ∈

N . Hence, (x, f(x)) �k0
(xn, yn) for all n ∈ N . Theorem 4 implies all

assertions.
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