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Abstract. We compare two compatibility criteria for overdeter-

mined PDEs: one via geometric theory of differential equations and an-

other via differential algebra approach. Whenever both are applicable,

we show that the former is more effective, though in some very special

cases they are equivalent.

Introduction

In this paper we investigate and compare two recent results on compat-

ibility of overdetermined systems of partial differential equations, which

we formulate below. For simplicity of exposition we restrict to the case

of scalar PDEs, though the same comparison results hold true in the

general context (see §3.1).

Let E ⊂ Jk(M) be a system of scalar differential equations on a man-

ifold M , represented as a finite set of equations (relations) {Fi = 0} on

the jet-space. For Gj ∈ C∞(J lM) denote by 〈G〉 = 〈{Gj}〉 (here and

in what follows we denote collections of functions in bold) the algebraic

ideal in C∞(J lM) generated by Gj, i.e. {
∑

hiGi | hi ∈ C∞(J lM)}. For
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polynomial systems E the functions hi may be assumed polynomial and

for linear systems hi ∈ C∞(M) (depending on the context).

Denote also 〈F〉l = 〈∆̂iFi | ord(Fi)+ord(∆i) ≤ l〉, where ∆̂ are the lifts

of scalar differential operators ∆ ∈ diff(M) on M (see §1.1 and [KLV]).

The differential ideal generated by F is 〈〈F〉〉 = 〈F〉∞.

Let us write A
F
 B if B is obtained from A as quotient by the

C∞(J lM)-algebraic ideal 〈F〉l with l = ord(A).

Suppose the system E is regular in the usual sense ([S]). Then we have

(more details will be provided in the subsequent sections):

Theorem 1 ([KL3]). Let E be a complete intersection, i.e. the charac-

teristic varieties CharC(Fi) are jointly transversal. Then the system is

compatible (formally integrable) iff the Jacobi brackets {Fi, Fj} F
 0.

Theorem 2. Let E be a polynomial type system and let {Gj} be its

differential Gröbner basis (dGB). Then E is compatible iff each element

Gj
F
 0.

While the first theorem is recent and substantial, the second is folklore

and easy (we will prove it in §2.2). It can be deduced somehow from

the pioneer works by Ritt [R] and Kolchin [K], though the dGB notion

appeared later (see the paper [M2], where the question is discussed).

Simple compatibility criteria are very important for solving PDEs

via auxiliary integrals ([KL1, KL2]), in particular cases also known as

Lagrange-Charpit method ([Gu]), non-classical symmetries ([BC]), di-

rect reduction ([CK]) etc.

The purpose of this paper is to discuss effectiveness of these compat-

ibility criteria. Let us call two criteria equivalent if they calculate the

same number of obstructions. In the case of brackets approach, this is the

number of all pair-wise brackets and for dGB basis this is the number

of elements in the basis. While different elements-obstructions involve

different calculations, it is known that complications with Gröbner ba-

sis are mostly due to its length. So principally the comparison by the

number of elements is reasonable.

Of course, the most economical criterion is one that uses the minimal

number of obstructions, i.e. which deals with the basis of syzygies. As

follows from calculations of Spencer cohomologies in [KL2, KL3], the cri-

terion of Theorem 1 is the most economical. But it is clear that criterion

of Theorem 2 is rarely such (even simple re-numeration of the coordinates

can increase the number of elements in the dGB, while it is irrelevant for
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the calculation with the brackets). More exactly, we show (more details

and terminology see in the main text):

Theorem 3. For a differential-polynomial scalar system of complete in-

tersection type the second criterion is never more optimal than the first.

Moreover, the two criteria compare as follows. Consider a total degree

order. Then:

(1) If the system is triangular-linear with the leading terms forming

a complete intersection, then the above criteria are equivalent.

(2) If the system is generic linear (even differentially triangular), then

the first criteria is optimal, while the second is not.

(3) If the system is generic non-linear, then optimality of the second

criterion becomes less with the growth of non-linearity (degree of

the leading terms).

Thus for the most part of PDE systems, for which both criteria apply,

we prove advantage of the method of Theorem 1: The complexity of the

dGB algorithm is poor, while the bracket approach turns out to be quite

effective.

The above result is only one visible comparison between the follow-

ing two approaches: Formal Theory (jet-spaces or basically equivalent

exterior differential systems) and Differential Algebra. We discuss other

relations below in the text.

1. Preliminaries

Here we recollect basic facts important for understanding Theorems 1

and 2.

1.1. Jacobi-Mayer bracket. For (non-linear) scalar differential opera-

tors F, G ∈ diff(M) = C∞(J∞(M)) the Jacobi bracket is defined by the

formula:

{F, G} = `F (G) − `G(F ),

where `F is the operator of universal linearization along F and similarly

for G. If F ∈ diffk(M) = C∞(Jk(M)) is the operator of k-th order

and G ∈ diff l(M), then the bracket satisfies: {F, G} ∈ diffk+l−1(M).

For linear operators F, G ∈ Diff(M) the bracket {F, G} is the usual

commutator.

Let’s write the Jacobi bracket in the canonical coordinates (xi, pσ) on

the jet-space J∞(M) (see [KLV]). Recall that these are the base M

coordinates (x1, . . . , xn) coupled with the vertical coordinates pσ (with

σ = (i1, . . . , in), ij ≥ 0, being a multi-index) fixed by the condition
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pσ([u]kx) = ∂|σ|u/∂xσ for |σ| =
∑

ij ≤ k (here [u]kx ∈ Jk(M) is the k-jet

of the function u at x).

The total derivative operator Dσ : diffk(M) → diffk+|σ|(M) is defined

by: Dσ = Di1
1 . . .Din

n , Dj =
∑

pσ+1j
∂pσ

. Thus we get

〈F〉l = 〈DσiFi | ord(Fi) + |σi| ≤ l〉.

Expressed in the canonical coordinates the linearization operator has

the form: `F =
∑

Fpσ
Dσ. Thus for F ∈ diffk(M), G ∈ diff l(M) we have:

{F, G} =
∑

|σ|≤l

Dσ(F )Gpσ
−

∑

|τ |≤k

Dτ(G)Fpτ
.

If in the above summation we restrict to equalities for |σ|, |τ |, we get the

Mayer bracket [F, G]. They equal modulo the ideal

〈F, G〉k+l−1 = 〈DσF,DτG : |σ| ≤ l − 1, |τ | ≤ k − 1〉,

so that {F, G} F,G
 [F, G]. We call their common value in the quotient

space the Jacobi-Mayer bracket.

1.2. Compatibility and Solvability. System E = {Fi = 0} can be de-

fined by PDEs of different orders. In this case it is important to describe

prolongations successively (we refer to the definition of prolongations

and other notions for the systems of pure degree to [S, KLV], the general

theory of various degrees is sketched in [KL2]).

Let Ek = {Fj = 0 | deg(Fj) ≤ k} be the locus of equations 〈F〉k in the

jet-space JkM . We say that E is compatible up to the level k if Ek−1 has

one prolongation and Ek = E (1)
k−1 ∩ {Fj = 0 | deg Fj = k} is foliated over

Ek−1 via the surjection πk,k−1 : JkM → Jk−1M . If Ek is compatible at all

levels the system E is called formally integrable.

A finite type system E is the system without (complex) characteristics.

Equivalently this means that a sufficiently high prolongation of the sym-

bol of E vanishes [S]. Then for the same jet-level k for any xk−1 ∈ Ek−1

the set π−1
k,k−1(xk−1) ∩ Ek is discrete and formal integrability implies the

local one (thanks to Frobenius theorem).

For general systems one needs to examine compatibility on many lev-

els to conclude formal integrability. But due to [KL3] the compatibil-

ity conditions are known if the system is of complete intersection type.

This is a condition of general position if E is given by r ≤ n = dim M

PDEs (finite type corresponds to r = n). It can be formulated by the

requirement of joint transversality for characteristic varieties ([KL2]):

codim CharC(E) = r.
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In this case the obstructions to compatibility are the Jacobi-Mayer

brackets {Fi, Fj}. If they vanish due to the system (in the sense of

Theorem 1), E is formally integrable.

Otherwise we need to add the brackets to the system and continue

investigation of integrability by computing new compatibility conditions.

On the level of geometry if some projection πk,k−1 : Ek → Ek−1 is not

epimorphic (surjective, but we always consider the regular case, so the

distinction becomes inessential), we redefine Ek−1 to be the image.

This is the essence of prolongation-projection method and Cartan-

Kuranishi theorem guarantees that it terminates in the regular case. If

we stop at some non-empty equation (for empty ones Cartan used the

term ”contradiction”) we get formal solutions, so the system becomes

(formally) solvable (or consistent as is said in differential algebra context).

In this note we study only the first step to solvability investigation:

calculation of the compatibility conditions. And for this test we compare

two criteria from the introduction.

1.3. Differential algebra. Let us fix an order on the set of derivatives

pσ, which is compatible with the operator of differentiation Dτ (it in-

creases the order and preserves the inequalities). A good candidate,

which we use below, is the total order, for which pσ < pτ when |σ| < |τ |,
and one can use the lexicographic order (involving ordering of coordinate

variables x1, . . . , xn), when |σ| = |τ |.
Then every differential polynomial F (a usual polynomial in xi, pσ)

possesses the leading term HT(F ) = max{pσ | ∂pσ
F 6= 0}. This term

occurs in F in maximal degree HD(F ) = max{k | ∂k
HT(F )F 6= 0} and the

coefficient before it equals HC(F ) = 1
HD(F )!

∂
HD(F )
HT(F )F . Thus the leading

monomial HM(F ) equals the result of iterations of the operator F 7→
HC(F ) · HT(F )HD(F ), applied to the leading coefficient etc.

In reducing a differential polynomial F by a set G = {Gj} we use

simplifications by elements of the algebraic ideal generated by DσjGj,

|σj| ≤ ord(F ) − ord(Gj) to get a minimal possible element w.r.t. the

order. During this process only differential polynomials with leading

monomials smaller than or equal to HM(F ) can be used. We thus obtain

the normal form NF(F ;G).

However, since in differential polynomial algebra we cannot divide, one

is allowed to multiply F by some (not identically zero) differential poly-

nomials in order to obtain pseudonormal form PN(F ;G), so that we get

for some differential polynomial V with HT(V ) < HT(F ) (usually such
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V are included into the set of inequalities/singularities of the system):

F 99K V · F def
= PN(F ;G).

Note that the pseudonormal form, contrary to the normal form, is not

unique due to non-uniqueness of the factor V choice [R, K].

This process is called a pseudo-reduction and it is denoted by

F
G
 

p
PN(F ;G).

Note that A
G
 

p
B implies A

G
 B, but not otherwise.

Similar to the Buchberger’s S-polynomial one introduces the differ-

ential S-polynomial dS(F1, F2) as follows. Let αi be the minimal among

multi-indices that satisfy the equality: Dα1 HT(F1) = Dα2 HT(F2). Then

ki = HD(DαiFi) equals HD(Fi) if αi = 0 and 1 when |αi| > 0 (prolonga-

tion of any equation is quasi-linear). Denote mi = LCM{k1, k2}/ki.

Let Wi = HC((DαiFi)
mi) and Zi = Wi/ GCD{W1, W2}. Then we

define:

dS(F1, F2) = Z2 · (Dα1F1)
m1 − Z1 · (Dα2F2)

m2 .

If I is a differential ideal, then subset of its elements {Gj} is called a

differential Gröbner basis, if for every element F ∈ I the pseudonormal

form is uniquely defined and equals zero: F
G
 

p
0.

The Buchberger algorithm can be combined with Kolchin-Ritt algo-

rithm to produce effectively a dGB ([M1, H]). In brief it is done as fol-

lows. One chooses a set of generators G = {Gj} of the differential ideal I

(in the case of PDE systems it is usually presented as such). Then if for

a pair of functions Gi, Gj their dS-polynomial does not G pseudo-reduce

to zero, this PN(dS(Gi, Gj),G) is added to the basis. The resulted set

in many cases is a dGB.

But we would like to minimize it by removing elements, that pseudo-

reduce to zero via the rest and then removing differential monomials,

which can be dS-reduced by the leading terms. So we will understand

by a dGB such a basis, which is also minimal and reduced.

Given a dGB one can answer many questions about the system. For

instance, the system is solvable iff the dGB contains no non-zero poly-

nomial in the variables xi only. It is also possible to determine formal

integrability (see [M2] for a sufficient condition) and we are going to

investigate compatibility.



JACOBI-MAYER BRACKET VS. DGB 63

2. Comparison results

2.1. Compatibility via dGB. We shall start with Theorem 2. Since

no exact reference is known to the author, a simple proof will be pro-

vided, which almost directly follows from the definitions. We actually

prove more: Namely the system is compatible to the level k iff for a

Gröbner basis G we have: Gj
F
 0 whenever ord(Gj) ≤ k. The formal

integrability is obtained from this for k = ∞.

Actually, let I = I(F) be the differential ideal of the system E = {Fi =

0}. It is filtered by the order of operators: Ik = I ∩ diffk(M).

Compatibility to the level k can be reformulated as

〈F〉l = 〈〈F〉〉 ∩ diff l(M) for l ≤ k

or via the ideal I as the claim: H
F
 0 ∀H ∈ Ik. Since elements of the

Gröbner basis Gi are in the ideal, the necessity follows. But any other

element of I pseudo-reduces to 0 by G and so it reduces to zero via F:

H
G
 

p
0 ∀H ∈ Ik & Gi

F
 0 ∀i =⇒ H

F
 0 ∀H ∈ Ik,

which constitutes the sufficiency.

Remark 1. If the system is linear, then the reduction Gj
F
 0 of Theorem

2 can be relaxed to the requirement Gj
F
 

p
0. Equivalently one can describe

generators in the module of compatibility relations via dS-polynomials,

see Theorem 2 of [M2] (proved in [M1]). This set determines the Janet

resolution for the ideal I of E (compatibility of compatibility etc), which

always terminates [J].

We would like now to describe why Theorem 2 is similar to Theorem

1 and then track the differences. When we calculate a dGB {Gj} from

the set of generators {Fi} of I we calculate the pair-wise differential S-

polynomials dS(Fa, Fb). So the first condition is that dS(Fa, Fb)
F
 0 and

this is similar to the Jacobi-Mayer bracket vanishing condition.

In fact, these two conditions coincide iff the system F is differentially

triangular (for definition see [H] or §3.1) or is equivalent to it via a (linear)

transformation of dependent and independent variables. If addition of

(pseudo-reduced) dS-polynomials to the generators does not yield a dGB,

we need to proceed with dS-polynomials and pseudo-reduction and this

usually goes for many times, which shows that the dGB-compatibility

algorithm is less effective than the Jacobi-Mayer bracket approach.
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2.2. Proof of Theorem 3. We consider at first systems of linear equa-

tions, in which case each equation ∇(u) = 0 will be identified with the

differential operator ∇ : C∞(M) → R (there is non-uniqueness, but this

will have no effect on our purpose). Let I be the differential ideal of the

system E in the algebra Diff(M) of scalar linear differential operators on

M equipped with the operation of composition.

Let M = {pσ} be the commutative monoid of all differential monomials

(with operation pσ ∗ pτ = pσ+τ ) and In : I → M be the (initial) homo-

morphism f 7→ HT(f). There is a similar homomorphism ln : I → Z
n
≥0

obtained by post-composition M → Z
n
≥0, pσ 7→ σ, but we’ll be concerned

with the first one.

Define In(I) = {In(f) | f ∈ I} ⊂ M. By assumption in (1) of Theorem

3 this ideal is also a complete intersection. In addition, a collection G is

a dGB for I iff In(G) is a basis of In(I).

It is known [V] for polynomial ideals I that if In(G) is a regular se-

quence, then G is a Gröbner basis for the algebraic ideal generated by G.

If E is a linear system with constant coefficients, then the same holds for

dGB. But if the coefficients are functions, the compatibility conditions

exist.

In case (1) they are brackets as well as reduced dS-polynomials. To

see this denote the leaders of In(I) by pσk
. By assumption they have no

common derivative, so that the minimal αs satisfying Dαi

i pσi
= Dαj

j pσj
,

i 6= j, are αi = σj, αj = σi (in the case of finite type we must have

σ1 = (k1, 0, . . . , 0), σ2 = (0, k2, 0, . . . , 0), . . . , σn = (0, . . . , 0, kn)).

We have: Fk =
∑

σ≤σk
akσ(x)pσ and so

dS(Fi, Fj) =ajσj
DσjFi−aiσi

DσiFj =
∑

σ<σi

ajσj
aiσpσ+σj

−
∑

σ<σj

aiσi
ajσpσ+σi

+. . .

Here we omit the terms, involving derivatives of ασ, of total degree less

than those that are shown. Thus further reductions by Fi with HT(Fi) =

pσi
and by Fj with HT(Fj) = pσj

are possible, we can reduce all terms

of order |σi| + |σj| and the result of (pseudo-)reduction is

dS(Fi, Fj)
Fi,Fj

 
p

[Fi, Fj].

So these brackets are to be added to the dGB, but maybe this does

not suffice, we need to calculate more dS-polynomials etc. However, for

compatibility purposes this is enough. Actually, the compatible case is

characterized by vanishing of the brackets due to the system F and so

by vanishing of all further dS-polynomials.
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If the system is linear, but its In-image is not a complete intersec-

tion, then the calculations with dS-polynomials involve differentiations

of smaller degrees. So before arriving to the Jacobi-Mayer brackets we

calculate some more intermediate dS-polynomials, whence claim (2).

In general non-linear situation (3) we use the space of non-linear differ-

ential operators diff(M) instead of the algebra Diff(M) of linear operators

and it is obvious that the cardinality of dGB grows much higher.

2.3. Examples. In all examples below we impose the total degree order

with x > y.

1) Let F1 = uxx+uxy−λ(x, y, u, ux, uy) and F2 = uyy−µ(x, y, u, ux, uy).

This system is in the triangular form. The higher terms are uxx and uyy

respectively. Let’s construct the differential S polynomial:

dS(F1, F2) = D2
xF2 −D2

yF1

= D2
yλ −D2

xµ − uxyyy
F2

 
p
D2

yλ −D2
xµ −DxDyµ = [F1, F2].

So we see the equivalence.

2) Let us consider the system with constant coefficients (which is al-

ways compatible): F1 = a11uxx +a12uyy and F2 = a21uxxx +a22uyyy. This

linear system cannot be brought to a triangular form unless some of the

coefficients aij vanish. The differential Buchberger algorithm works as

follows:

F3 = dS(F1, F2) = a21DxF1 − a11F2 = a12a21uxyy − a11a22uyyy,

F4 = dS(F1, F3) = a12a21D2
yF1 − a11DxF3

F3

 
p

∆ · uyyyy
∆−1

7−→ uyyyy,

if ∆ = a3
11a

2
22 + a3

12a
2
21 6= 0. All the other differential S-polynomials

reduce to zero. So {Fi}4
i=1 is a dGB, which can be reduced to the dGB

(F1, F3, F4), when ∆ 6= 0, and to the dGB (F1, F3), when ∆ = 0.

In any case the number of calculated dS-polynomials is bigger than

one Mayer bracket [F1, F2] = 0 for complete intersections, i.e. ∆ 6= 0,

or another simple obstruction (see [KL2]) if the system has characteristic

covectors, i.e. ∆ = 0.

3) If in the above example aij = aij(x, y) are polynomials, then the

number of calculated dS-polynomials (as well as the elements in a dGB)

grows. This is just because in addition to the above differential polyno-

mials we should add at least the compatibility condition. But we still

have only one compatibility condition in terms of brackets: [F1, F2] = 0

(when ∆ 6= 0).

In fact, the beginning of the differential Buchberger method is the same

in the variable coefficients situation. We have non-zero F3 = dS(F1, F2)
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and F4 = dS(F1, F3) given by the same formulae. The next differen-

tial polynomials dS(F2, F3), dS(F1, F4), dS(F2, F4) pseudo-reduce to zero

modulo {Fi}4
i=1. But dS(F3, F4) is non-zero and it pseudo-reduces to the

compatibility condition.

For compatibility we can actually stop here, but the dGB is not yet

constructed and we continue. In the most generic case (when compati-

bility does not hold) we pseudo-reduce to the dGB {uxx, uyy}, but this

requires more intermediate dS-polynomials.

4) Consider now a non-linear situation, where the difference between

the two methods becomes more perceptible.

Let us study the question, when the associativity equation (WDVV)

F1 = uyyy + uxxxuxyy − u2
xxy has an auxiliary integral of the form F2 =

uxxuyy − cu2
xy ([KL2]). In other words, when the PDEs F1 = 0 and

F2 = 0 are compatible. This is important for establishing exact solutions

of WDVV.

The Jacobi-Mayer bracket approach works as follows (F = {F1, F2}):

u7
xx

4
[F1, F2]

F
 (3

2
− c) ·

(

2T 2 + 4cuxy

√
RS · T − u4

xxu
2
yyu

2
xxy

)

,

where

R = uyy + uxxuxxy, S = Rc2u2
xy − u2

xxuyyuxxy, T = S + Rc2u2
xy.

Thus c = 3/2 is the only compatible case in the family. The above calcu-

lation is very quick. But with the differential algebra approach computer

calculation requires much longer time because the number of calculated

dS-polynomials is very big (the same concerns the other symbolic differ-

ential algebra programs, not only dGB).

3. Conclusion

3.1. Coherence and d-triangularity. Usually a differential system is

given by its generating set in the form of PDEs F1 = 0, . . . , Fr = 0, but

not as a differential ideal I. Then we investigate compatibility conditions,

i.e. check if there are essentially new equations in I.

The Kolchin-Ritt algorithm [K, R] decomposes I into an intersection

of special differential triangular systems. A finite subset F of I is called

a differential (d-)triangular set if (in the total degree ordering) for each

F ∈ F we have deg(HT(F )) > 0, for a pair Fi, Fj ∈ F the leading term

HT(Fi) is not a derivative of HT(Fj) and moreover no proper derivative

of HT(Fj) appears in Fi.
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Remark 2. Working with triangular sets is important because this al-

lows to reduce the problem to integration of ODEs. In the differential

algebra context triangulation is arranged over the independent variables

x1, . . . , xn. Another important issue is integration via Riemann invari-

ants, which exist when the system possesses a solvable symmetry group

([KLV]). The same idea is basic here too: The system is transformed

into a triangular form, but over the dependent variables u1, . . . , um. It

would be interesting to combine the two approaches.

A d-triangular set F is called coherent ([K]) if for any pair Fi, Fj ∈ F

their dS-polynomial satisfies dS(Fi, Fj)
F
 

p
0 plus a condition that we can

cancel the leading coefficients (see [H, M1] for details). We would like to

notice that this condition is similar to Jacobi-Mayer bracket vanishing

condition.

Also a similar idea occurs in the dGB context, though a coherent basis

needs not to be a dGB [M1]. However for orthonomic systems (Janet-

Riquier), when in all equations the highest derivatives (possibly with

polynomial in x coefficients) are expressed via the rest (linear systems

are particular cases), the differential analog of the Buchberger criterion

holds: If the system F generates I and is coherent, then it is a dGB

(Theorem 1 [M2]). Note that this is the differential algebra counterpart

of our Theorem 1.

We would like also to mention that if a coherent set F is autoreduced

([K, R]: d-triangular and every element of F is reduced with respect

to all the others), then Rosenfeld lemma relates differential algebra to

polynomial algebra [H]. This implies that a dGB of a differential system

E is contained in a (usual algebraic) Gröbner basis of some prolongation

E (s).

This is an analog of the celebrated fact from formal theory that af-

ter some s prolongations the system becomes involutive (if not empty),

though in the dGB context s can be bigger. Actually, the cousin concept

to involutivity is Riquier’s passivity on which Ritt based his triangulation-

decomposition algorithm.

3.2. Further discussion of the two approaches to PDE systems.

While the dGB approach seems to be more universal for algebraic differ-

ential systems and is designed to deal with more general non-orthonomic

systems (with results modulo singular integrals as usual), it has several

disadvantages.

The first is the mere fact that for certain differential ideals such a basis

is infinite. This causes troubles with computer implementation, cf. [F].
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The problem is overcome in newer versions of the dGB algorithms ([M2])

and modifications of Ritt-Kolchin triangulation-decomposition (Rosen-

feld-Gröbner algorithm and others, see [H, RWB]). This however does

not solve the complexity problem and our comparison result holds (we

did the comparison only for systems of scalar PDEs; in the general case

we should use multi-brackets instead of Jacobi-Mayer brackets [KL4], but

this just complicates the exposition, adding nothing essential to the idea).

The second is the aforementioned poor complexity and consequently

the benefit of other methods, like bracket approach for Cohen-Macaulay

systems. For other types systems the criterion of Theorem 1 does not

work (the pair-wise brackets do not form a basis of syzygies), but there

may be proposed other effective criteria (e.g. [KL1]§3.2 for the case of

two independent variables).

Finally, there is a problem of an efficient choice of the term order

for the Kolchin-Ritt algorithm: There are algorithms, which allow to

optimize order during the calculation in algebraic ([BW]), but not in

differential-algebraic case. This problem is absent with the approach of

Theorem 1, where the brackets are defined invariantly, but the coordinate

calculations are straightforward.

3.3. Formal integrability via dGB. It was mentioned in [M2] that

Cartan-Kuranishi and Spencer approaches require orthonomic form of

equations, i.e. that E ⊂ JkM is foliated over Jk−1M (projection is a

submersion). While this is basically so – the corresponding requirement

is usually a kind of regularity (though in geometric theory [KLV] prolon-

gations can be defined in a more general setting), there is an important

modification [KL2], which adapts the general setup to work with the

systems having differential equations of different orders.

In Theorem 3 of [M2], stating formal integrability of a dGB, it is as-

sumed that a given system F1, . . . , Fr of one order k is already a dGB

for its differential ideal, while this is a very rare situation: starting with

a given system and calculating its dGB according to the algorithm and

a chosen order one usually gets equations of various orders. The diffi-

culty can be overcome by considering orders subsequently, prolonging and

adding new equations ([KL2]), so that most results of [M2] remain true in

the more general context. For instance, Theorem 3 (loc.cit.) generalizes

to the following statement:

Theorem 4. Let E = {F1, . . . , Fr} be a system of polynomial differential

equations (not necessarily of the same order) and let G1, . . . , Gl be its

dGB. Denote E ′
k = {DσGj = 0 : |σ| + ordGj ≤ k}. Then the differential
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system E ′ is formally integrable, meaning E ′
k−1

(1) ⊃ E ′
k and πk,k−1 : E ′

k →
E ′

k−1 is a surjection for each k (away from the singularity set).

Moreover the system E ′ is the result of prolongation-projection scheme

applied to the system E .

Still having some regularity restrictions (to set up the prolongation ma-

chinery) we note that removing non-regular points becomes equivalent

to removing singularity sets, which always appear in the dGB approach.

Thus orthonomic requirement in a weak form is not so restrictive. Also

note that while in polynomial context a resolution of singularities is usu-

ally helpful, the jet approach allows to treat singularities geometrically

and study multi-valued solutions.
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