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Abstract. Let P be a closed triangulated manifold, dimP = n.

We consider the group of simplicial 1-chains C1(P ) = C1(P, Z2) and the

homology group H1(P ) = H1(P, Z2). We also use some nonnegative

weighting function L : C1(P ) → R. For any homological class [x] ∈

H1(P ) the method proposed in article builds a cycle z ∈ [x] with minimal

weight L(z). The main idea is in using a simplicial scheme of space of the

regular covering p : P̂ → P with automorphism group G ∼= H1(P ). We

construct this covering applying the index vector-function J : C1(P ) →

Z
r
2 relative to any basis of group Hn−1(P ), r = rankHn−1(P ).

1. Index Vector-Function

Consider a triangulated closed manifold P , dim P = n, and a basis

[zn−1
1 ], . . . , [zn−1

r ] of homology group Hn−1(P ) = Hn−1(P, Z2). Let Ind :

H1(P ) × Hn−1(P ) → Z2 be the intersection index.

Definition 1. Define the homomorphism J0 : Z1(P ) → Z
r
2 by Jk

0 (y) =

Ind([y], [zn−1
k ]), k = 1, . . . , r, J0 = (J1

0 , . . . , Jr
0 ). We call its arbitrary

extension J : C1(P ) → Z
r
2 the index vector-function. For any chain

x ∈ C1(P ) the value J(x) is called its index relative to the basis [zn−1
1 ],

. . . , [zn−1
r ].
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Remark 1. The index vector-function J : C1(P ) → Z
r
2 is not uniquely

defined, however we can use this function for solve our problems.

Proposition 1. If J : C1(P ) → Z
r
2 is the index vector-function relative

to the basis
{

[zn−1
1 ], . . . , [zn−1

r ]
}

of group Hn−1(P ), x, y ∈ C1(P ) and

∂x = ∂y, then J(x) = J(y) if and only if x ∼ y.

Proof. Let {[z1
1 ], . . . , [z

1
r ]} be a basis of group H1(P ) = H1(P, Z2), that is

dual to the given basis
{

[zn−1
1 ], . . . , [zn−1

r ]
}

. Assume now that z = x + y.

Then z ∈ Z1(P ) and [z] =
∑r

i=1 li[z1
i ], where li ∈ Z2. This implies that

Jk(z) = Ind([z], [zn−1
k ]) = lk for all k = 1, . . . , r. So J(x) = J(y) if and

only if l1 = · · · = lr = 0. And this latter expression is equivalent to the

equality [z] = 0. �

ALGORITHM 1. Construction of index vector-function relative

to the basis of group Hn−1(P ).

Input:

1) simple basis cycles zn−1
1 , zn−1

2 , . . . , zn−1
r which are lists of (n − 1)-

dimensional simplices;

2) list K1(P ) of edges for polyhedron P ;

3) lists Kn
1 (P, zn−1

1 ), . . . , Kn
r (P, zn−1

r ) consisting of n-dimensional sim-

plices from neighborhoods of cycles zn−1
1 , . . . , zn−1

r respectively;

Output:

1) vectors J(a) = (J1(a), . . . , Jr(a)) ∈ Z
r
2 for all edges a ∈ K1(P );

2) chains M1, . . . , Mr of edges indexed relative to cycles zn−1
1 , . . . , zn−1

r

respectively;

3) lists Mk(u), k = 1, . . . , r of edges, that we add to Mk when consid-

ering vertex u of cycle zn−1
k ;

4) sets Σk(u), k = 1, . . . , r of n-simplices incident to edges from Mk(u).

Algorithm Description.

Step 0. For all k = 1, . . . , r execute steps 1 – 3.

Step 1. Start operations. Assume Mk = ∅, Jk(a) := 0 for all

a ∈ K1(P ). We denote zn−1
k by X and Kn

k (P, zn−1
k ) by Kn(P, X). We

create then lists of vertices and edges for all simplices of cycle X, K0(X)

and K1(X) respectively.

Step 2. Indexing edges that do not belong to the cycle. For

each vertex u ∈ K0(X) execute steps 2.1 – 2.4.

Step 2.1. Initializing vertex neighborhood. Let us create a list

Kn(P, u) ⊂ Kn(P, X) of n-dimensional simplices of the polyhedron P ,

that contain u, and a list Kn−1(P, u) of all (n − 1)-dimensional faces of
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simplices from Kn(P, u). At the same time, for each simplex σn−1 ∈

Kn−1(P, u) we get a list ∂n−1(σn−1, u) of n-dimensional simplices from

Kn(P, u) those are incident to σn−1, and assume µ(σn−1) := 0. Then we

create empty lists Mk(u) := ∅ and Σk(u) := ∅.

Step 2.2. Creating the queue to keep n-simplices. We chose a

simplex σn
0 ∈ Kn(P, u), create a queue R := {σn

0 } and remove σn
0 from

Kn(P, u).

Step 2.3. Main procedure of Algorithm. While the queue R is

not empty we will do the following actions. Take the first simplex σn ∈ R

and remove it from the queue R. For each (n−1)-dimensional face σn−1 of

the simplex σn we check the following: whether it belongs to the cycle X,

whether µ(σn−1) is equal to zero, whether the list ∂n−1(σn−1, u) contains

any simplices different from σn. If all above conditions are satisfied we

will execute steps 2.3.1 – 2.3.2.

Step 2.3.1. Take the simplex σn
∗ ∈ ∂n−1(σn−1, u) \ {σn}, remove

it from Kn(P, u) and enqueue to R; set µ(σn−1) := 1 and Σk(u) =

Σk(u) ∪ {σn
∗ }.

Step 2.3.2. For all vertices w 6= u of the simplex σn−1 we check

whether the edge a = [uw] is in the list K1(X); having a /∈ K1(X) set

Jk(a) := Jk(a)+1 mod 2, Mk(u) = Mk(u)∪{a}, Mk := Mk +a mod 2.

Step 2.4. Main procedure repeated. If the list Mk(u) is empty

then go back to step 2.2.

Step 3. Indexing the edges of cycle. For each edge a = [uv] ∈

K1(X) we search any edges b ∈ Mk(u) and c ∈ Mk(v) such that b∩ c 6= ∅

and that a, b and c are sides of some triangle of polyhedron P . If the

edges b and c do not exist then we set Jk(a) := 1 and Mk = Mk + a

mod 2.

End of algorithm.

Theorem 1. If P is a closed n-dimensional manifold, zn−1
1 , . . . , zn−1

r

are simple cycles, x = a1 + · · · + al ∈ C1(P ) and J(x) =
∑l

i=1 J(ai),

then the vector J(x) = (J1(x), . . . , Jr(x)) ∈ Z
r
2 is the index of the chain

x ∈ C1(P ) relative to the basis [zn−1
1 ], . . . , [zn−1

r ] of group Hn−1(P ).

Proof. Let x ∈ Z1(P ). We will prove that Jk(x) = Ind([x], [zn−1
k ]) for

all k = 1, . . . , r. Set z∗0 = zn−1
k . For all p = 1, . . . , N we will make

the following constructions; here N is the power of the set K0(zn−1
k ).

Consider a vertex up ∈ K0(zn−1
k ) and its barycentric star bst(up, P ).

Let Σ∗
k(up) be the set of all n-simplices from the barycentric subdivision

of Σk(up). Construct the chain c(up) of simplices σ1 ∈ bst(up, P )∩Σ∗
k(up).



38 A.V. LAPTEVA,E. I. YAKOVLEV

Then we write the chain boundary c(up) as a sum Y1 + Y2, where Y1 is

the sum of all its (n− 1)-dimensional simplices, that belong to the cycle

zn−1
k and Y2 is the sum of all remaining simplices from the chain ∂c(up).

Set z∗p = z∗p−1 + Y1 + Y2 mod 2.

By construction z∗p ∼ z∗p−1 for all p = 1, . . . , N . Hence, the cycle

z∗ = z∗N is homologous to the cycle zn−1
k = z∗0 .

Let now prove that for any edge a = [uv] ∈ K1(P ) and σb ∈ bst(a) the

simplex σb belongs to z∗ if and only if a ∈ Mk.

Let view all possible positions of the edge a. At the same time we also

agree to think that Mk(u) = ∅ and that Σk(u) = ∅ for all u /∈ K0(zn−1
k ).

0. If a /∈ Mk(u) ∪ Mk(v) and a /∈ K1(zn−1
k ), then, according to the

algorithm, a /∈ Mk. On the other hand, the edge a can not be incident

to simplices from the lists Σk(u) and Σk(v) and hence σb /∈ z∗.

1. Let u ∈ K0(zn−1
k ), a ∈ Mk(u) and v /∈ K0(zn−1

k ). Then the edge a

will be still in the chain Mk when algorithm 1 is completed. At the same

time the barycentric star bst(a) belongs to the boundary of the chain

c(u) and does not belong to the cycle zn−1
k . Thus in this case a ∈ Mk

and the chain bst(a) belongs to the cycle z∗.

2. Further, assume that u, v ∈ K0(zn−1
k ) and a ∈ Mk(u). At that,

a /∈ K1(zn−1
k ).

2.1. If a ∈ Mk(v), then a /∈ Mk, and simplices of its barycentric

star will be added twice to the initial cycle zn−1
k and will not be in the

resulting cycle z∗.

2.2. If a /∈ Mk(v), then a ∈ Mk and any simplex σb ∈ bst(a) is added

to the cycle z∗ exactly once. So σb ∈ z∗.

3. Finally, let a ∈ K1(zn−1
k ).

3.1. Let assume that the condition from step 3 of algorithm 1 is satis-

fied, i.e.:

(∗) there exist edges b ∈ Mk(u) and c ∈ Mk(v) such that b ∩ c 6= ∅

and that a, b and c are sides of some triangle σ′ ∈ K2(P ).

In this case, according to the algorithm a /∈ Mk.

Let view all triangles σ′ from (∗), and all n-dimensional simplices in-

cident to them. The such n-simplices belong both to Σk(u) and Σk(v).

Consider an n-dimensional simplex σ, σb ∈ σ. If σb ∈ bst(a), then σ

either belongs to the both sets Σk(u) and Σk(v) or does not belong to

them. Hence, the simplex σb either is not added to the cycle z∗ or is

added twice. Therefore σb /∈ z∗.

3.2. Assume now that condition (∗) is not satisfied. Then according

to step 3 of algorithm 1, a ∈ Mk.
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Barycentric star bst(a) of the edge a = [uv] belongs to the union D(a)

of all n-simplices that contain the edge a. We will prove that the sub-

polyhedron D(a) belongs to the union of simplices from the sets Σk(u)

and Σk(v).

The cycle zn−1
k divides D(a) into two components of strong connectivity

D+(a) and D−(a).

By construction the set Σk(u) can not be empty. Moreover, if the

simplex σ ∈ zn−1
k is incident to the vertex u, then σ is a face of some n-

simplex from Σk(u). So there exists a simplex σn ∈ Σk(u) that contains

the edge a.

Let the simplex σn belong to D+(a). Then under the strong connec-

tivity D+(a) and according to algorithm 1, all n-simplices from D+(a)

also belong to Σk(u).

This implies, in accordance with our assumption, that no n-simplex

from D+(a) can belong to the set Σk(v).

The set Σk(v) cannot be empty also. Since each simplex of zn−1
k inci-

dent to the vertex v is a face of some n-simplex from Σk(v), it follows that

there exists a simplex σn
∗ ∈ Σk(v) that contains the edge a. By the above

proof, σn
∗ belongs to D−(a). Then all n-simplices from D−(a) belong

to the set Σk(v), too. Consequently all n-simplices of the polyhedron

D(a) = D+(a) ∪ D−(a) belong either to the set Σk(u) or to Σk(v).

Consider σb ∈ bst(a). If there exists a simplex σ ∈ Σk(u) containing

σb, then σ /∈ Σk(v). Otherwise, in accordance to the above proof, there

is a simplex σ̃ ∈ Σk(v) such that σb ⊂ σ̃. It follows that σb is involved in

the cycle z∗ exactly once, so σb ∈ z∗.

Thus we have proved that the cycle z∗ ∼ zn−1
k consists of barycentric

stars of the edges from chain Mk. That means that this cycle intersects

transversally only the edges of the cycle x, that are in the list Mk. Ac-

cording to algorithm 1 Jk(a) = 1 for all a ∈ Mk and Jk(b) = 0 for all

edges b /∈ Mk. So

Ind([x], [zn−1
k ]) = Ind([x], [z∗]) =

∑

a∈x

Jk(a) mod 2 = Jk(x).

�

Remark 2. The fact that [zn−1
1 ], . . . , [zn−1

r ] is a basis of group Hn−1(P ) has

no impact on the behavior of algorithm 1. So we can apply this algorithm

to an arbitrary set of simple (n − 1)-dimensional cycles of the manifold

P . In particular this set may consist of only one cycle zn−1. Then we will

get a function J : C1(P ) → Z2 such that
∑l

i=1 J(ai) = Ind([x], [zn−1])

for x = a1 + · · · + al ∈ Z1(P ). So we can use algorithm 1 to compute
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the intersection index of a given (n − 1)-cycle zn−1 ∈ Zn−1(P ) with any

one-dimensional cycle of the manifold P .

Remark 3. We can find any basis [zn−1
1 ], . . . , [zn−1

r ] of group Hn−1(P ) us-

ing standard matrix algorithm (see, for example, [1], chapter III, section

21). If n = 2, we also can apply algorithms that do not use incidence

matrices (see [2, 3]).

2. Regular Covering with the Automorphism Group H1(P )

Let P be an n-dimensional triangulated closed manifold and S =

(V, K) be its simplicial scheme. We will construct an abstract simpli-

cial scheme Ŝ = (V̂ , K̂) as follows.

Set V̂ = V × G, where G = Z
r
2. Let v̂0, v̂1, . . . , v̂m ∈ V̂ , where v̂i =

(vi, bi) for all i = 0, 1, . . . , m. We will think that {v̂0, v̂1, . . . , v̂m} ∈ K̂ if

the below conditions are satisfied:

(U1) {v0, v1, . . . , vm} ∈ K;

(U2) g0 +gi = J([v0vi]) for any i = 1, . . . , m; here J([v0vi]) is the index

of the edge [v0vi].

Remark 4. When the conditions (U1) and (U2) are satisfied the equalities

gi + gj = J([vivj]) are also true for all i, j = 1, . . . , m. In fact, according

to (U1), the cycle z = [vjvi] + [viv0] + [v0vj] is homologous to zero. So

J([vivj]) = J([viv0]) + J([v0vj]). By invoking (U2) we can have these

equalities J([vivj]) = gi + g0 + g0 + gj = gi + gj.

Let define now a mapping p 0 : V̂ → V and a left action λ0 : G×V̂ → V̂

of group G on V̂ , assuming

(1) p 0((v, g)) = v and λ0(g′, (v, g)) = g′ · (v, g) = (v, g′ + g)

for all (v, g) ∈ V̂ and g′ ∈ G.

Let P̂ define some realization of the scheme Ŝ = (V̂ , K̂). At that we

identify the set of vertices of the polyhedron P̂ with V̂ .

Proposition 2. For the mapping p 0 : V̂ → V there exists the unique

continuation p : P̂ → P that is simplicial regular covering with a group

of covering transformations G ∼= H1(P ).

Proof. Simplicial and surjective properties of the mapping p 0 follow di-

rectly from its definition and from the construction of the complex K̂.

If ŝ = {(v0, g0), (v1, g1), . . . , (vm, gm)} ∈ K̂, then {v0, v1, . . . , vm} ∈ K

and g0 + gi = J([v0vi]) for all i = 1, . . . , m. On the other hand, g · ŝ =

{(v0, g + g0), (v1, g + g1), . . . , (vm, g + gm)} for an arbitrary g ∈ G. Since
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g + g0 + g + gi = g0 + gi = J([v0vi]), then g · ŝ ∈ K̂. So the action λ0 is

also simplicial.

Let s = {v0, v1, . . . , vm} ∈ K and v̂0 ∈ (p0)−1(v0). Then v̂0 = (v0, g0),

where g0 ∈ G. Set gi = g0 +J([v0vi]) and v̂i = (vi, gi) for all i = 1, . . . , m.

At that ŝ = {v̂0, v̂1, . . . , v̂m} ∈ K̂, v̂0 ∈ ŝ and p 0(ŝ) = s. Hence, the

mapping p 0 has the following property:

(C1) for each abstract simplex s ∈ K and for any vertex v̂ ∈ (p0)−1(s)

there is the unique abstract simplex ŝ ∈ K̂ containing the vertex

v̂ and satisfying the equality p 0(ŝ) = s.

Let choose an abstract simplex ŝ = {v̂0, v̂1, . . . , v̂m} ∈ K̂, and an

element g of group G and assume that g · ŝ = ŝ. Then v̂i = (vi, gi) and

g · v̂i = (vi, g + gi) for all i = 1, . . . , m. At the same time it follows from

the equality g ·ŝ = ŝ that (v0, g+g0) = (vk, gk) for some k ∈ {0, 1, . . . , m}.

The latter is possible only if k = 0 and g = 0. Thus the action λ0 has

the following property:

(C2) if g · ŝ = ŝ for at least one non-empty simplex ŝ ∈ K̂, then g is

the neutral element of the group G.

Let now consider the simplices ŝ = {(v0, g0), (v1, g1), . . . , (vm, gm)} and

ŝ′ of the complex K̂.

First, if g ∈ G and ŝ′ = g·ŝ, then ŝ′ = {(v0, g+g0), (v1, g+g1), . . . , (vm, g+

gm)}. At that p 0(ŝ′) = {v0, v1, . . . , vm} = p 0(ŝ).

Further, assume that p 0(ŝ′) = p 0(ŝ) = {v0, v1, . . . , vm}. Then ac-

cording to (1), ŝ′ = {(v0, g
′
0), (v1, g

′
1), . . . , (vm, g′

m)}, where g′
0, g

′
1, . . . , g

′
m

are some elements of group G, and g0 + gi = J([v0vi]) = g′
0 + g′

i for

i = 1, . . . , m. Set g = g′
0 + g0. Then according to the above equalities

g′
i = g + gi for all i = 0, 1, . . . , m and hence ŝ′ = g · ŝ.
This proves that p 0 and λ0 have the following property:

(C3) for arbitrary abstract simplices ŝ, ŝ′ ∈ K̂ the equality p 0(ŝ) =

p 0(ŝ ′) is equivalent to the existence of an element g ∈ G such

that g · ŝ = ŝ ′.

It is known that p 0 and λ0 may have the unique continuation to the

simplicial mapping p : P̂ → P and the simplicial action λ : G × P̂ → P̂

of group G on P̂ . It also follows from (C1) – (C3) that p is a regular

covering, and G is a corresponding group of covering transformations

(see, for example, [4], chapter 2, section 6, theorem 7). �

Proposition 3. Let x = [v0v1] + [v1v2] + · · ·+ [vs−1vs] and y = [u0u1] +

[u1u2] + · · · + [ut−1ut] be edge paths of the polyhedron P , that run from

the vertex v0 = u0 to the vertex vs = ut, x̂ = [v̂0v̂1]+ [v̂1v̂2]+ · · ·+[v̂s−1v̂s]
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and ŷ = [û0û1] + [û1û2] + · · ·+ [ût−1ût] paths of P̂ , that cover the paths x

and y respectively and have the same beginning v̂0 = û0. Then v̂s = ût if

and only if x ∼ y.

Proof. Let z = [w0w1]+[w1w2]+· · ·+[ws−1ws] be a path in the polyhedron

P and g0 ∈ G = Z
r
2. Then the unique path ẑ of the polyhedron P̂ ,

starting in the vertex ŵ0 = (w0, g0) and covering the path z, is defined

by the formulas

(2) ŵi = (wi, g0 + J(zi)) , i = 1, . . . , s,

where zi = [w0w1] + [w1w2] + · · · + [wi−1wi], and

(3) ẑ = [ŵ0ŵ1] + [ŵ1ŵ2] + · · ·+ [ŵs−1ŵs].

Set gi = g0 +J(zi) for i = 1, . . . , s and z0 = 0. Then J(zi) = J(zi−1)+

J([wi−1wi]) for all i = 1, . . . , s. At the same time gi = gi−1 + J([wi−1wi])

and the vertices ŵi−1 and ŵi from V̂ , defined by the formula (2), are

connected by the edge [ŵi−1ŵi] ∈ K̂. Then in the polyhedron P̂ there

is defined a path (3) starting at the vertex ŵ0 = (w0, b0). As p(ŵi) =

p((wi, g0 + J(zi))) = wi for all i = 0, 1, . . . , s, then ẑ covers the path z.

Since p is a covering then the path ẑ is unique.

Assume now that v̂0 = (v0, g0), where g0 ∈ G. By the above proof, the

equalities p(x̂) = x, p(ŷ) = y and v̂0 = û0 imply that v̂s = (vs, g0 + J(x))

and ût = (ut, g0+J(y)). So v̂s = ût if and only if J(x) = J(y). According

to proposition 1, the last equality is equivalent to the homology of the

chains x and y. �

Remark 5. The definition of the simplicial scheme Ŝ = (V̂ , K̂) gives the

algorithm for constructing the covering polyhedron P̂ .

3. Minimal Cycles Searching

Let E(P ) = K1(P ) be the set of edges of the polyhedron P , and

L : E(P ) → R be a non-negative function. Using the formulas

(4) L(0) = 0 and L({a1, . . . , as}) =

s
∑

i=1

L(ai).

we can extend L to the function L : C1(R) → (R). This function is often

called weight function. And for an arbitrary chain x ∈ C1(P ) the value

L(x) is called its weight (see, for example, [5], chapter 25).

Let define a weight function L̂ : C1(P̂ ) → R assuming that

(5) L̂(x̂) = L(p(x̂))

for an arbitrary chain x̂ ∈ C1(P̂ ).
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ALGORITHM 2. Searching for the minimal path homologous

to the given 1-chain.

Input:

1) list V (P ) of vertices for polyhedron P ;

2) lists U(v, P ) of vertices incident to v for all vertices v ∈ V (P );

3) index vector-function J : C1(P ) → Z
r
2 relative to some basis of

group Hn−1(P );

4) weight function L : C1(P ) → R;

5) vertices u1 ∈ V (P ) and u2 ∈ V (P );

6) 1-chain x ∈ C1(P ), ∂x = {u1, u2}.

Output:

1-chain z ∈ C1(P ).

Algorithm Description.

Step 1. Determination of index of chain x. Calculate the vector

i = J(x).

Step 2. Initializing chain z. Set z := ∅.

Step 3. Initializing sets T̂ ⊂ V (P ) × G, P̂ ∗ ⊂ V (P ) × G and a

mapping D̂ : V (P )× G → R. Let T̂ := {(u1, 0)}, where 0 – null vector

of space G = Z
r
2, P̂ ∗ := ∅ and D̂(u1, 0) := 0.

Step 4. First extension of P̂ ∗ and D̂. For each vertex v ∈ U(u1, P )

set j := J([u1v]) and add the pair (v, j) into the list P̂ ∗. At the same

time set D̂(v, j) := L([u1v]), F (v, j) := (u1, 0).

Step 5. Choosing a next element to add to T̂ . Find the pair

(w, k) ∈ (P̂ ∗ \ T̂ ) such that D̂(w, k) = min
(v,j)∈(P̂ ∗\T̂ )

D̂(v, j).

Step 6. Stop criterion of T̂ , P̂ ∗, D̂ construction. If w = u2

k = i, then go to step 10.

Step 7. Extension of the set T̂ . Add the pair (w, k) into the list

T̂ .

Step 8. Next extension of P̂ ∗ and D̂. For each vertex v ∈ U(w, P )

set j := k+J([wv]). If the pair (v, j) /∈ P̂ ∗, then set D̂(v, j) := D̂(w, k)+

L([wv]), F (v, j) := (w, k) and add the pair (v, j) into P̂ ∗. If (v, j) ∈ (P̂ ∗\

T̂ ) and D̂(w, k)+L([wv]) < D̂(v, j), then set D̂(v, j) = D̂(w, k)+L([wv])

and F (v, j) := (w, k).

Step 9. Continuation of T̂ , P̂ ∗, D̂ construction. Go back to step

5.

Step 10. Construction of chain z.

Step 10.1. Take a pair (v, j) = F (w, k) and set z := z + [vw].
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Step 10.2. If (v, j) 6= (u1, 0), then set (w, k) equal to (v, j) and go

back to step 10.1.

End of algorithm.

Theorem 2. The chain z ∈ C1(P ) computed by algorithm 2 has the

following properties:

• ∂z = {u1, u2};

• z ∼ x;

• L(z) ≤ L(y) for all chains y ∈ C1(P ) that satisfy conditions

∂y = {u1, u2} and y ∼ x.

Proof. By construction J(z) = i = J(x), so, according to statement 1,

z ∼ x.

Let T ∗ be the result set of Dijkstra’s algorithm for a one-dimensional

skeleton P̂ 1 of the polyhedron P̂ if we choose the pair (u1, 0) as the start

point, and the pair (u2, i) as the end point (see, for example, [6], chapter

6, section 6.3).

According to the definition of the complex K̂, the pairs v̂ = (v, j) and

û1 = (u1, 0) in step 4, as well as the pairs v̂ = (v, j) and ŵ = (w, k) in step

8 are connected by the edges [v̂û1] ∈ E(P̂ ) and [v̂ŵ] ∈ E(P̂ ) respectively.

Also, according to (5), we have the equalities L̂([v̂û1]) = L([vu1]) in step 4

and L̂([v̂ŵ]) = L([vw]) in step 8. This implies that the set T̂ constructed

by step 10 is the same that T ∗.

Let note that step 10 is not limited to compute z = [v0v1]+· · ·+[vq−1vq]

starting at v0 = u1 and ending at vq = u2, but it also gives us the

possibility to construct the vector sequence j0, j1, . . . , jq ∈ Z
r
2, that will

satisfy the equalities j0 = 0, jq = i and js = js−1 + J([vs−1vs]).

Set v̂s = (vs, js) for all s = 0, 1, . . . , q. Then [v̂s−1v̂s] ∈ E(P̂ ) for the

same s and ẑ = [v̂0v̂1] + [v̂1v̂2] + · · · + [v̂q−1v̂q] is a path in the skeleton

P̂ 1, starting at (u1, 0) and ending at (u2, i). Since it can be computed by

Dijkstra’s algorithm, L̂(ẑ) is not over than weight of any other path in

P̂ 1, running from (u1, 0) to (u2, i).

By the construction of the path ẑ and according to (5), L(z) = L̂(ẑ).

Now, in the polyhedron P , let consider another path z′ connecting the

vertices u1, u2 and homologous to x. Since p : P̂ → P is a covering, there

exists the unique path ẑ′ in P̂ , that covers z′ and starts at the vertex

(u1, 0). At the same time, by statement 3 the end points of these paths

ẑ and ẑ′ coincide. But then according to the above proof, L(z) = L̂(ẑ) ≤

L̂(ẑ′) = L(z′). �
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Remark 6. If u1 = u2, then algorithm 2 constructs containing u1 cycle

z ∈ Z1(P ) homologous to the cycle x and having minimal weight L(z) in

set of all cycles with the same properties.

ALGORITHM 3. Searching for the minimal cycle from fixed

gomology class.

Input:

1) list V (P ) of vertices for polyhedron P ;

2) lists U(v, P ) of vertices incident to v for all vertices v ∈ V (P );

3) simple basis cycles zn−1
1 , zn−1

2 , . . . , zn−1
r of homology group Hn−1(P );

4) lists V (zn−1
1 ), . . . , V (zn−1

r ) of vertices from cycles zn−1
1 , . . . , zn−1

r re-

spectively;

5) index vector-function J : C1(P ) → Z
r
2 relative to basis [zn−1

1 ], . . . ,

[zn−1
r ] of Hn−1(P );

6) weight function L : C1(P ) → R;

7) cycle x ∈ Z1(P ).

Output:

1-cycle z ∈ Z1(P ).

Algorithm Description.

Step 1. Set Z := ∅.

Step 2. Determine the vector i = J(x).

Step 3. If i = 0, then set z = 0 and go to step 7.

Step 4. Find a number k ∈ {1, . . . , r} such that coordinate ik of the

vector i is equal 1.

Step 5. For each vertex v ∈ V (zn−1
k ) execute steps 5.1 – 5.3.

Step 5.1. Using algorithm 2 we find containing v cycle zv ∈ Z1(P )

homologous to the cycle x and having minimal weight L(zv) in set of all

cycles with the same properties.

Step 5.2. Add the cycle zv into the list Z.

Step 5.3. Take the next vertex v ∈ V (zn−1
k ).

Step 6. Choose the cycle z ∈ Z such that L(z) = min
z′∈Z

L(z′).

Step 7. Quit.

End of algorithm.

Theorem 3. Let z be the the cycle found by the algorithm 3. Then

• z ∼ x;

• L(z) = min
y∈[x]

L(y).
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Proof. First, if i = 0, then according to proposition 1, cycle x is homolo-

gous to zero. At the same time we assume in step 3 that z = 0. According

to (4), L(0) = 0. Thus, in this case z ∼ x and L(z) = min
y∈[x]

L(y).

Further, let i 6= 0. Then according to step 4 ik = 1 for k ∈ {1, . . . , r}.

Let now consider an arbitrary element zv in the list Z. It is chosen

in step 5.1, and according to this step zv ∼ x. Since z = zv for some

v ∈ V (zn−1
s ) then z ∼ x too.

Let assume that some one-dimensional cycle y of the polyhedron P

belongs to the class [x]. Then J(y) = J(x) = i. Hence, Ind([y], [zn−1
k ]) =

Jk(y) = 1, and therefore the cycles y and zn−1
k have at least one common

vertex u ∈ V (zn−1
k ). In this case, according to the selection of cycle zu

in step 5.1 of algorithm 3, L(zu) ≤ L(y)). This implies according to step

6, that L(z) ≤ L(zu) ≤ L(y). �

For all algorithms we created program realization of C++ classes.

Then we found cycles of minimal length on several computer models

of closed 2-dimensional manifolds.
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