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Abstract. We study quantizations, associativity constraints and

braidings in the monoidal category of monoid graded modules over a

commutative ring. All of them can be described in terms of the co-

homology of the underlying (finite) monoid. The Fourier transform of

finite groups gives a corresponding description in the monoidal category

of modules with action by a group.

1. Introduction

We investigate the monoidal category of modules over a commutative

ring R with grading by a monoid M and associativity constraints, quan-

tizations, braidings of this category. We assume that the monoid is finite

and commutative.

For this category the associativity constraints are 3-cocycles of M with

coefficients in the group of invertible elements in R, U (R). The 3-cocycle

condition is equivalent to the Mac Lane coherence condition. Under ac-

tion by natural isomorphisms of the tensor bifunctor the classes of asso-

ciativity constraints are the 3rd cohomology group of M with coefficients

in the group of invertible elements in R, U (R).

Similarly, for the category of M -graded modules quantizations up to

natural isomorphisms of the identity functor are representations of the

2nd cohomology group of M with coefficients in U (R).
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Braidings for this category are represented by symmetric 2-cochains of

the monoid with coefficients in U (R) satisfying conditions that are the

bihomomorphism conditions when the associativity is trivial.

We consider the monoidal category of modules with an action by a

finite abelian group G.

With the description of associativity constraints, quantizations and

braidings for graded modules we obtain the corresponding associativity

constraints, quantizations and braidings for modules with action by a

finite abelian group by applying the Fourier transform of finite groups.

More precisely, for R = C the Fourier transform of finite groups

F : C [G] → C

(

Ĝ
)

,

induces a functor isomorphism between the monoidal categories of Ĝ-

graded modules and G-modules. The isomorphism is that constructed

by change of rings with the assumption that the ring homomorphism is

an isomorphism.

2. Associativity constraints, braidings and quantizations

of monoidal categories

2.1. Associativity constraints. Let C be a monoidal category with

unit e.

An associativity constraint α [9] in a monoidal category C is a natural

isomorphism

α : ⊗ ◦ (1 ×⊗) → ⊗ ◦ (⊗× 1) ,

α = αX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z,

X, Y, Z ∈ Ob (C), which satisfies the Mac Lane-coherence condition,

namely the following diagram commutes,

X ⊗ (Y ⊗ (Z ⊗W ))
α- (X ⊗ Y ) ⊗ (Z ⊗W )

α- ((X ⊗ Y ) ⊗ Z) ⊗W

X ⊗ ((Y ⊗ Z) ⊗W )

1 ⊗ α

? α - (X ⊗ (Y ⊗ Z)) ⊗W

α⊗ 1

?

,

X, Y, Z,W ∈ Ob (C). If the associativity constraint is trivial we say that

the monoidal category is strict.
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2.2. Quantizations. A quantization [6] of a monoidal category C is a

natural isomorphism of the tensor bifunctor

q : ⊗ → ⊗,

qX,Y : X ⊗ Y → X ⊗ Y,

X, Y ∈ Ob (C), which preserves the unit and associativity so that the

following diagram

X ⊗ (Y ⊗ Z)
α- (X ⊗ Y ) ⊗ Z

X ⊗ (Y ⊗ Z)

1 ⊗ qY,Z

?
(X ⊗ Y ) ⊗ Z

qX,Y ⊗ 1

?

X ⊗ (Y ⊗ Z)

qX,Y⊗Z

? α- (X ⊗ Y ) ⊗ Z

qX⊗Y,Z

?

(1)

commutes for all X, Y, Z ∈ Ob (C). We call this the coherence condition

for quantizations.

2.3. Braidings. A braiding [9] of a monoidal category C is a natural

isomorphism

σ : ⊗ → ⊗ ◦ τ

σ = σX,Y : X ⊗ Y → Y ⊗X,

X, Y ∈ Ob (C), which preserves the unit and associativity such that the

following diagrams

X ⊗ (Y ⊗ Z)
α- (X ⊗ Y ) ⊗ Z

X ⊗ (Z ⊗ Y )

1 ⊗ σ

?
Z ⊗ (X ⊗ Y )

σ

?

(X ⊗ Z) ⊗ Y

α

? σ ⊗ 1- (Z ⊗X) ⊗ Y

α

?

,

X ⊗ (Y ⊗ Z)
α- (X ⊗ Y ) ⊗ Z

(Y ⊗ Z) ⊗X

σ

?
(Y ⊗X) ⊗ Z

σ ⊗ 1

?

Y ⊗ (Z ⊗X)

α(−1)

? 1 ⊗ σ- Y ⊗ (X ⊗ Z)

α(−1)

?

(2)
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commute. This is the coherence condition on braidings.

The braiding σ is a symmetry if

σY,X ◦ σY,Z = Id, (3)

and a monoidal category equipped with such is called symmetric. We

shall mainly work with symmetries.

Remark 1. When the monoidal category is symmetric, the associativity

constraint can be considered as trivial, and if α is trivial then the category

is symmetric.

When the associativity constraint is trivial, the coherence condition

gives what we call the bi(homo)morphism conditions for any braiding σ

(σX,Z ⊗ 1) ◦ (1 ⊗ σY,Z) = σX⊗Y,Z, (i)

(1 ⊗ σX,Z) ◦ (σX,Y ⊗ 1) = σX,Y⊗Z , (ii)

X, Y, Z ∈ Obj (C).

The trivial braiding is the twist, τ : X ⊗ Y → Y ⊗X.

Any braiding composed with the twist, τ ◦ σ, is a quantizations since

the coherence condition for quantizations then is satisfied.

Quantizations act on the set of braidings as follows

σqX,Y = q−1
Y,X ◦ σX,Y ◦ qX,Y

and σq is also a braiding.

2.4. Quantizations of functors. Let Φ : C → C ′ be a unit preserving

functor of two monoidal categories. A quantization of Φ is

Q : ⊗ ◦ (Φ × Φ) → Φ ◦ ⊗,

QX,Y : Φ (X) ⊗ Φ (Y ) → Φ (X ⊗ Y ) ,

X, Y ∈ Ob (C), which preserves units and satisfies the coherence condi-

tion, i.e. the diagram

Φ(X) ⊗ Φ(Y ) ⊗ Φ(Z)
1Φ(X) ⊗QY,Z- Φ(X) ⊗ Φ(Y ⊗ Z)

Φ(X ⊗ Y ) ⊗ Φ(Z)

QX,Y ⊗ 1Φ(Z)

? QX⊗Y,Z - Φ(X ⊗ Y ⊗ Z)

QX,Y⊗Z

?

(4)

commutes.

A quantization of the identity functor 1 = id : C → C is a quantization

of the category.
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If Φ : C → C ′ and Ψ : C ′ → C ′′ are functors of monoidal categories

and QΦ and QΨ are the corresponding quantizations, then

QΨ◦Φ
X,Y

def
= Ψ

(
QΦ
X,Y

)
◦QΨ

Φ(X),Φ(Y )

is a quantization of Ψ ◦ Φ. See [6].

3. Associativity constraints, quantizations and braidings

of graded modules

3.1. The monoidal category of graded modules. Let M be a finite

commutative monoid. Let R be a commutative ring with unit.

Denote by modR (M) the strict monoidal category [9] of M -graded

R-modules,

X = ⊕m∈MXm.

Denote the grading of a homogeneous element x ∈ X either by |x| ∈M ,

or write xm, m ∈M .

The arrows of modR (M) are the M -graded morphisms

f = {fm : Xm → Xm}m∈M ,

i.e. morphisms that preserves gradings.

The tensor product X ⊗R X
′ of two objects in modR (M) is defined

(X ⊗R X
′)m = ⊕i+j=m(Xi ⊗R X

′
j).

The ring R is a unit object as we define R to be indexed by 0 ∈ M

and components indexed by m ∈M , m 6= 0, are all zeros.

The direct sum of two objects X,X ′ in modR (M) is

X ⊕X ′ = ⊕m∈M (Xm ⊕X ′
m) .

An object Y is a M-graded submodule of X if and only in Ym is a

submodule of Xm for all m ∈M .

An object is a M-graded factor module, X/Y , if it has components

(X/Y )m = Xm/Ym

for all m ∈M .

An algebra A in modR (M) is called a M-graded R-algebra and is

equipped with multiplication

µ : A⊗ A→ A

which maps Ai ⊗ Aj to Ai+j, i, j ∈M .

An A-module E in modR (M) is called a M-graded A-module and is

equipped with an action

ν : A⊗ E → E
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which maps Ai ⊗ Ej to Ei+j, i, j ∈M .

Remark 2. A module E graded by a finite abelian group G can be consid-

ered as a bundle where Eg is the fiber at the point g ∈ G. The categorical

constructions like associativity constraints, braidings and quantizations

are sections of this bundle. (However, as we shall see, these are really

just multiplications by constants depending on G).

3.2. Associativity constraints for M-graded modules. For the mo-

noidal category ofM -graded R-modules we get an explicit description the

associativity constraints in terms of the grading.

Let X, Y and Z be M -graded R-modules. Choose homogeneous ele-

ments x ∈ X, y ∈ Y and z ∈ Z with grading |x|, |y| and |z| respectively.

Let R|x| be the M -graded R-module such that
(
R|x|

)

m
= R, if m = |x|,

(
R|x|

)

m
= 0, if m 6= |x|.

Construct a morphism

φ|x| : R|x| → X

such that

φ|x| : 1|x| = (0, . . . , 1, . . . , 0) 7→ (0, . . . , x, . . . , 0) ,

where 1 appears in the |x|th place. Similarly construct M -graded R-

modules and morphisms

φ|y| : R|y| → Y,

φ|z| : R|z| → Z.

By naturality of α the diagram

X ⊗ (Y ⊗ Z)
αX,Y,Z - (X ⊗ Y ) ⊗ Z

R|x| ⊗ (R|y| ⊗ R|z|)

φ|x| ⊗ (φ|y| ⊗ φ|z|)

6

αR|x|,R|y|,R|z|- (R|x| ⊗R|y|) ⊗ R|z|

(φ|x| ⊗ φ|y|) ⊗ φ|z|

6

(5)

commutes.

Since associativity constrains preserves units

αR|x|,R|y|,R|z|
: 1|x| ⊗

(
1|y| ⊗ 1|z|

)
7−→ α (|x|, |y|, |z|)

(
1|x| ⊗ 1|y|

)
⊗ 1|z|

where α (|x|, |y|, |z|) ∈ U (R), U (R) is the group of unit elements in R.
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By commutativity of the diagram (5)

αX,Y,Z : x⊗ (y ⊗ z) 7−→ α (|x|, |y|, |z|) (x⊗ y) ⊗ z.

This is independent of the choice of x, y and z. We see that α only

depends on the grading and can be represented as 3-cochain

α : M ×M ×M → U (R) .

Clearly every associativity constraint α satisfies the normalization condi-

tion and is in C3 (M,U (R)), the set of normalized 3-cochains of M with

coefficients in U (R), with trivial action of M .

It follows from the coherence condition that

δ (α) = α (i, j, k)α−1 (j, k, l)α (i + j, k, l)α−1 (i, j + k, l)α (i, j, k + l) = 1,

i, j, k, l ∈M , where δ is the coboundary operator, and each associativity

constraint α is a 3-cocycle.

Proposition 1. Any associativity constraint α in the monoidal category

of M-graded R-modules is a normalized 3-cocycle of M with values in

U (R) and of the form

α : x⊗ (y ⊗ z) 7−→ α (|x|, |y|, |z|) (x⊗ y) ⊗ z, (6)

for homogeneous elements x, y, z.

Some of this result can be generalized.

Proposition 2. Any unit preserving natural isomorphism γ from one

n-functor F to another n-functor G in modR (M) can be represented as

a normalized n-cochain of M , with trivial action of M , with coefficients

in U (R),

γ : M × · · · ×M
︸ ︷︷ ︸

n−times

→ U (R) ,

and is of the form

γX1,...,Xn
: F (x1, . . . , xn) 7−→ γ (|x1|, . . . , |xn|)G (x1, . . . , xn)

for homogeneous xi ∈ Xi, Xi ∈ Obj (modR (M)), i = 1, . . . , n.

Let p be a natural isomorphism of the tensor bifunctor in a monoidal

category C,

p : ⊗ → ⊗.

Define an action of p on any associativity constraint α by the commuta-

tive diagram
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X ⊗ (Y ⊗ Z)
α- (X ⊗ Y ) ⊗ Z

X ⊗ (Y ⊗ Z)

1 ⊗ pY,Z

?
(X ⊗ Y ) ⊗ Z

pX,Y ⊗ 1

?

X ⊗ (Y ⊗ Z)

pX,Y⊗Z

? p(α)- (X ⊗ Y ) ⊗ Z

pX⊗Y,Z

?

, (7)

where X, Y, Y ∈ Ob (C).

If X, Y and Z are M -graded R-modules then

p (α) (i, j, k) = α (i, j, k) p (j, k) p−1 (i+ j, k) p (i, j + k) p−1 (i, j)

= α (i, j, k) δ (p) (i, j, k) ,

i, j, k ∈M . Hence

p (α) = α · δ (p) .

To sum up the results in this section, the following theorem give a

complete description of associativity constraints in the category of M -

graded R-modules up to the action above.

Theorem 3. The orbits of all associativity constraints in the monoidal

category modR (M) under the action of natural isomorphisms of the ten-

sor bifunctor is in one to one correspondence with the 3rd cohomology

group H3 (M,U (R)).

3.3. Quantizations of the category of M-graded modules.

In modR (M) any quantization q is a normalized 2-cochain of M with

coefficients in U (R)

q : M ×M → U (R) ,

and for homogeneous elements x and y,

q : x⊗ y 7−→ q (|x|, |y|)x⊗ y.

By the coherence condition of quantizations (1)

δ (q) = q (i, j) q−1 (i, j + k) q (i+ j, k) q−1 (j, k) = 1,

i, j, k ∈M , hence any quantization q in modR (M) of is a 2-cocycle.
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Remark 3. By commutativity of the diagram (1), any quantization acts

on the set of associativity constraints, defined as above by the diagram

(7). This action is trivial as any quantization is a cocycle, δ (q) = 1.

Let λ be a unit preserving natural isomorphisms of the identity functor

in a monoidal category C,

λ : Id→ Id.

Define an action of λ on the set of quantizations of a monoidal category

by the commutativity of the diagram

X ⊗ Y
qX,Y- X ⊗ Y

X ⊗ Y

λX ⊗ λY

? λ(qX,Y )
- X ⊗ Y

λX⊗Y

?

(8)

where X, Y are objects of the category. It is easily checked that this is

an action and that λ (q) is a quantization.

If X and Y are M -graded R-modules we have the following represen-

tation of the action

λ (q) (i, j) = q (i, j)λ (j)λ−1 (i + j)λ (i)

= q (i, j) δ (λ) (i, j) ,

i, j ∈ M . We consider orbits of the quantization with respect to the

action of natural isomorphisms of the identity functor.

The following theorem give a complete description of quantizations in

the category of M -graded R-modules.

Theorem 4. The orbits of all quantizations the monoidal category of

modR (M) under the action of unit preserving natural isomorphisms of

the identity functor is in one to one correspondence with the 2nd coho-

mology group, H2 (M,U (R)).

3.4. Braidings in the category of M-graded modules. Any braid-

ing σ can be represented by a normalized 2-cochain of M with coefficients

in U (R) ,

σ : M ×M → U (R) .

In addition, the coherence condition on braidings (2) gives certain prop-

erties of the 2-cochains summarized in the following theorem.
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Theorem 5. A braiding σ in the monoidal category modR (M) has the

form

σ : x⊗ y 7−→ σ (|x|, |y|)y ⊗ x

where σ : M ×M → U (R) is a normalized 2-cochain satisfying

σ (i + j, k) =
α (i, k, j)

α (i, j, k)α (k, i, j)
σ (i, k) σ (j, k) , (9)

σ (i, j + k) =
α (i, j, k)α (j, k, i)

α (j, i, k)

σ (i, j)

σ (k, i)
,

and

σ (i, j)σ (j, i) = 1,

i.e., any braiding in modR (M) is a symmetry. Furthermore, if the as-

sociativity constraint α is trivial we get bihomomorphism condition for

σ,

σ (i+ j, k) = σ (i, k) σ (j, k) , (10)

σ (i, j + k) = σ (i, j) σ (i, k) ,

i, j, k ∈M .

4. Projections, the function algebra and the group

algebra

4.1. M-graded modules by projections. First, more generally, let M

be a finite commutative monoid.

There is a way to introduce M -graded modules equivalently to that of

section 3.1.

Namely, let X be a R-module. Let

{πm : X → X}m∈M

be a family of projectors with the properties

πmπn = πnπm = πm+n,
∑

m∈M

πm = Id.

Then πm projects X on Xm,

Xm = Im (πm) .

Any such family of projectors determines a M -grading on X ensured by

the properties of projections.



ASSOCIATIVITY CONSTRAINTS 15

On the other hand, if X is a M -graded module then a family of pro-

jectors can be defined by

πm (X) = Xm.

4.2. M-graded algebras and algebra modules by projections. Let

A be a R-algebra with multiplication µ : A ⊗ A → A. Then a family

{πm}m∈M of projectors introduces a grading on A, Am = Im (πm), and

the product projects as follows

πm (ab) =
∑

i+j=m

πi (a)πj (b) , (11)

a, b ∈ A, i.e. the diagram

A⊗ A
µ - A

(A⊗ A)m

Σi+j=mπi ⊗ πj

? µ - Am

πk

?

(12)

commutes.

Conversely, let A be a M -graded algebra with multiplication µ. Then

a family of projectors is defined by

πm (A) = Am,

and (11) is satisfied.

Let E be an A-module with action ν : A ⊗ E → E. Then, similarly,

there is a grading introduced by projectors and

πm (ax) =
∑

i+j=m

πi (a)πj (x) , (13)

a ∈ A, x ∈ E.

Conversely, let E be a M -graded A-module. Then a family of projec-

tors is defined by

πm (E) = Em,

and (13) is satisfied.

4.3. M-graded operators. Let X and Y be M -graded modules. By

an operator Tm : X → Y of grade m ∈ M we mean a R-linear operator

such that

Tm (Xn) ⊂ Yn+m,

n ∈M . The sum of such operators, T = ⊕m∈MTm, is called a M -graded

operator. For M -graded operators the following diagram commutes
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X
T - Y

Xn

πn

? Tm- Ym+n

πm+n

?

, (14)

i.e.,

T ◦ πn = πm+n ◦ T. (15)

Proposition 6. Let M be a group and X and Y be M-graded modules.

Then any operator T : X → Y is a M-graded operator.

Proof. Let

Tm = T |Xm
: Xm → Y =

∑

n∈M

Yn,

hence

Tm =
∑

n∈M

Tmn : Xm → Yn,

and write the operator as a matrix T =
[
T ji
]
. Let

[
T ji
]

m
be the matrix

where all entries except those of the form T nn+m, n ∈ M , are zero. Then
[
T ji
]

m
is an operator of grade m ∈M and

T =
∑

m∈M

[
T ji
]

m
.

4.4. The bialgebra R (M). Consider the algebra R (M) of R-valued

functions on M with multiplication

µ : R (M) ⊗ R (M) → R (M) ,

µ (f ⊗ g) (m) = f (m) g (m) ,

m ∈ M , and the multiplication of M , m : M ⊗M → M , introduces a

diagonal m∗,

m∗ : R (M) → R (M) ⊗ R (M) ,

m∗ (f) (m,n) = f (mn) ,

m, n ∈M .

The unit is

ι : R→ R (M) , e 7−→ 1,

and counit,

ε : R (M) → R, f 7−→ f (e) .
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The functions {θm}m∈M ,

θm (n) =

{
0 if n 6= m

1 if n = m
, ∀m,n ∈M,

constitute a basis of R (M).

The properties of {θm}m∈M are

µ (θm ⊗ θn) = θmθn = θnθm =

{
0, m 6= n

θm, m = n
,

∑

m∈M

θm = 1,

m∗ (θm) (n, n′) = θm (nn′) =

{
0, m 6= nn′

θm, m = nn′ ,

m, n, n′ ∈M .

Note the similarities with the properties of projections.

4.5. M-graded modules are R (M)-modules. For any R (M)-module

X, define a M -grading on X,

θm · x
def
= πm (x) = xm,

m ∈M and x ∈ X.

On the other hand, let X be a M -graded R-module. Define the action

of any function f ∈ R (M) by

f · x = (
∑

m∈M

f (m) θm) · x =
∑

m∈M

f (m) πm (x) ,

x ∈ X.

This gives the following proposition.

Proposition 7. A R-module X is a R (M)-module if and only if X is a

M-graded R-module.

A (strict) monoidal structure is given on R (M)-modules as

f · (x⊗ y) = m∗ (f) (x⊗ y) ,

and there is an isomorphism of categories between the monoidal category

of M -graded R-modules and the monoidal category of R (M)-modules.
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4.6. The bialgebra R [M ]. Denote by R [M ] the dual of the function

algebra,

R (M)∗ = HomR (R (M) , R) = R [M ] ,

which is the the group (or monoid) algebra of M , and the basis of R [M ]

is consists of Dirac δ-functions,

{δm}m∈M = {θ∗m}m∈M ,

such that

〈δm, θm〉 = 1,

〈δm, θn〉 = 0,

m, n ∈M , m 6= n.

The multiplication and comultiplication is

δmδn = δmn,

∆ (δm) = δm ⊗ δm,

m, n ∈M , f, f ′ ∈ R (M).

The unit is

ε∗ : R → R [M ] ,

where

〈ε∗ (e) , f〉 = 〈e, ε (f)〉 = 〈e, f (e)〉 = f (e) ,

f =
∑

m∈M f (m) θm ∈ R (M), and the counit

ι∗ : R [M ] → R,

〈ι∗ (s) , e〉 = 〈s, ι (e)〉 = 〈s, θe〉 = s (e) ,

s =
∑

m∈M s (m) δm ∈ R [M ], e ∈M .

We have the following well known fact.

Proposition 8. M-action on a module X is equivalent to R[M ]-module

structure on X.

5. Grading and action

In this section we will compare modules with an action by a finite

abelian group G, i.e. modules with a cograding by G, and grading by the

dual of G. By the Fourier transform of finite groups we will construct a

functor isomorphism between the monoidal categories of graded modules

and cograded modules.
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5.1. The Fourier transform for finite groups. For any finite abelian

group G and R = C the Fourier transform of finite groups provides us

with an isomorphism from Ĝ-grading to G-action.

Let

Ĝ = Hom
(
G, T 1

)

be the dual group of G, consisting of all group homomorphisms

χ : G→ T 1,

where T 1 = {z ∈ C | |z| = 1} is the 1-dimensional torus.

The Fourier transform F of finite abelian groups [13] is the map

F : C [G] → C

(

Ĝ
)

,

given by

F (δg) (χ) = χ (g)

= χ
(
g−1
)
,

for g ∈ G and χ ∈ Ĝ, and

F (s) (χ) =
∑

g∈G

s (g)χ
(
g−1
)
,

for any element

s =
∑

g∈G

s (g) δg ∈ C [G] .

The inverse is the following

F−1 (θχ) =
1

|G|

∑

g∈G

χ (g) δg

for χ ∈ Ĝ, and

F−1 (f) =
1

|G|

∑

χ∈Ĝ
g∈G

f (χ)χ (g) δg,

for any element

f =
∑

χ∈Ĝ

f (χ) θχ ∈ C

(

Ĝ
)

.

Note that

F−1 (1) = F−1




∑

χ∈Ĝ

θχ



 =
1

|G|

∑

g∈G

χ∈Ĝ

χ (g) δg = δe.

We have the following well known fact.
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Proposition 9. The Fourier transform is a bialgebra isomorphism.

5.2. Change of rings. Consider two rings A and B and a ring homo-

morphism φ : A → B. By Change of rings, see [1], we find a functor

between the monoidal categories of A-modules and B-modules. Specifi-

cally, between C [G]-modules and C

(

Ĝ
)

-modules.

Let modA and modB be the monoidal categories of A- and B-modules

over R respectively.

A ring homomorphism φ : A → B defines a unit preserving functor

between the monoidal categories

φ! : modB → modA,

by

φ! (X) = X,

φ! (f : X → X ′) = f,

where X and X ′ are B-modules and f : X → X ′ is an B-module homo-

morphism and the module structure is changed as follows.

Let X be a (left) B-module. Then, X is an A-module

ax = φ (a)x,

a ∈ A, x ∈ X.

Let Y be a (left) A-module. The tensor product

Yφ = B ⊗A Y,

is a B-module,

b′ (b⊗A y) = (b′b) ⊗A y,

b, b′ ∈ B, y ∈ Y .

If φ is an isomorphism, the inverse of φ! is
(
φ!
)−1

=
(
φ−1
)!

.

Theorem 10. Let φ : A → B be an isomorphism of rings. Then φ! is

an isomorphism of monoidal categories.

Let Φ : C → D be an isomorphism of monoidal categories. Let qC be

a quantization of C. Then

Q = qDX,Y : Φ (X) ⊗C Φ (Y ) → Φ (X ⊗D Y ) ,
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X, Y ∈ Obj (C), is the quantization of D via the functor Φ given by the

commutativity of

Φ(X) ⊗ Φ(Y )
Q = qD- Φ(X ⊗ Y )

X ⊗ Y

Φ ⊗ Φ

6

qC - X ⊗ Y

Φ

6

,

i.e.

Q = qD = Φ ◦ qC ◦ (Φ ⊗ Φ)−1 .

Note that Q is really the quantization of the functor Φ.

Similarly, associativity constraints and braidings of one of the cate-

gories corresponds to the ones in the other by the following diagrams.

For associativity constraints,

Φ(X) ⊗ (Φ(Y ) ⊗ Φ(Z))
αD- (Φ(X) ⊗ Φ(Y )) ⊗ Φ(Z)

Φ(X) ⊗ Φ(Y ⊗ Z)

1 ⊗Q

?
Φ(X ⊗ Y ) ⊗ Φ(Z)

Q⊗ 1

?

Φ(X ⊗ (Y ⊗ Z))

Q

? Φ(αC) - Φ((X ⊗ Y ) ⊗ Z)

Q

?

,

and for braidings,

Φ(X) ⊗ Φ(Y )
σD- Φ(Y ) ⊗ Φ(X)

Φ(X ⊗ Y )

Q

? Φ(σC)- Φ(Y ⊗X)

Q

?

.

Hence the following theorem.

Theorem 11. Let Φ : C → D be an isomorphism of monoidal categories.

Then qC is a quantization of the monoidal category C if and only if

qD = Φ ◦ qC ◦ (Φ ⊗ Φ)−1
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is a quantization of D. Moreover, given a quantization of either of the

categories C and D, then αC , σC are an associativity constraint and a

braiding of C if and only if

αD =
(
1 ⊗ qD

)−1
◦
(
qD
)−1

◦ Φ(αC) ◦ qD ◦
(
1 ⊗ qD

)
,

σD =
(
qD
)−1

◦ Φ(σC) ◦ qD,

are an associativity constraint and a braiding of D.

Under the functor φ! of Change of rings the objects are not changed,

hence the picture is somewhat simplified as we shall see for G-modules

and Ĝ-graded modules.

5.3. The Fourier functor between G-modules and Ĝ-graded mod-

ules. Let G be a finite abelian group.

By Theorem 13, the Fourier transform induces an isomorphism of cat-

egories F ! between C [G]-modules and C

(

Ĝ
)

-modules.

In the discussion above we have seen that C [G]-module structure is

equivalent to G-module structure and C

(

Ĝ
)

-module structure is equiv-

alent to Ĝ-grading.

Hence, as a special case of Change of rings, the Fourier functor

F ! : modG → modC

(

Ĝ
)

,

is a isomorphism of categories between the monoidal categories of G-

modules, modG, and Ĝ-graded modules, modC

(

Ĝ
)

where

F ! (X) = X,

F ! (f) = f,

for a G-module X and a G-module homomorphism f .

Theorem 12. Let X be a G-module. Then there is a Ĝ-grading on X

by the projection

πχ (x) = F−1 (χ) (x) =
1

|G|

∑

g∈G

χ (g) g (x) ,

x ∈ X, χ ∈ Ĝ.

Let Y be a Ĝ-graded R-module. There is a G-module structure on Y

given by

gy =
∑

χ∈Ĝ

F (θg) (χ) yχ =
∑

χ∈Ĝ

χ
(
g−1
)
yχ,

y =
∑

χ∈Ĝ yχ ∈ Y , g ∈ G.
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Proof. The projection πχ is given by the commutativity of the diagram,

E
θχ - E

E

F−1

? F−1(θχ)- E

F−1

?

,

i.e.

F−1 ◦ θχ = F−1 (θχ) ◦ F
−1,

xχ = θχ (x)

= F−1 (θχ) (x)

=
1

|G|

∑

g∈G

χ (g) g (x) .

and the action of g by the commutativity of

E
∂g - E

E

F

? F (∂g) - E

F

?

,

F ◦ ∂g = F (∂g) ◦ F,

g (x) = ∂g (x) =
∑

χ∈Ĝ

F (∂g) (xχ) =
∑

χ∈Ĝ

χ
(
g−1
)
xχ.

Remark 4. Another way to see this isomorphism is the following. Let

G be a finite abelian group and consider a representation of G on X,

ρ : G→ GL (X) .

Then ρ can be decomposed into one-dimensional irreducible representa-

tions and define projections by

πχ (X) = Xχ

where each χ ∈ Ĝ is the character or eigenvalue of a irreducible rep-

resentation and Xχ is the subspace of X invariant with respect to the

irreducible subrepresentation of ρ associated with the character χ.
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X can then be expressed as a direct sum of irreducible G-subspaces

X =
∑

χ∈Ĝ

Xχ.

Remark 5. For any group G, if an abelian group G0 is contained in the

set of automorphisms of a subcategory C0 of the monoidal category modG
of G-modules, then this subcategory C0 is contained in the part of modG
which is graded by the group G0.

6. Associativity constraints, quantizations and braidings

for G-actions

We apply the Fourier transformation to the associativity constraints,

quantizations and braidings for Ĝ-graded modules to obtain the corre-

sponding ones for G-modules.

6.1. Associativity constraints of G-modules. Any associativity con-

straint α̂ is a representation of a 3rd cohomology group of Ĝ with coeffi-

cients in U (C), and

α̂ =
∑

(φ,χ,ψ)∈Ĝ×Ĝ×Ĝ

α̂ (φ, χ, ψ) θ(φ,χ,ψ) =
∑

φ,χ,ψ∈Ĝ

α̂ (φ, χ, ψ) θφ ⊗ θχ ⊗ θψ.

Theorem 13. Any associativity constraint α in the monoidal category

of G-modules is represented as follows

α =
1

|G|3

∑

f,g,h∈G

φ,χ,ψ∈Ĝ

α̂ (φ, χ, ψ)φ (f)χ (g)ψ (h) δf ⊗ δg ⊗ δh,

where α̂ is an associativity constraint in the monoidal category of Ĝ-

graded modules.

Proof. Taking the inverse of the Fourier,

α = (F ⊗ F ⊗ F )−1 (α̂)

= (F ⊗ F ⊗ F )−1




∑

φ,χ,ψ∈Ĝ

α̂ (φ, χ, ψ) θφ ⊗ θχ ⊗ θψ





=
1

|G|3

∑

f,g,h∈G

φ,χ,ψ∈Ĝ

α̂ (φ, χ, ψ)φ (f)χ (g)ψ (h) δf ⊗ δg ⊗ δh.
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We use the somewhat shorter notation

α =
∑

f,g,h∈G

Afghδf ⊗ δg ⊗ δh.

6.2. Quantizations of G-modules. A quantization of a Ĝ-graded mod-

ule is represented by a 2-cocycle q̂ : Ĝ× Ĝ→ U (C), and

q̂ =
∑

φ,χ∈Ĝ

q̂ (φ, χ) θφ ⊗ θχ.

Theorem 14. Any quantization q in the monoidal category of G-modules

is represented as follows

q =
1

|G|2

∑

g,h∈G

φ,χ∈Ĝ

q̂ (φ, χ)φ (g)χ (h) δg ⊗ δh : X ⊗ Y → X ⊗ Y,

where q̂ is a quantization in the monoidal category of Ĝ-graded modules.

Proof. Applying the inverse of the Fourier,

q = (F ⊗ F )−1 (q̂)

= (F ⊗ F )−1




∑

φ,χ∈Ĝ

q̂ (φ, χ) θφ ⊗ θχ





=
1

|G|2

∑

g,h∈G

φ,χ∈Ĝ

q̂ (φ, χ)φ (g)χ (h) δg ⊗ δh.

We use the notation

q =
∑

g,h∈G

Qghδg ⊗ δh.

6.3. Braidings of G-modules. A braiding of C

(

Ĝ
)

-modules is repre-

sented by 2-cochains σ̂ : Ĝ× Ĝ→ U (C), and

σ̂ = τ ◦
∑

φ,χ∈Ĝ

σ̂ (φ, χ) θφ ⊗ θχ.

Theorem 15. Any braiding σ in the monoidal category of G-modules is

represented as follows

σ = τ ◦







1

|G|2

∑

g,h∈G

φ,χ∈Ĝ

σ̂ (φ, χ)φ (g)χ (h) δg ⊗ δh






,
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where σ̂ is a braiding in the monoidal category of Ĝ-graded modules.

Proof. By the Fourier isomorphism, a braiding σ in the monoidal category

of G-modules is

σ = (F ⊗ F )−1 (σ̂)

= τ ◦ (F ⊗ F )−1




∑

φ,χ∈Ĝ

σ̂ (φ, χ) (θφ ⊗ θχ)





= τ ◦







1

|G|2

∑

g,h∈G

φ,χ∈Ĝ

σ̂ (φ, χ)φ (g)χ (h) δg ⊗ δh






.

Use the notation

σ = τ ◦

(
∑

g,h∈G

Sg,hδg ⊗ δh

)

.

Remark 6. The braidings provides us with solutions of the Yang-Baxter

equation for any finite group G.

A quantization of a braiding is

σq = τ ◦

(
∑

g,h∈G

Sqg,hδg ⊗ δh

)

= τ ◦







1

|G|2

∑

g,h∈G

φ,χ∈Ĝ

q̂−1 (χ, φ) σ̂ (φ, χ) q̂ (φ, χ)φ (g)χ (h) δg ⊗ δh






,

where q̂ is a quantization in the monoidal category of Ĝ-graded modules.
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