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Abstract. Tensor invariants of an almost product structure are con-

structed. We apply them to solving the problem of contact equivalence

and the problem of contact linearization for Monge-Ampère equations.

In this paper we study almost product structures. By this structure

we mean an ordered set P of real or complex distributions on a smooth

manifold N such that the tangent space TaN (or its complexification

TaN
C) splits into the direct sum of the subspaces from P at each point

a ∈ N .

Almost product structures in above sense arise in various forms: as a

fields of semi-simple endomorphisms, as non-holonomic webs, and (what

is most important for us) as Monge-Ampère equations.

An interpretation of a Monge-Ampère equation as an almost product

structure allows us to solve the problems of contact linearization and the

problem of contact equivalence for Monge-Ampère equations.

The solution of the first problem for non-degenerated Monge-Ampère

equations was annonced by the author in [9]. Here we give a complete

proof.

In the series of papers (see [3], [4], [5], [6], [7], [8]) for generic symplec-

tic Monge-Ampère equations was constructed an e-structure (absolute

parallelism). In this paper we solve similar problem in contact case.

After this result the problem of contact equivalence of Monge-Ampère

equations becomes trivial.
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An history (not only!) of classification problem for Monge-Ampère

equations can be founded by reader in [10].

Moreover, we suppose that the results obtained in the paper for gen-

eral almost product structure are interesting without their applications to

Monge-Ampère equations. For example, Monge-Ampère structure con-

sidered in the first section is no else than a non-integrable CR-structure

(Cauchy-Riemann structure) in an elliptic case or a non-integrable para-

CR-structure in a hyperbolic case on a 5-dimensional contact smooth

manifold.

A few words about the structure of the paper.

In the first section we recall a notion of an almost product structure

and give some important examples.

The tensor invariants of an almost product structure are constructed

in the second section. To this end we consider a decomposition of the de

Rham complex to the generated by an almost product structure direct

sum. The main result of this section is based on differential’s structure

of differential graded algebra. We explain a geometrical sense of the

constructed in the previous section tensors and prove an analog of the

Frobenius theorem for subdistributions of an almost product structure.

Our main results in theory of Monge-Ampère equations are presented

in the last section.

In the first and second subsections of the fourth section we introduce

a reader to V. Lychagin’s theory of Monge-Ampère equations and recall

some definitions and notations.

In the third one we construct contact tensor invariants of hyperbolic

and elliptic Monge-Ampère equations and calculate (as an example) the

tensors for the non-linear wave equation.

A solution of the linearization problem for non-degenerate equations

we present in the fourth subsection. As an example of applications of

the result we consider the generalized Hunter-Saxton equation. This

equation arises in the theory of a director field of a liquid crystal and in

the geometry of Einstein-Weil spaces.

At last, in the fifth section we construct an e-structure for generic

Monge-Ampère equations. We introduce the non-holonomic de Rham

complex and construct the set of relative and absolute contact invariants

of equations.
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1. Almost product structures: definition and examples

Let N be a (real) smooth manifold and let P = (P1, . . . , Pr) be an

ordered set of real or complex distributions on N , i.e.

Pi : N 3 a 7→ Pi (a) ⊂ TaN ,

or

Pi : N 3 a 7→ Pi (a) ⊂ TaN
C = TaN ⊗ C,

i = 1, . . . , r.

The set P is called an almost product structure (AP-structure) on N

if at each point a ∈ N the tangent space TaN (for real distributions) or

its complexification TaN
C (for complex ones) splits in the direct sum of

the subspaces P1 (a) , . . . , Pr (a), i.e.
r⊕

i=1

Pi (a) = TaN (or TaN
C).

Let D(N) and Ωs (N) be the modules of vector fields and differen-

tial s-forms on N respectively. A submodule of vector fields from the

distribution Pi we denote by D(Pi):

D(Pi)
def
= {X ∈ D(P )|Xa ∈ P (a)∀a ∈ M} .

For the distribution Pi we define a submodule of vanishing on the distri-

butions Pj (j = 1, . . . , r; j 6= i) differential s-forms:

Ωs(Pi)
def
= {α ∈ Ωs (N)|Xcα = 0 ∀X ∈ D(Pj), j = 1, . . . , r; j 6= i} .

Let us consider some examples.

Example 1 (Field of semi-simple endomorphisms). Let A be a field of

endomorphisms on a smooth n-dimensional manifold N . Suppose that

at each point a ∈ N the linear operator Aa : TaN → TaN is semi-simple.

Let λ1, . . . , λr be eigenvalues of A and let pi is a multiplicity of the

eigenvalue λi (i = 1, . . . , r; p1 + · · · + pr = n). Then TaN
C splits into

the direct sum of eigensubspaces P1 (a) , . . . , Pr (a)1 of the operator Aa:

TaN
C = ⊕r

i=1Pi (a). Here dim Pi (a) = pi (i = 1, . . . , r). Suppose also

that p1, . . . , pr are constant. Then the maps Pi : a 7→ Pi (a) (i = 1, . . . , r)

are complex distributions on N and the set P = (P1, . . . , Pr) is a complex

AP-structure.

Suppose n = 2k. If A2 = −1 or A2 = 1, then A is a classical almost

complex structure (AC-structure) or classical almost product structure

respectively.

1Pi corresponds to λi.
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Example 2 (f-structure). A field of endomorphisms f on a smooth man-

ifold N is called f-structure if f3 +εf = 0, where ε = ±1 (see [16], [2]). An

f-structure is called hyperbolic or elliptic if ε = −1 or ε = 1 respectively.

At each point a ∈ N the tangent space TaN splits into the direct sum

TaN = Ma ⊕ La,

where Ma = ker fa and La = Im fa, dim Ma = m, dim La = 2n.

For hyperbolic f-structure the tangent space TaN at each point a ∈ N

splits into the direct sum of real eigensubspaces of fa that are correspond-

ing to eigenvalues 0, +1 and −1:

TaN = Ma ⊕ L+
a ⊕ L−

a ,

For elliptic f-structure the complexification of TaN splits into the direct

sum of complex eigensubspaces of fa that are corresponding to eigenvalues

0, ι =
√
−1 and −ι:

TaN
C = MC

a ⊕ L+
a ⊕ L−

a .

The splitting generates an almost product structures on N.

Example 3 (Almost contact structures). The triplet (η, ξ, Φ), where

η is a contact differential 1-form, ξ is a vector field, and Φ is a field

of endomorphism on a smooth manifold N is called an almost contact

structure if the following conditions hold:

(1) η (ξ) = 1,

(2) η ◦ Φ = 0,

(3) Φ (ξ) = 0,

(4) Φ2 = −ε + η ⊗ ξ,

where ε = ±1 (see [2]). Similar to the previous example the almost

contact structure is called hyperbolic or elliptic if ε = −1 or ε = 1 re-

spectively. An almost contact structure generates an almost product

structure with three distributions: one of them (the one-dimensional dis-

tribution) is generated by the vector field ξ and other two are generated

by eigensubspaces of the restriction Φa|ker ηa
, a ∈ N.

The following example is main for us.

Example 4 (Monge-Ampère structure on a 5-dimensional manifold). Let

N be a 5-dimensional smooth manifold which is endowed with a contact

structure C : a 7−→ C(a) ⊂ TaN and let J be a ”non-holonomic” field of

endomorphisms2 J , Ja : C(a) → C(a), J2 = ε, where ε = ±1.

2i.e. J is a section of the vector bundle π : N 3 a → αa ⊗Xa ∈ Λ1 (C(a)∗)⊗C(a).



ALMOST PRODUCT STRUCTURES 155

Suppose that the distribution C is generated by the differential 1-form

U on N : C(a) = ker Ua for each a ∈ N 3. Let Ωa is a restriction of dU to

C(a): Ωa = dU |C(a). Then Ωa is a symplectic structure on C(a). Assume

that Ja is symmetric with respect to Ωa,i.e.

Ωa (JaX, Y ) = Ωa (X, JaY )

∀X, Y ∈ C(a), ∀a ∈ N .

The pair (C, J) is called a Monge-Ampère structure (MA-structure)

on N . This structure is called hyperbolic or elliptic if ε = 1 or ε = −1

respectively.

A Monge-Ampère structure generates an almost-product structure P =

(C+,l, C−) on N , where the 2-dimensional distributions4 C± : a 7→ C± (a)

are generated by the eigensubspaces C±(a) of J and 1-dimensional dis-

tribution l is generated by the intersection of the first derivatives5 C
(1)
+ ,

C
(1)
− of the distributions C+ and C−: l(a) = C

(1)
+ (a) ∩ C

(1)
− (a).

Indeed (see [12]), C+(a) and C−(a) are skew-orthogonal with respect to

Ωa or its complexification ΩC

a . Moreover, Ωa is non-degenerate on C+(a)

and C−(a). Then for hyperbolic MA-structure

U ([X±, Y±]) = −dU (X±, Y±) 6= 0

for any X±, Y± ∈ D(C±). Similarly, UC ([X±, Y±]) 6= 0 for elliptic one.

This means that the tangent space TaN (for a hyperbolic MA-structure)

or its complexification TaN
C (for an elliptic one) splits into the direct

sum

TaN (or TaN
C) = C+(a) ⊕ l(a) ⊕ C−(a).

Note that in the elliptic case the complex distribution l is generated

by a real vector field. Indeed, since the operator Ja is real, the subspaces

C+ (a) and C− (a) are complex conjugate: C+ (a) = C− (a). Then the

subspaces C
(1)
+ (a) and C

(1)
− (a) are complex conjugated also, and its

intersection is complex conjugate to itself: l (a) = l (a). Therefore this

complex line is generated by a real vector Z: l (a) = CZa, Z ∈ Ta (N)

(see [10]).

The previous example is a partial case of the non-integrable (=non-

holonomic) Cauchy-Riemann or para-Cauchy-Riemann structure.

3The differential 1-form is defined up to multiplication by non-vanishing function.
4dimR C± = 2 for hyperbolic MA-structures and dimC C± = 2 for elliptic ones.
5The first derivative P (1) of a distribution P is the distribution which is generated

by the vector fields from P and by its all possible sorts of commutators.
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Example 5 (CR- and para-CR-structures). A smooth manifold N is

called a Cauchy-Riemann manifold or CR-manifold if there exists a

distribution P on N such that at each point a ∈ N the vector space

P (a) ⊂ TaN endowed with a complex structure Ja, J2
a = −1 and J

depends on a smoothly. Analogously N is called para-CR-manifold if

J2
a = 1.

In this case P (a)C (or P (a) in case of para-CR-structure) splits into

two eigensubspaces of the operator Ja and we obtain two (complex for

the CR-structure and real for the para-CR-structure) subdistributions P1

and P2 of the distribution P . A (para)-CR-structure is called integrable

if the distributions P1 and P2 are completely integrable, otherwise it is

called non-integrable or non-holonomic.

Let us consider a non-holonomic (para)-CR-structure. Let P3(a)
def
=

P
(1)
1 (a)∩P

(2)
2 (a) be an intersection of the first derivatives of the distribu-

tions P1 and P2 at a point a ∈ N . Suppose that P3 : a 7→ P3(a) is a dis-

tribution. If by some reason P3(a) is a compliment of P (a) to the tangent

space TaN , the we obtain an almost product structure P = (P1, P2, P3)on

N .

2. Algebra and geometry of almost product structures

2.1. A structure of a differential graded algebra. Let A = ⊕kA
k

be a differential r-graded algebra over a field of characteristic 0 with a

differential d, i.e.

d (a · b) = da · b + (−1)a a · db.

Here k is a multi-index, k =(k1, . . . , kr), ki ∈ {0, 1, . . . , ni}, ni ∈ N are

some numbers, |k| = k1 + · · ·+ kr, and (−1)a=(−1)deg a where deg a
def
= s

if a ∈ As
def
= ⊕|k|=sA

k. We assume also that A is a super-commutative

algebra, i.e.

a · b = (−1)abb · a,

and the differential and multiplication are compatible with grad:

Ak · At ⊂ Ak+t

dAs ⊂ As+1

The differential d splits in the following direct sum:
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d =
⊕

|σ|=1

dσ =

(
r⊕

i=1

di

)
⊕


⊕

|t|=1

dt


 ,

where σ = (σ1, . . . , σr), σj ∈ Ij = {z ∈ Z| |z| ≤ nj}, dσ : Ak → Ak+σ

(|σ| = 1), di = d(0...1i...0)
6 and t has negative components.

Lemma 1. The operators di and dt satisfy the Leibniz rule:

di (a · b) = dia · b + (−1)a a · dib

and

dt (a · b) = dta · b + (−1)a a · dtb

In particular, dt is an A0-homomorphism, i.e.

dt (a · b) = a · dtb

for any a0 ∈ A0 and for any a, b ∈ A.

Proof. We prove the second part of the Lemma only. For a ∈ A0 =

A(0,...,0) and b ∈ Ak we get:

d(a · b) =
∑

|σ|=1

dσ(a · b) =
r∑

i=1

di(a · b) +
∑

|t|=1

dt(a · b),

On the other hand,

d(a · b) = da · b + (−1)a a · db

=




r∑

i=1

dia +
∑

|t|=1

dta


 · b + (−1)a a ·




r∑

i=1

dib +
∑

|t|=1

dtb


 .

Therefore dia · b /∈ Ak+t for each i = 1, . . . , r and one gets that dt(a · b) =

a · dtb. �

Example 6. Let us consider the case r = 2 and n1,2 = 2, i.e. k =(k1, k2),

where ki ∈ {0, 1, 2}. Then

As (N) =
⊕

p+q=s

Ap,q (N) ,

s = 0, 1, 2, 4 and

d = d1,0 ⊕ d0,1 ⊕ d2,−1 ⊕ d−1,2,

where d2,−1, d−1,2 are A0-homomorphisms and d1,0, d0,1 are differentia-

tions (see diagram below).

61 is only on ith place.
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2.2. Tensor invariants for almost product structures. Using Lemma

1 one can construct tensor invariants of almost product structures.

First, we consider a real almost product structures on N . The vector

space Λs (T ∗
a N) of exterior s-forms on TaN falls into direct sum

Λs (T ∗
a N) =

⊕

|k|=s

Λk (T ∗
a N) ,

where k is a multi-index, k = (k1, . . . , kr), ki ∈ {0, 1, . . . , dim Pi} and

Λk (T ∗
a N) =

r⊗

i=1

Λki(Pi (a)).

Here

Λki(Pi(a))
def
=
{

α ∈ Λki (T ∗
a N)

∣∣Xcα = 0

∀X ∈ Pj(a), j = 1, . . . , r; j 6= i
}
.

This gives us a decomposition of the de Rham complex: the C∞(N) -

modules of differential s-forms Ωs (N) split in the direct sum

Ωs (N) =
⊕

|k|=s

Ωk, (1)

where

Ωk def
=

r⊗

i=1

Ωki(Pi).
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In the case of complex almost product structures we have to consider

the complexification Ωs (N)C of the module Ωs (N).

Then de Rham differential d splits into the following direct sum:

d =
⊕

|σ|=1

dσ,

where

σj ∈ Ij
def
= {z ∈ Z| |z| ≤ dim Pj}

and

dσ : Ωk → Ωk+σ.

From Lemma 1 it follows that if one of the component ti of a multi-

index t is negative, then operator dt is a tensor which acts from Ωk to

Ωk+t.

The tensor dt is a sum of the tensors of the type θ ⊗ X , where θ is a

differential s-form and X is a (s − 1)-vector field on N .

Recall that the tensor θ ⊗ X acts on a differential (s − 1)-form α and

on an s-vector field Y as

(θ ⊗ X) (α) = (Xcα) θ,

(θ ⊗ X) (Y ) = (Y cθ) X

respectively. Therefore a tensor θ ⊗X for θ ∈ Ωs(Pi) and X ∈ Ds−1 (Pj)

can be regarded as a map from Ds (Pi) to Ds−1 (Pj). Here Ds (P ) is a

module of s-vector fields from the distribution P .

Example 7 (Classical AP- and AC-structures on R4). Let us consider a

classical AP-structure (or a classical AC-structure) J on R4. The tangent

space TaR
4 (or the complexification (TaR

4)
C

for AC-structure) splits into

the direct sum of eigensubspaces P1 (a) and P2 (a) of the operator Ja

Here dimR Pi (a) = 2 (or dimC Pi (a) = 2 for AC-structure), i = 1, 2. The

module Ωs (R4) (or its complexification for AC-structure) falls into the

direct sum of Ωp,q, where p + q = s, and

Ωp,q def
= Ωp(P1) ⊗ Ωq(P2).

(see Example 6). Moreover, we get the following decomposition of the

exterior differential d : Ωs (R4) → Ωs+1 (R4):

d = d1,0 ⊕ d0,1 ⊕ d2,−1 ⊕ d−1,2.

The components d2,−1 and d−1,2 in this sum are tensors.
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Note that for AC-structure the tensors d−1,2 and d2,−1 are complex

conjugated: d−1,2 = d2,−1. In case d−1,2 = d2,−1 = 0 we obtain the usual

Dolbeault complex.

Example 8 (Monge-Ampère structure on R5). Let (C, J) be a Monge-

Ampère structure on R5. We suppose that this structure is hyperbolic,

i.e. J2 = 1. The corresponding AP-structure is P = (C1,0, l, C0,1), where

C1,0 = C+ and C0,1 = C−. We get (see diagram below) the decomposi-

tions of the modules of exterior differential forms:

Ω0
(
R

5
)

= C∞
(
R

5
)
,

Ω1
(
R

5
)

= Ω1,0,0 ⊕ Ω0,1,0 ⊕ Ω0,0,1,

Ω2
(
R

5
)

= Ω2,0,0 ⊕ Ω1,1,0 ⊕ Ω1,0,1 ⊕ Ω0,1,1 ⊕ Ω0,0,2,

Ω3
(
R

5
)

= Ω2,1,0 ⊕ Ω2,0,1 ⊕ Ω1,1,1 ⊕ Ω1,0,2 ⊕ Ω0,1,2,

Ω4
(
R

5
)

= Ω2,1,1 ⊕ Ω2,0,2 ⊕ Ω1,1,2,

Ω5
(
R

5
)

= Ω2,1,2,

and the decomposition of exterior differential:
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Ω1,0,0
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We have the following tensors: d−1,1,1, d1,1,−1, d1,−1,1, d0,−1,2, d2,−1,0,

d2,1,−2 and d−2,1,2.

Since the distributions C1,0 and C0,1 are skew-orthogonal, we get d1,−1,1 =

0. It is not hard to prove that the tensors d2,1,−2, d−2,1,2, d2,0,−1, and d−1,0,2

are zero also. We have four two-covariant and one-contravariant tensors:

d−1,1,1, d1,1,−1, d0,−1,2, and d2,−1,0.

Any tensor qs
j,k

def
= d1j+1k−1s

: Ω1s → Ω1j+1k (s 6= k, j) can be regarded

as a map

qs
j,k : D (Pj) × D(Pk) → D(Ps).

Extend an action of qs
j,k to the module D(N) × D(N) by the formula:

qs
j,k (X, Y )

def
= qs

j,k (PjX,PkY ) ,

where Ps is the projector to the distribution Ps.

For any almost product structure P we can define a tensor field QP

on N :

QP
def
=

∑

s,j,k (s6=j,k)

qs
j,k.

It is not hard to see that

QP (X, Y ) = −
∑

s,j,k (s6=j,k)

Ps [PjX,PkY ] .

2.3. Subdistributions. Let

PI
def
=
⊕

i∈I

Pi, (2)

where I ⊂ {1, 2, . . . , r}. In this Section we study the following problem:

when the distribution PI is completely integrable?

It is convenient to formulate answer to this question in terms of multi-

indices. Let Ann (P ) be an annihilator of a distribution P :

Ann (P )
def
=
{

α ∈ Ω1 (N)
∣∣α (X) = 0 ∀X ∈ D(P )

}
.

Let us introduce multi-indices of length r: 1
def
= (1, . . . , 1), 1i

def
=

(0, . . . , 0, 1i, 0, . . . , 0)7, k
def
=
∑

i∈I 1i, and k, where k + k = 1, and put

(a,b)
def
= a1b1 + · · ·arbr for a = (a1, . . . , ar), b = (b1, . . . , br).

71 is in the ith place only.
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The distribution PI describes by the index k uniquely, therefore we

will denote PI by Pk also. Then

Ann (Pk) =
⊕

(1i,k)=1

Ω1i,

Theorem 1. The distribution Pk is completely integrable if and only if

the tensors dt = 0 for all multi-indices t such that
(
t,k
)

= −1.

Proof. Without loss of generality we can suppose that I = {l + 1, . . . , r}.
Then

k = (1, . . . , 1︸ ︷︷ ︸
l

, 0 . . . 0︸ ︷︷ ︸).
r−l

Then

Ann (Pk) = 〈α1, . . . , αp1
, αp1+1, . . . , αp1+p2

, . . . , αp1+···+pl
〉 ,

where pi = dim Pi, (α1, . . . , αp1
) is a free basis of Ω11 , (αp1+1, . . . , αp1+p2

)

is a free basis of Ω12 , etc.

Let αj ∈ Ω1j ⊂ Ann (Pk) and t = (t1, . . . , tr), where tj = −1. If ts = 0

for s ∈
{

1, . . . , ĵ, . . . , l
}

, then

α1 ∧ · · · ∧ αp1+···+pl
∧ dtαj = 0 ⇔ dt = 0.

If ts 6= 0 for s ∈
{

1, . . . , ĵ, . . . , l
}

, then α1∧· · ·∧αp1+···+pl
∧dtαj = 0. So,

α1∧· · ·∧αp1+···+pl
∧dαj = 0 ⇔ dt = 0 for all t such that

(
t,k
)

= −1. �

3. Monge-Ampère equations

3.1. A geometric point of view. A differential-geometric structures

that generated by Monge-Ampère equations was described by V. Lycha-

gin. In this section we recall his ideas and some his results [11], [12].

We restrict our consideration by Monge-Ampère equations with two in-

dependent variables only.

Let M be a 2-dimensional smooth manifold and let J1M be the man-

ifold of 1-jets of smooth functions on M . The manifold J 1M is endowed

by the natural contact structure (Cartan’s distribution)

C : a ∈ J1M → C(a) ⊂ Ta(J
1M)

given by the universal differential one-form U ∈ Ω1 (J1M) (Cartan’s

form): C(a)
def
= ker Ua. Naturally, the form U is defined up to multipli-

cation by non-vanishing smooth function on J1M .

At each point a ∈ J1M the 2-form

Ωa
def
= dU |C(a) ∈ Λ2 (C∗(a))
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is the standard symplectic structure on C(a). We get a so-called non-

holonomic symplectic structure

Ω : J1M 3 a 7−→ Ωa ∈ Λ2 (C∗(a))

on J1M .

With any differential 2-form ω on J1M we can associate a differential

operator ∆ω : C∞(M) → Ω2(M), which acts as

∆ω(v) = ω|j1(v)(M). (3)

Here v ∈ C∞ (M) is a smooth function and j1 (v) (M) ⊂ J1M is the

graph of 1-jet j1 (v), and ω|j1(v)(M) is the restriction of ω to j1 (v) (M).

The equation

Eω
def
= {∆ω(v) = 0} ⊂ J2M

is called a Monge-Ampère equation.

But constructed map ”differential 2-forms” → ”differential operators”

is not a one-to-one map. In order to set one-to-one map we should restrict

a class of differential 2-forms and consider only effective differential 2-

forms.

Recall the notion of an effective form.

Differential forms on J1M vanishing on any integral manifold of the

Cartan distribution, and therefore producing zero differential operators,

form a graded ideal of the exterior algebra Ω∗ (J1M). We denote this

ideal by

I∗ =
⊕

s≥0

Is,

Is ⊂ Ωs (J1M). The ideal I∗ is generated by forms

U ∧ α + dU ∧ β, (4)

where α and β are some differential forms. Note also, that I0 = 0 and

Is = Ωs (J1M) for s ≥ 3.

Elements of the quotient module Ωs (J1M) /Is we call effective s-forms

(s ≤ 2):

Ωs
ε

(
J1M

) ∼= Ωs
(
J1M

)
/Is. (5)

For each element of Ω2
ε (J1M) one can choice a unique representative

ω ∈ Ω2 (J1M) such that X1cω = 0 and ω ∧ dU = 0. Here X1 is the Reeb

vector field – a contact vector field with generating function 1.

Let h be a nonvanishing smooth function on J1M . It is clear that the

forms ω and hω generate the same equation.

Let ω and ω̃ be effective differential 2-forms. Two Monge-Ampère

equations Eω and Eeω are (local) contact equivalent at a point a ∈ J 1M
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if there exists a contact diffeomorphism ϕ : J1M → J1M , ϕ (a) = a and

some function hϕ ∈ C∞ (J1M), hϕ (a) 6= 0, such that

ϕ∗ (ω)ε = hϕω̃.

Here ϕ∗ (ω)ε is the effective part of ϕ∗ (ω).

Any effective differential form ω generates the non-holonomic field of

endomorphisms

Aω : J1M 3 a 7−→ Aωa
∈ End (C(a)) . (6)

by the formula

Xa cωa = Aω,aXac Ωa

for any tangent vector Xa ∈ C(a).

The operator Aω is symmetric with respect to Ω, i.e.,

Ω (AωX, Y ) = Ω (X, AωY )

for any vector field X, Y ∈ D(C).

A function Pf (ω) ∈ C∞ (J1M) is called a Pfaffian of the form ω if

Pf (ω)Ω ∧ Ω = ω ∧ ω.

Note that

Pf (hω) = h2 Pf (ω)

for a function h ∈ C∞ (J1M).

For an effective 2-form ω the square of Aω is scalar and

A2
ω + Pf (ω) = 0. (7)

We say that a Monge-Ampère equation Eω (a form ω, an operator

∆ω) are hyperbolic, elliptic or parabolic at a point a ∈ J 1M if Pf (ω)

is negative, positive or zero at this point respectively. Hyperbolic and

elliptic equations are called non-degenerate.

If Pf (ω) (a) 6= 0, we can normalize the form ω in some neighborhood

of the point a:

ω 7→ 1√
|Pf (ω)|

ω.

If |Pf(ω)| = 1, then the form ω is called normed. The Pfaffian of a

normed form is equal to −1 for a hyperbolic form and +1 for an elliptic

one.

The operator Aω corresponding to the normed form ω is denoted by

A. It is clear that for hyperbolic and elliptic equations we have A2 = 1

and A2 = −1 respectively.
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So, for a non-degenerated operators we obtain a Monge-Ampère struc-

ture (C, A) on J1M which generates an almost product structure P =

(C+,l, C−) (see Example 4).

Note that non-degenerate Monge-Ampère equations, in contrast Monge-

Ampère operators, generate AP-structures (C+, l, C−) up to the change

C+ and C−. Indeed, effective 2-forms ω1 = ω and ω2 = −ω generate the

same equation, but C1
− = C2

+ and C1
+ = C2

−. Here C i
± are eigensubspaces

of the operators Aωi
(i = 1, 2).

On the other hand, any pair of arbitrary real distributions C1,0 and

C0,1 on J1M such that

(1) dim C1,0 = dim C0,1 = 2;

(2) at each point a ∈ J1M C(a) = C1,0(a) ⊕ C0,1(a);

(3) at each point a ∈ J1M the subspaces C1,0(a) and C0,1(a) are

skew-orthogonal with respect to the symplectic structure Ωa;

determines the operator A up to the signum. Therefore a hyper-

bolic Monge-Ampère equation can be regarded as such unordered pair

{C1,0, C0,1}.
Analogously, an elliptic Monge-Ampère equation can be regarded as

such unordered pair {C1,0, C0,1} of complex conjugate distributions on

J1M that

(1) dimC C1,0 = dimC C0,1 = 2;

(2) at each point a ∈ J1M C(a)C = C1,0(a) ⊕ C0,1(a);

(3) at each point a ∈ J1M the subspaces C1,0(a) and C0,1(a) are

skew-orthogonal with respect to the complexification ΩC

a of the

symplectic structure Ωa.

3.2. Coordinate representations. We have the following represen-

tations of main objects in the canonical local coordinates (q,u, p) =

(q1, q2, u, p1, p2) on the manifold J1M :

• The Cartan form

U = du − p1dq1 − p2dq2;

• The Cartan distribution C is generated by the vector fields

d

dq1
=

∂

∂q1
+ p1

∂

∂u
,

d

dq2
=

∂

∂q2
+ p2

∂

∂u
,

∂

∂p1
,

∂

∂p2
. (8)

• The Reeb vector field X1 = ∂/∂u;

• An effective 2-form

ω = Edq1 ∧ dq2 + B (dq1 ∧ dp1 − dq2 ∧ dp2) + (9)

+ Cdq1 ∧ dp2 − Adq2 ∧ dp1 + Ddp1 ∧ dp2,
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where A, B, C, D, E are some smooth functions on J 1M ;

• The Monge-Ampère equation Eω

Avxx + 2Bvxy + Cvyy + D
(
vxxvyy − v2

xy

)
+ E = 0; (10)

• The Pfaffian

Pf (ω) = AC − DE − B2.

3.3. Tensor invariants of non-degenerate Monge-Ampère equa-

tions. In Example 8 we have four contact tensor invariants of a Monge-

Ampère equation: d−1,1,1, d1,1,−1, d0,−1,2, and d2,−1,0.

In order to unify hyperbolic and elliptic types, we consider a complex

tangent bundle T C(J1M). Let us describe there structures:

d1,1,−1 = UC ∧ α1 ⊗ Q1 + UC ∧ α2 ⊗ Q2,

d−1,1,1 = UC ∧ β1 ⊗ P1 + UC ∧ β2 ⊗ P2,

d2,−1,0 = α3 ∧ α4 ⊗ Z,

d0,−1,2 = β3 ∧ β4 ⊗ Z.

(11)

Here αi ∈ Ω1(C1,0), βi ∈ Ω1(C0,1), Pj ∈ D (C1,0) , Qj ∈ D (C0,1) , Z ∈
D(l) (i = 1, . . . 3; j = 1, 2) .

These tensors can be regarded as maps

d1,1,−1 : C
(1)
1,0 × C

(1)
1,0 → C0,1,

d−1,1,1 : C
(1)
0,1 × C

(1)
0,1 → C1,0,

d2,−1,0 : C1,0 × C1,0 → l,

d0,−1,2 : C0,1 × C0,1 → l.

Let us explain a geometrical meaning of the tensors. Due to Theorem 1

the distribution C
(1)
1,0 is completely integrable if and only if d1,1,−1 = 0 and

the distribution C
(1)
0,1 is completely integrable if and only if d−1,1,1 = 0.

Therefore, due to [15] we see that a non-degenerate Monge-Ampère

equation is locally contact equivalent to the equation vxx + εvyy = 0 with

ε = ±1 if and only if d1,1,−1 = d−1,1,1 = 0.

Example 9 (Non-linear Wave Equation). Consider the following non-

linear wave equation:

vxy = f (x, y, v, vx, vy) .
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Vector fields

P1 =
d

dq1
+ f

∂

∂p2
,

P2 =
∂

∂p1

constitute a basis for the distribution C1,0 and

Q1 =
d

dq2

+ f
∂

∂p1

,

Q2 =
∂

∂p2

for the distribution C0,1.

The distribution l is generated by the following vector field

Z =
∂

∂u
+ fp2

∂

∂p1
+ fp1

∂

∂p2
.

The vector fields P1, P2, Z, Q1, Q2 form a basis in vector fields on J1M .

The dual basis is

α1 = dq1,

α2 = dp1 + p1fp2
dq1 + (p2fp2

− f) dq2 − fp2
du,

U = du − p1dq1 − p2dq2,

β1 = dq2,

β2 = dp2 + (p1fp1
− f) dq1 + p2fp1

dq2 − fp1
du.

For this case we have the following representation of the four con-

structed tensor invariants:

d−1,1,1 = (ffp2p2
dq1 ∧ du − fp2p2

dp2 ∧ du − p1fp2p2
dq1 ∧ dp2

− p2fp2p2
dq2 ∧ dp2 + (fu − p2fp2u + fp1

fp2
− ffp1p2

− fq2p2
) dq2 ∧ du

+ (p1fu − p1p2fp2u − p2ffp2p2
+ p1fp1

fp2
− p1ffp1p2

− p1fq2p2
) dq1 ∧ dq2)

⊗ ∂

∂p1

,

d1,1,−1 = (ffp1p1
dq2 ∧ du − fp1p1

dp1 ∧ du − p1fp1p1
dq1 ∧ dp1

− p2fp1p1
dq2 ∧ dp1 + (fu + fp1

fp2
− p1fp1u − ffp1p2

− fq1p1
) dq1 ∧ du

+(−p2fu − p2fp1
fp2

+ p1p2fp1u + p2ffp1p2
+ p1ffp1p1

+ p2fq1p1
) dq1 ∧ dq2)

⊗ ∂

∂p2
,
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d2,−1,0 = (dq1 ∧ dp1 − fp2
dq1 ∧ du + (p2fp2

− f) dq1 ∧ dq2)

⊗
(

∂

∂u
+ fp2

∂

∂p1

+ fp1

∂

∂p2

)
,

d0,−1,2 = (dq2 ∧ dp2 − fp1
dq2 ∧ du − (p1fp1

− f) dq1 ∧ dq2)

⊗
(

∂

∂u
+ fp2

∂

∂p1
+ fp1

∂

∂p2

)
.

3.4. Contact linearization of Monge-Ampère equations. In this

section we use the constructed tensors to solve the problem of contact

linearization of non-degenerate Monge-Ampère equations. This problem

is the following.

Find a class of Monge-Ampère equations that are locally contact equiv-

alent to nonhomogeneous linear equations

vxx + εvyy = r (x, y) vx + s (x, y) vy + c (x, y) v + d (x, y) . (12)

We assume that all possible derivatives of the distributions C± are

distributions also.

Note that for equation (12) the distributions C
(2)
± are completely inte-

grable and dim C
(2)
± ≤ 4. This means that the tensors d−1,1,1 and d1,1,−1

have the forms

d1,1,−1 = UC ∧ α ⊗ Q, d−1,1,1 = UC ∧ β ⊗ P

for some α ∈ Ω1(C1,0), β ∈ Ω1(C0,1), P ∈ D (C1,0), Q ∈ D (C0,1).

Let us define two complex differential 2-forms ξ1, ξ2 ∈ Ω1,0,1:

ξ1
def
= P cd2,−1,0

(
UC ∧ β

)
,

ξ2
def
= Qcd0,−1,2

(
UC ∧ α

)
.

Since d0,−1,2 and d2,−1,0 are tensors, we see that the forms ξ1 and ξ2 are

contact invariant of the Monge-Ampère equation. Using representations

(11) for d2,−1,0 and d0,−1,2, we get the following forms of ξ1 and ξ2:

ξ1 = P c (α3 ∧ α4 ∧ β) = (α3 (P )α4 − α4 (P )α3) ∧ β,

ξ2 = Qc (β3 ∧ β4 ∧ α) = (β3 (Q)β4 − β4 (Q) β3) ∧ α.

Note that for elliptic equations the forms ξ1 and ξ2 are complex conjugate:

ξ1 = ξ2.

Define differential 1-forms

ν1
def
= Qcξ1,

ν2
def
= P cξ2.
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The vector fields Q and P are defined up to the multiplication by non-

vanishing smooth functions and therefore the forms ν1 and ν2 are so.

Therefore the unordered pair {ν1, ν2} is a relative contact invariant of a

Monge-Ampère equation.

Theorem 2 (Linearization of MAE). Assume that in some neighborhood

of a point a ∈ J1M derivatives C
(k)
± (k = 1, 2) of the distributions C±

are distributions also and the distributions C
(2)
± are completely integrable

and dim C
(2)
± = 4.

A Monge-Ampère equation Eω is locally equivalent to a Monge-Ampère

equation (12) if and only if ν1 = ν2 = 0 and the differential two-forms ξ1

and ξ2 are closed.

Proof. The proof of the necessity it trivial: it is not hard to check that

for equation (12) conditions 1–3 hold. Let us prove the sufficiency.

From the first condition it follows that the equation Eω is locally equiv-

alent to a Monge-Ampère equation

vxx + εvyy = f(x, y, v, vx, vy) (13)

for some function f ∈ C∞ (J1M) (see [15]). For this equation we have:

ν1 = h1

((
2
√

εf − ιp1fp2
−

√
εfp1

)
dq1 − p2

(
ιfp2

+
√

εfp1

)
dq2 +

(
ιfp2

+
√

εfp1

)
du − 2

√
εdp1 − 2ιεdp2

)
,

ν2 = h2

(
εp1

(√
εfp1

− ιfp2

)
dq1 + ε

(
2ιf +

√
εp2fp1

− ιp2fp2

)
dq2 +

ε
(
ιfp2

−
√

εfp1

)
du + 2

√
εdp1 − 2ιdp2

)
,

where h1 = εfp1p1
+ 2ιfp1p2

− fp2p2
and h2 = εfp1p1

− 2ιfp1p2
− fp2p2

. We

see that ν1 = ν2 = 0 if and only if h1 = h2 = 0. This means that
{

fp1p2
= 0,

εfp1p1
− fp2p2

.

Therefore the function f is linear with respect to p1 and p2:

f (q, u, p) = r (q, u) p1 + s (q, u) p2 + g (q, u)

for some functions r, s, g ∈ C∞ (J0M).

From this place the hyperbolic and elliptic cases we consider separately.

Hyperbolic case. We see that the equation Eω is contact equivalent to

the equation

vxx − vyy = r (x, y, v) vx + s (x, y, v) vy + g (x, y, v) .

The corresponding effective differential two-form is

ω = dq1 ∧ dp2 + dq2 ∧ dp1 + (rp1 + sp2 + g)dq1 ∧ dq2.
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The contact transformation

ϕ : q1 →
q1 − q2√

2
, q2 →

q1 + q2√
2

, u → u, p1 →
p1 − p2√

2
, p2 →

p1 + p2√
2

takes it to the form

ω1
def
= ϕ∗ (ω) = dq1 ∧ dp1 − dq2 ∧ dp2 + (Rp1 + Sp2 + G)dq1 ∧ dq2, (14)

where

R (q1,q2, u) =
1√
2

(
s

(
q1 − q2√

2
,
q1 + q2√

2
, u

)
+ r

(
q1 − q2√

2
,
q1 + q2√

2
, u

))
,

S (q1,q2, u) =
1√
2

(
s

(
q1 − q2√

2
,
q1 + q2√

2
, u

)
− r

(
q1 − q2√

2
,
q1 + q2√

2
, u

))
,

G (q1,q2, u) = g

(
q1 − q2√

2
,
q1 + q2√

2
, u

)
.

Then we get the following coordinate representation of the constructed

tensors:

d1,1,−1 = (Rs + Gu + p2Su − Rq1
) (dq1 ∧ du − p2dq1 ∧ dq2) ⊗

∂

∂p2
,

d−1,1,1 = (RS + Gu + p1Ru − Sq2
) (dq2 ∧ du + p1dq1 ∧ dq2) ⊗

∂

∂p1

,

d2,−1,0 = (dq1 ∧ dp1 − Sdq1 ∧ du − (G + p1R) dq1 ∧ dq2)⊗(
∂

∂u
+ S

∂

∂p1
+ R

∂

∂p2

)
,

d0,−1,2 = (dq2 ∧ dp2 − Rdq2 ∧ du + (G + p2S) dq1 ∧ dq2)⊗(
∂

∂u
+ S

∂

∂p1
+ R

∂

∂p2

)
.

We can write the invariant 2-forms ξ1 and ξ2:

ξ1 = (RS + Gu + p1Ru − Sq2
) dq1 ∧ dq2,

ξ2 = − (RS + Gu + p2Su − Rq1
) dq1 ∧ dq2.

Then

dξ1 = Rudq1 ∧ dq2 ∧ dp1

+ (SRu + RSu + Guu + p1Ruu − Suq2
) dq1 ∧ dq2 ∧ du,

dξ2 = −Sudq1 ∧ dq2 ∧ dp2

− (SRu + RSu + Guu + p2Suu − Ruq1
) dq1 ∧ dq2 ∧ du.
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We see that Ru = Su = Guu = 0 if and only if dξ1 = dξ2 = 0. In this case

G (q1, q2, u) = c(q1, q2)u + z(q1, q2)

and we get:

ω1 = 2 (R (q) p1 + S (q) p2 + c(q)u + z(q)) dq1∧dq2 +dq1∧dp1−dq2∧dp2.

Elliptic case. In this case the equation Eω is contact equivalent to the

equation

vxx + vyy = r (x, y, v) vx + s (x, y, v) vy + g (x, y, v) .

The invariant 2-form ξ1 is

ξ1 =

(
1

4

(
ds

dq1

− dr

dq2

)

+
ι

8

(
r2 + s2 + 4gu + 2(p1ru − rq1

+ p2su − sq2
)
))

dq1 ∧ dq2

and ξ2 = ξ1. Then

dξ1 =
1

4
(−ru + ιsu) dq1 ∧ dq2 ∧ dp2 +

1

4
(ιru + su) dq1 ∧ dq2 ∧ dp1+

1

4
((p1suu − p2ruu − ruq2

+ suq1
)+

ι (rru + ssu + 2guu + p1ruu + p2suu − sq2u − rq1u)) dq1 ∧ dq2 ∧ du.

We see that ru = su = guu = 0 if and only if dξ1 = 0. In this case

g (q1, q2, u) = c(q1, q2)u + z(q1, q2)

and we get the following effective 2-form:

ω = − (r (q) p1 + s (q) p2 + c(q)u + z(q)) dq1 ∧ dq2 + dq1 ∧ dp2 − dq2 ∧ dp1.

�

Example 10 (The Hunter-Saxton equation). Let us consider the Hunter-

Saxton equation

vtx = vvxx + κu2
x,

where κ is a constant. This equation is hyperbolic and it has applications

in the theory of a director field of a liquid crystal [1] and in geometry

of Einstein-Weil spaces. For this equation the corresponding effective

differential 2-form is

ω = 2udq2 ∧ dp1 + dq1∧dp1 − dq2 ∧ dp2 − 2 κp2
1 dq1∧dq2
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and the corresponding operator

Aω =

∥∥∥∥∥∥∥∥

1 2u 0 0

0 −1 0 0

0 −2κp2
1 1 0

2κp2
1 0 2u −1

∥∥∥∥∥∥∥∥
.

in the free basis
d

dq1
,

d

dq2
,

∂

∂p1
,

∂

∂p2

of the module D(C). Let us choice the following free basis of the module

D(J1M):

P1 =
∂

∂q1

+ p1
∂

∂u
+ κp2

1

∂

∂p2

,

P2 =
∂

∂p1
+ u

∂

∂p2
,

Q1 =
∂

∂q2

+ κp2
1

∂

∂p1

− u
∂

∂q1

+ (p2 − up1)
∂

∂u

Q2 =
∂

∂p2
,

Z =
∂

∂u
+ (2 κ − 1) p1

∂

∂p2
,

and the following dual free basis of the module Ω1 (J1M)

α1 = dq1 + udq2,

α2 = dp1 − κp2
1dq2,

β1 = dq2,

β2 = dp2+(1 − 2κ) p1du+ (κ−1) p2
1dq1+ (2κ − 1) p1p2dq2 − udp1 ,

U = du − p1dq1 − p2dq2.

Here P1, P2 ∈ D (C1,0), Q1, Q2 ∈ D (C0,1), Z ∈ D (l), α1, α2 ∈ Ω1,0,0 (J1M),

β1, β2 ∈ Ω0,0,1 (J1M).We get the coordinate representation of the tensors:

d−1,1,1 = − (p1dq1 ∧ dq2 + dq2 ∧ du) ⊗
(

∂

∂q1

+ p1
∂

∂u
+ κp2

1

∂

∂p2

)
,

d1,1,−1 = 2( κ − 1)
(
κp3

1dq1 ∧ dq2 + κp2
1dq2 ∧ du

− dp1 ∧ du − p1dq1 ∧ dp1 − p2dq2 ∧ dp1) ⊗
∂

∂p2
,
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d2,−1,0 =
(
dq1 ∧ dp1 − κp2

1dq1 ∧ dq2 + udq2 ∧ dp1

)

⊗
(

∂

∂u
+ (2 κ − 1) p1

∂

∂p2

)

d0,−1,2 = (dq2 ∧ dp2 + (1 − 2κ) p1dq2 ∧ du

+ (1 − κ) p2
1dq1 ∧ dq2 − udq2 ∧ dp1

)

⊗
(

∂

∂u
+ (2 κ − 1) p1

∂

∂p2

)

and the differential 2-forms ξ1and ξ2:

ξ1 = −dq2 ∧ dp1,

ξ2 = 2 (1 − κ) dq2 ∧ dp1.

Due to the theorem, the Hunter-Saxton equation is linearized. The cor-

responding linear equation is the Euler-Poisson equation [14]

vtx =
1

κ (t + x)
vt +

2 (1 − κ)

κ (t + x)
vx −

2 (1 − κ)

(κ (t + x))2u.

3.5. The equivalence problem.

3.5.1. Relative invariants. We consider a non-degenerate Monge-Ampère

equation E
def
= Eω. Let P =(C1,0, l, C0,1) be the corresponding almost-

product structure. Let Z be a real vector field which is generates the

complex distribution l and that is normed by the condition U (Z) = 1.

Define a function k by the formula:

k
def
= 〈〈Z, d1,1,−1〉 , 〈Z, d−1,1,1〉〉 ,

where 〈, 〉 is a contraction.

Let Ẽ
def
= Eeω be an another non-degenerate Monge-Ampère equation

with the AP-structure P̃=
(
C̃1,0, l̃, C̃0,1,

)
. If ϕ : J1M → J1M, ϕ∗ (U) =

λU is a contact transformation such that ϕ∗ (ω)ε = hω̃ for some non-

vanishing function h, then (up to permutation of 1st and 3rd members)

ϕ∗

(
P̃
)

= P and

ϕ−1
∗ (Z) =

1

λ
Z̃,

ϕ∗ (k) =
1

λ2
k̃

Here Z̃ is a vector field that generates the distribution l̃, U
(
Z̃
)

= 1. This

means that Z and k are relative invariants of a Monge-Ampère equation.
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3.5.2. Non-holonomic de Rham complex. Let us introduce submodules

Ωs ⊂ Ωs (J1M) of vanishing on Z differential s-forms:

Ωs def
=
{
α ∈ Ωs

(
J1M

)
| Zcα = 0

}
.

Elements of the submodules Ωs we call l-horizontal forms. The set of all

l-horizontal forms form the algebra Ω∗ with respect to the operation of

exterior multiplication.

Define a projection Π : Ωs (J1M) → Ωs and an operator ∂ : Ωs (J1M) →
Ωs+1 by the following formulas:

Π (α)
def
= α − U ∧ (Zcα) ,

∂
def
= Π ◦ d.

The kernel of the operator Π is

ker Π =
{

U ∧ α|α ∈ Ω∗
(
J1M

)}
.

Lemma 2. Operators Π and ∂ are natural with respect to contact diffeo-

morphisms, i.e.

ϕ∗ ◦ Π = Π̃ ◦ ϕ∗ (15)

and

ϕ∗ ◦ ∂ = ∂̃ ◦ ϕ∗. (16)

Proof. For an s-form α ∈ Ωs (J1M) we have:

ϕ∗ (Π (α)) = ϕ∗ (α) − ϕ∗ (U) ∧ ϕ∗ (Zcα)

= ϕ∗ (α) − U ∧
(
ϕ−1
∗ (Z)cϕ∗ (α)

)

= ϕ∗ (α) − λU ∧
(

1

λ
Z̃cϕ∗ (α)

)

= Π̃ (ϕ∗ (α)) .

Let us prove the second formula. For an arbitrary differential l-horizontal

form α we have:

ϕ∗ (∂α) = ϕ∗ ◦ Π ◦ d (α) = Π̃ ◦ ϕ∗ ◦ d (α) =

= Π̃ ◦ d ◦ ϕ∗ (α) = ∂̃ (ϕ∗ (α)) .

�

The restriction of ∂ to the algebra Ω∗ we denote by δ:

δ : Ωs → Ωs+1,

δ
def
= ∂|Ω∗.
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The sequence

0
δ→ Ω0 δ→ Ω1 δ→ Ω2 δ→ Ω3 δ→ Ω4 δ→ 0 , (17)

where Ω0 def
= C∞(J1M), is a complex, i.e. δ2 = 0. This complex we will

call the non-holonomic de Rham complex.

Note that

δ (α ∧ β) = δα ∧ β + (−1)deg α α ∧ δβ

for any differential forms α, β ∈ Ωs.

A differential l-horizontal 2-form ω is called l-effective if ω ∧ ∂U = 0.

Note that

∂ (gU) = g∂U

for any function g ∈ C∞ (J1M) and therefore this definition is correct.

Let ω be an l-effective differential 2-form and let ϕ : J 1M → J1M

be a contact diffeomorphism such that ϕ∗ (ω) = ω̂. Then the form ω̂ is

l̂-effective also.

3.5.3. e-structures. For any differential l-horizontal 2-form α we con-

struct an l-effective part

αl
def
= α − sα∂U ∧ ∂U,

where the function sα is defined by the formula

α ∧ ∂U = sα∂U ∧ ∂U.

The effective 2-form ω and the l-effective part ωl are generating the

same Monge-Ampère equation.

Now we can formulate the condition of contact equivalence of Monge-

Ampère equations Eω and Eeω in terms of l-effective forms: ϕ∗ (ωl) = hω̃el.

From this place we suppose that ω and ω̃ are l-effective and l̃-effective

differential 2-forms respectively and ϕ∗(U) = λU, ϕ∗ (ω) = hω̃.

Define a function F and an operator A : D(C) → D(C) ω by the

following formulas:

F∂U ∧ ∂U = ω ∧ ω, (18)

AXc∂U = Xcω,

where the vector field X ∈ D(C).

Then

ϕ∗(F ) =
h2

λ2
F̃ .
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Indeed,

h2ω̃ ∧ ω̃ = ϕ∗ (F∂U ∧ ∂U) = ϕ∗ (F )ϕ∗ (∂U) ∧ ϕ∗ (∂U)

= ϕ∗ (F ) ∂̃ϕ∗ (U) ∧ ∂̃ϕ∗ (U) = λ2ϕ∗ (F ) ∂̃U ∧ ∂̃U.

On the other hand ω̃ ∧ ω̃ = F̃ ∂̃U ∧ ∂̃U . Then, λ2ϕ∗ (F ) = h2F̃ .

The square of the operator A is scalar and A2 + F = 0.

The differential 2-form ∂U is non-degenerate on the module of vector

fields from the Cartan distribution. This means that if Xc∂U = 0 for

X ∈ D(C), then X = 0.

For a function H ∈ C∞(J1M) the formula

XHc∂U = −∂H (19)

uniquely defines a vector field XH ∈ D (C).

Note that

ϕ−1
∗ (XH) =

1

λ
X̃ϕ∗(H).

We need two technical lemmas.

Lemma 3. We have:

Ã =
λ

h
ϕ−1
∗ ◦ A ◦ ϕ∗.

Proof. Applying ϕ to the both parts of (18)2 we have:

λϕ−1
∗ (AX)c∂̃U = hϕ−1

∗ (X)cω̃.

Moreover,

ϕ−1
∗ (X)cω̃ = Ãϕ−1

∗ (X)c∂̃U.

Since ∂U is non-degenerate, we get: λϕ−1
∗ ◦ A = hÃ ◦ ϕ−1

∗ . Therefore

Ã = λ
h
ϕ−1
∗ ◦ A ◦ ϕ∗. �

Lemma 4. For any function h ∈ C∞(J1M) we have:

∂h ∧ ω =
1

2
AXhc (∂U ∧ ∂U) .

Proof. The form ω is l-effective, i.e., ω ∧ ∂U = 0. Then

0 = Xhc (ω ∧ ∂U) = (AXhc ∂U) ∧ ∂U − ∂h ∧ ω.

�



ALMOST PRODUCT STRUCTURES 177

Now we can construct an e-structure for the equation E. Define a

vector field W which lies in the Cartan distribution. This vector fields is

uniquely determined by the following relations:

W c (∂U ∧ ∂U) = 2∂ω,

U (W ) = 0.

Suppose that k 6= 0. Let us introduce the function

F0
def
=

F

k
.

and the vector field

V
def
=

1

k
AW

Since Lemma 3, and the facts that

ϕ−1
∗ (W ) =

1

λ2

(
hW̃ + ÃX̃h

)
,

ϕ∗ (F0) = h2F̃0,

we obtain:

ϕ−1
∗ (V ) =

1

ϕ∗ (k)

(
ϕ−1
∗ ◦ A ◦ ϕ∗

)
◦ ϕ−1

∗ (W ) =

=
h2

λ
Ṽ − h

λ
F̃0X̃h

For the vector fields XF0
we have:

ϕ−1
∗ (XF0

) =
h2

λ
X̃ eF0

+
2h

λ
F̃0X̃h.

Define vector fields Z ∈ D (l) and Y by the formulas

U (Z) =
1√
|k|

and

Y def
=

√
|k|

F0
(XF0

+ 2V ) .

The vector fields Z and Y are invariant (up to multiplication by −1)

of E:

ϕ−1
∗ (Y) = Ỹ.

The vector field Y splits into the sum

Y = Y1,0 + Y0,1,

where Y1,0 ∈ D (C1,0) and Y0,1 ∈ D (C0,1).
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Applying tensors d−1,1,1 and d1,1,−1 to Z,Y0,1,Y1,0 we get two invariant

vector fields from the distributions C1,0 and C0,1 respectively:

X1,0
def
= d−1,1,1 (Z,Y0,1) ,

X0,1
def
= d1,1,−1 (Z,Y1,0) ,

For the case of general Monge-Ampère equation the vector fields Z,

X1,0, Y1,0, X0,1, Y0,1 form an e-structure on J1M . Denote the constructed

e-structure by

eE = (Z, {X1,0,X0,1} , {Y1,0,Y0,1}) .

The e-structure is real for a hyperbolic equation and complex for el-

liptic one. In the last case we can construct a real e-structure using and

operation of complex conjugate.

Theorem 3. Two non-degenerate Monge-Ampère equations E and Ẽ

are contact equivalent if their constructed e-structures eE and e eE are

equivalent.

So, the problem of contact equivalence of hyperbolic Monge-Ampère

equations is a problem of equivalence of e-structures.

Example 11 (Non-linear wave equation). Construct an e-structure for

a non-linear wave equation

vxy = f (x, y, v, vx, vy) .

For this equation

Z =
∂

∂u
+ fp2

∂

∂p1
+ fp1

∂

∂p2

and

Π (ω) = (p1fp1
+ p2fp2

− 2f) dq1 ∧ dq2 + dq1 ∧ dp1

− dq2 ∧ dp2 − fp2
dq1 ∧ du + fp1

dq2 ∧ du,

∂U = (p2fp2
− p1fp1

) dq1 ∧ dq2 + dq1 ∧ dp1

+ dq2 ∧ dp2 − fp2
dq1 ∧ du − fp1

dq2 ∧ du.

Below the form Π (ω) is denoted by ω. We see that ω ∧ ∂U = 0,

k = fp1p1
fp2p2

and F = −1. Suppose that the function k is non-vanishing.

Then

F0 = − 1

fp1p1
fp2p2

.
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In the free basis P1, P2, Q1, Q2 the operator A has a diagonal form:

A =

∥∥∥∥∥∥∥∥

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

∥∥∥∥∥∥∥∥
.

Moreover

W = fp2

∂

∂p1
− fp1

∂

∂p2
,

V =
1

fp1p1
fp2p2

(
fp2

∂

∂p1
+ fp1

∂

∂p2

)
,

XF0
= k−2 (fp1p1

fp2p2p2
+ fp2p2

fp1p1p2
)

d

dq2

+ k−2 (fp1p1
fp1p2p2

+ fp2p2
fp1p1p1

)
d

dq1

− k−2(p2 (fp1p1
fp2p2u + fp2p2

fp1p1u) + fp1p1
fq2p2p2

+ fp2p2
fq2p1p1

)
∂

∂p2

− k−2(p1 (fp1p1
fp2p2u + fp2p2

fp1p1u) + fp1p1
fq1p2p2

+ fp2p2
fq1p1p1

)
∂

∂p1

.

We obtain the following e-structure:

Y1,0 = −k−1/2(fp1p2p2
fp1p1

+ fp2p2
fp1p1p1

)

(
d

dq1
+ f

∂

∂p2

)

+ k−1/2(−2fp2
fp2p2

fp1p1
+ p1fp2p2ufp1p1

+ ffp2p2p2
fp1p1

+ p1fp2p2
fp1p1u + ffp2p2

fp1p1p2
+ fp1p1

fq1p2p2
+ fp2p2

fq1p1p1
)

∂

∂p1

,

Y0,1 = −k−1/2(fp2p2p2
fp1p1

+ fp2p2
fp1p1p2

)

(
d

dq2
+ f

∂

∂p1

)

k−1/2(p2fp2p2ufp1p1
+ fp1p1

(ffp1p2p2
+ fq2p2p2

)+

fp2p2
(−2fp1

fp1p1
+ p2fp1p1u + ffp1p1p1

+ fq2p1p1
))

∂

∂p2

,

Z=k−1/2

(
∂

∂u
+ fp2

∂

∂p1

+ fp1

∂

∂p2

)
,
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X1,0 =
1

fp1p1

(p2fp2p2ufp1p1
+ p2fp1

(fp2p2p2
fp1p1

+ fp2p2
fp1p1p2

)

− 1

fp2p2

(fp2p2p2
fp1p1

+ fp2p2
fp1p1p2

)(−fu + p2fp2u − fp2
fp1

+ p2fp2p2
fp1

+ ffp1p2
+ fq2p2

) + fp1p1
(ffp1p2p2

+ fq2p2p2
)

+ fp2p2
(−2fp1

fp1p1
+ p2fp1p1u + ffp1p1p1

+ fq2p1p1
))

∂

∂p1

X0,1 =
1

fp2p2

(−2fp2
fp2p2

fp1p1
+ p1fp2p2ufp1p1

+ ffp2p2p2
fp1p1

+p1fp2p2
fp1p1u + ffp2p2

fp1p1p2
+ p1fp2

(fp1p2p2
fp1p1

+ fp2p2
fp1p1p1

)

+ fp1p1
fq1p2p2

− 1

fp1p1

(fp1p2p2
fp1p1

+ fp2p2
fp1p1p1

(−fu + p1fp1u

+ ffp1p2
+ fp2

(−fp1
+ p1fp1p1

) + fq1p1
) + fp2p2

fq1p1p1
)

∂

∂p2
.
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