
Lobachevskii Journal of Mathematics

http://ljm.ksu.ru

ISSN 1818-9962

Vol. 23, 2006, 29–56

c© Per K. Jakobsen, V.V. Lychagin

Per K. Jakobsen, V.V. Lychagin

MAXIMUM ENTROPY WAVE FUNCTIONS

Abstract. In this paper we use the classical Maximum Entropy

principle to define maximum entropy wave functions. These are wave

functions that maximize the entropy among all wave functions satisfying

a finite set of constraints in the form of expectation values.This lead to

a nonlinear equation for the wave function that reduce to the usual

stationary Schrödinger equation if the energy is the only constraint and

the value of the constraint is an eigenvalue. We discuss the extension

of the thermodynamical formalism to this case and apply our general

formalism to several simple quantum systems, the two-level atom,the

particle in a box, the free particle and the Harmonic Oscillator and

compare with the results obtained by applying the usual von Neumann

quantum statistical method to the same systems.
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1. Introduction

Probability theory is at its most useful and efficient if it is recognized

that it is a theory of inference; the central problem is to represent data

in terms of probability distributions and then use these distributions to

predict the results of measurements yet to be performed. The probabil-

ity distributions that we use do not describe any property of the world,

only a certain state of information about the world and no frequency

interpretation is associated with the distribution. This point of view on

probability theory was in fact the point of view of the founding fathers of

probability theory and Laplace, in particular, used it to great effect in his

work in physics. After the death of Laplace the inference point of view

went out of fashion and was not reinstated until last century by the work

of Jeffrey[3], Cox[1],[2] and Jaynes[4]. In any application of probability

theory as inference the main tools are Bayes’ theorem and the Maximum

Entropy principle (MaxEnt). The MaxEnt principle has a long and con-

voluted history that is a reflection of the equally long and convoluted

history of probability and statistics. In rudimentary form it was present

already in the work of Bernoulli and Laplace in the form of the Principle

of Insufficient Reason. Jaynes has shown how efficient the inference point

of view is when it is applied to physics in general and statistical mechan-

ics in particular[5]. The canonical equilibrium ensembles and the whole

thermodynamical formalism of equilibrium statistical mechanics follows

directly from the MaxEnt principle. The only physics input needed is a

description of phasespace and of the observables. Today hardly anyone

would object to the use of Bayes’ theorem and the MaxEnt principle in

physics and elsewhere, their success in practical terms are undisputed.

In quantum mechanics the fundamental quantity is not a probability

density but a complex wave function whose norm square is interpreted as

a probability density. This much is universally accepted. The problems

starts when we ask if this probability should be taken to be subjective,

representing a state of knowledge of an observer, or as in some sense real

and irreducible. This unresolved question is as old as quantum mechanics

itself and all the giants of physics from the last century has addressed

this question in one way or another.It is not our intention to address this

somewhat philosophical question, we have a more practical problem in

mind.

What are the consequences of treating the problem of assigning a wave

function to a physical systems as a problem in statistical inference? It is

certainly a natural question to ask in the light of the probabilistic nature
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of quantum mechanics and the undisputed practical success of probability

theory as statistical inference in applications to classical physics.

2. The maximum entropy wavefunction

When we apply the MaxEnt principle to classical physics the funda-

mental quantity is a probability density and this is the quantity we vary

when we seek the extremal of the entropy subject to the given constraints.

To be precise let us assume that a phase space Ω and an observable, for

example the energy H ,is given. Then the the MaxEnt principle consists

of choosing the probability density ρ that maximize the relative entropy

S(ρ) = −
∫

ρ ln
ρ

ρ0
dx

subject to the constraints
∫

ρdx = 1

∫

Hρdx = E

Here the probability density ρ0 is the prior and summarize what is

know before any additional constraints are applied.The solution to this

constrained optimization problem is the canonical distribution

ρ =
ρ0

Z
e−βH

where Z(β) is the partition function determined through normalization

Z(β) =

∫

ρ0e
−βHdx

If we define h = ln(Z) we find the identities

E = −∂βh

S = h + βE

dS = −βdE

This constitute the thermodynamical formalism for this simple case

of one observable and no external parameters. If more observables and

external parameters are included we get the thermodynamical formalism

for equilibrium statistical mechanics if S is identified with the physical

entropy (Boltzman’s constant set equal to 1). Note however that the

thermodynamical formalism applies in any probabilistic setting where

your data consists of a prior distribution and constraints in the form of

expectations of observables. This point has been stressed by Jaynes. In
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classical physics and in classical statistics in general the observables are

assumed to be functions defined on some statespace. In all such cases

we are lead to the thermodynamical formalism as described above. Ex-

pressed in terms of operators this means that all observables are assumed

to commute. The two main features that distinguish quantum physics

from classical physics and statistics are that the state is now represented

by a complex density (the wave function) and that observables in general

do not commute.

In order to apply the maximum entropy principle we first need to

specify a prior. In the case of classical statistics the prior consists of two

pieces of information. The first is a description of the space of events

and the second is to assign a prior probability distribution to the events.

In classical probability and statistics only the second of these is usually

thought of as prior information. In application to quantum mechanics,

where the algebra of observables is noncommutative, the choice of space

of events is far from self-evident, there are several possibilities, one for

each complete set of commuting observables. Each such set will give a

space of events that is identified with the spectrum of the commutative

subalgebra generated by the complete set of commuting observables. Af-

ter such a set has been selected the specification of the prior is completed

by giving a probability distribution ρ on the space of events. There is,as

usual,no general method for converting prior information into a prior

distribution, but no general method exists in the classical setting either.

The same particular methods that have been developed for classical sta-

tistics can of course be used here also, but there is an additional method

that can be used in the quantum context. In an ideal experiment the

system is prepared in a eigenstate for some complete set of observables.

The probability distribution corresponding to this eigenstate is the right

prior to use in such cases.

Assuming that a prior has been selected, the relative entropy is given

by the functional

S(ϕ, ϕ) = −
∫

ϕϕ ln(
ϕϕ

ρ
)dx,

where ϕ(x) now is a complex valued function on the space of events and ρ

is the prior as described above. Note that the entropy is considered to be

a function of the wave function and its complex conjugate. This choice

reflects the fact that the wavefunction, not the corresponding probability

density, is the fundamental variable in quantum mechanics.
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Let us first assume that a single observable in the form of an operator H

is given. The case of several operators is treated in the same manner and

the expressions for this case will be written down later. The maximum

entropy principle now consists of finding the wave function ϕ such that

the entropy is maximal subject to the constraints

〈ϕ, ϕ〉 = 1

〈ϕ, Hϕ〉 = E

We solve the variational problem using Lagrange multipliers as in the

classical case and we vary ϕ and ϕ independently, as is usual in variational

principles involving complex fields. We get the following two equations

βHϕ + ϕ ln

(

ϕϕ

ρ

)

+ hϕ = 0

βH∗ϕ + ϕ ln

(

ϕϕ

ρ

)

+ hϕ = 0,

where H∗ is the adjoint of H. The equations are consistent only if the

observable is a selfadjoint operator. Thus the variational problem can

only have a solution if the observable is a selfadjoint operator. If the

observable is selfadjoint we are left with the single fundamental equation

βHϕ + ϕ ln

(

ϕϕ

ρ

)

+ hϕ = 0

The Lagrange multipliers are β and λ and we have defined h = 1+λ. If

the observable H commute with the prior, meaning that it is an element

in the algebra of observables generated by the complete set of commuting

observables used to specify the space of events, then it is a diagonal

operator and ϕ can be canceled and the equation simplifies to

βH + ln

(

ϕϕ

ρ

)

+ h = 0

The solution of this equation is the usual canonical ensemble from clas-

sical statistics.

ϕϕ =
ρ

Z
e−βH

In general however the operator does not commute with the prior and

in order to find the maximum entropy wave function we must solve the

fundamental equation subject to the two constraints

〈ϕ, ϕ〉 = 1

〈ϕ, Hϕ〉 = E



34 PER K. JAKOBSEN, V.V. LYCHAGIN

Define T = 1
β

as in classical statistical mechanics. The fundamental

equation can then be written as

Hϕ + Tϕ ln

(

ϕϕ

ρ

)

= γϕ,

where we have defined γ = −h/β and T and γ must be determined by

the constraints. Note that if the expectation E is an eigenvalue of H

then we find that T = 0 and γ = E and the maximum entropy wave

function satisfy the stationary Schrődinger equation.

Hϕ = Eϕ

In classical mechanics the parameter T is interpreted as temperature

and if we use the same language here, we observe that energy eigenstates

corresponds to maximum entropy wavefunctions in the zero temperature

limit. In this limit the prior ,ρ, has no effect. As the temperature T

increase the influence of the prior increases and in the hight temperature

limit the prior dominates. In fact when T → ∞ we get ϕϕ = ρ.

Our fundamental equation is a stationary Schrődinger equation with

a logarithmic nonlinearity. Nonlinear corrections to the time dependent

Schrődinger equations has been proposed on several occasions[8],[7],[6]

and the logarithmic nonlinearity has been argued for as especially natural[6]

for several mathematical and physical reasons. Most of these corrections

has however not survived for long; it is very difficult and maybe impos-

sible to destroy the linearity of the dynamic Schrődinger equation and

at the same time retain its unquestionable success in explaining a huge

range of atomic and molecular fenomena.

We say this in order to stress that we are not proposing a new uni-

versal evolution equation for the wavefunction. Time plays no role in

our application of the MaxEnt principle. Our equation is not a dynamic

equation and there is nothing universal about the parameter T , it is just

the dual of the energy in the maximum entropy sense. Its value is fixed

by the measured mean of the energy. If other observables, instead of or

in addition to the energy are measured, the MaxEnt principle produce a

similar equation and now there is obviously no connection to the classical

Schrődinger equation.

Let A1, A2, ...., An be n observables represented by selfadjoint opera-

tors. Then the maximum entropy wave function for this situation is a

solution to
n
∑

i

λiAiϕ + ϕ ln

(

ϕϕ

ρ

)

+ hϕ = 0
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subject to the constraints

〈ϕ, ϕ〉 = 1

〈Ai〉 = ai, i = 1, ..., n

The constraints are used to solve for the Lagrange multipliers h and

λ1, ...λn. A solution to this constrained variational problem is the wave

function that best, in the maximum entropy sense, represents a situation

where the means of n, possibly noncommuting observables, are known.

It is possible for the problem to have no solution. This is similar to the

situation in the classical case. For example if you try to use the observable

a(x) = x when the phase space is the real line you will find that the

solution can not be normalized. This is not a defect of the method,

it merely indicates that too little information is given for a probability

assignment to be possible. There can be more that one solution. In

classical thermodynamics this situation is well known and is taken to

mean that there are several coexisting thermodynamic phases present in

the system. Which one of these cases are realized can only be determined

by actually solving the constrained variational problem.

3. The thermodynamical formalism

In the classical setting the thermodynamical formalism plays an im-

portant role. As long as we only ask for means of observables that are

functions of the observables used as constraints in the MaxEnt principle,

we never have to know what the probability density is. The mean of all

such observables are found by computing partial derivatives of the parti-

tion function with respect to the corresponding Lagrange multipliers. If

we for example have a single constraint a(x) then we have

〈a〉 = −∂λ ln Z(λ)

〈a2〉 − 〈a〉2 = −∂λ∂λ ln Z(λ),

where Z(λ) is the partition function for the situation of one constraint

a(x). We will now see how much of the thermodynamical formalism

extends to the quantum mechanical case. Since different observables

in the thermodynamical formalism are essentially represented by partial

derivatives with respect to corresponding Lagrange multipliers we would

not expect the formalism to carry over to the quantum case. This is

because partial derivatives commutes whereas the observables typically

don’t. We will see that a small part of the formalism actually does carry

over.



36 PER K. JAKOBSEN, V.V. LYCHAGIN

Let us for simplicity consider the case of one selfadjoint observable

A. Then the wave function ϕ is a solution to the MaxEnt principle if it

solves the following equation

λAϕ + ϕ ln

(

ϕϕ

ρ

)

+ hϕ = 0

Define a new function θ by

ϕ =
1√
Z

θ,

where h = lnZ. Then we find that θ satisfy the simplified equation

λAθ + θ ln
θθ

ρ
= 0

Using the normalization condition for ϕ we find that

Z =

∫

θθdx

The quantity Z is clearly the analog of the partition function for the

classical case. Using the definition of the expectation of an operator in

quantum mechanics we get

a = 〈A〉 =
1

Z

∫

θAθdx

After some simple manipulation of the equation for θ we find the identity

θAθ = λ∂λθAθ − λθA∂λθ − ∂λ(θθ)

If we integrate this identity and use the self adjointness of the operator

A we find

a = 〈A〉 = −∂λh

Using similar manipulation of the equation for θ we find that the entropy

evaluated at the maximum entropy wave function is given in terms of the

Lagrange multipliers as

S = h − λ∂λh

These two last formulas are exactly identical to the formulas we get in

the classical case of one observable. If we have n selfadjoint observables

the same calculation goes through and we find

h = ln Z(λ1, .., λn)

ai = 〈Ai〉 = −∂λi
h

S = h −
n
∑

i

λi∂λi
h
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just as in the classical case. It is however not true that we can compute

expectations of polynomials in the observables A1, ...An in terms of par-

tial derivatives of the partition function. As explained in the beginning

of this section no such simple rules should be expected because of the

noncommutativity of quantum observables. In fact it is nor even possible

to compute the expectation of A2 in terms of the partition function in

the situation when there is only one constraint given by the operator A.

We do not at this point know if some quantum version of the thermody-

namical formalism exists at all or in terms of what quantities it should

be formulated.

In the rest of the paper we will apply the general formalism to several

well known quantum models. These are the two-level atom, the parti-

cle in a box, the free particle and the harmonic oscillator. In all cases

we will give a detailed description of the maximum entropy wave func-

tion, entropies etc and also compare our theory to what we get when

we use the standard quantum statistical formalism as formulated by Von

Neumann[9].

4. The two-level atom

The two-level atom is a quantum system with a two-dimensional state

space whose energy operator is given by

H = H0 + H1 =

[

E1 0

0 E2

]

+ ε

[

0 1

1 0
,

]

where E1 and E2 are the energies of the ground state and the excited state

and where ε is the coupling between the two levels. The Von Neumann

quantum statistical formalism[9] describe the system in terms of a density

operator that for the two-level system is a positive 2 by 2 matrix with

trace equal to one. If the expectation of the energy is the only known

quantity then the following density operator is used

ρ =
1

Z
e−H/T ,

where Z(T ) = Tr(e−H/T ) is the partition function. It is well known that

this operator is also determined as the solution of a constrained extremal

problem. In fact for this case one defines the entropy as

S(ρ) = −Tr(ρ ln ρ)

and finds the extremum of S under the constraint 〈H〉 = E. The formula

for S is inspired by the corresponding classical case and is explained in
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any textbook on quantum mechanics. We will have something to say

about this later.

For the two-level system the partition function is

Z(T ) = 2e−
E1+E2

2T Cosh

(

√

4ε2 + (E1 − E2)2

2T

)

The energy as a function of T is given by

E = 〈H〉 =
T 2

Z
∂T Z

If E+ and E− are the eigenvalues of the energy operator H we evidently

have

E ≈ E1 + E2

2
T −→ ±∞

E ≈ E− T ' 0

E ≈ E+ T / 0

Figure 1 show the energy as a function of the temperature for the two-

level atom as predicted by the von Neumann method.

Figure 1

Negative temperatures thus corresponds to a inverted system. We

will now find the maximum entropy wave function for this system and

compare with what we got using the Von Neumann method.

The first step in our method is to select a space of events, or in other

words a phasespace. There is of course no unique way of doing this, it

all depends on what your prior information consists of. Let us assume

that we know that the system is equally likely to be found in the upper

and lower energy eigenstate of the unperturbed Hamiltonian H0. This

means that our space of events Ω consists of two points corresponding to
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the two elements in the eigenbasis for H0 and the prior distribution can

be taken to be

ρ = (
1

2
,
1

2
)

The maximum entropy wave function will in this case be a solution to

the following equation.

Hϕ + Tϕ ln ϕϕ = hϕ,

where T and h are the Lagrange multipliers. Note that we have redefined

the Lagrange multipliers in order to absorb the effect of the prior ρ,

this can not be done if the prior information give a bias to one or the

other of the two eigenstates for H0. Define the function θ = (w1, w2)

through ϕ = 1√
Z
θ . The normalization condition is satisfied if we choose

Z =
∫

θθdx = w1w + w2w2 and the choice h = ln Z gives the following

simplified equation for the function θ.

Hθ + Tθ ln θθ = 0

We can without loss of generality cancel a common phase for the func-

tion θ and write

θ = (a, beıv),

where a, b and v are real numbers. We now must solve the following

nonlinear matrix equation

[

E1 ε

ε E2

] [

a

beıv

]

+ T

[

a ln a2

b ln b2

]

= 0

By taking real and imaginary parts we find that

E1a + sεb + Ta ln a2 = 0

E2b + sεa + Tb ln b2 = 0

where s = ±1. The corresponding wave function is ϕ = 1√
Z
(a, sb) and

s = ±1 corresponds to a phase difference of 0 or π between the two

components of the maximum entropy wave function. Note that we can

now without loss of generality assume that the coupling ε is a positive
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number. By manipulating the equation we find that

a = Exp(−E1 + sεx

2T
)

b = xExp(−E1 + sεx

2T
)

Z = (1 + x2)Exp(−E1 + sεx

2T
)

ϕ =
1√

1 + x2
(1, sx)

where x is a solution to the equation

E2 − E1

2
+

sε

2
(
1

x
− x) + T ln x = 0

This transcendental equation can not be solved exactly but a combination

of numerical and asymptotic methods give the complete picture of the

solutions as a function of the parameter T as illustrated in figure 2.

Figure 2.

where

x1 = −T1

ε
+

√

(

T1

ε

)2

− 1

x2 = −
(

E2 − E1

2ε

)

+

√

(

E2 − E1

2ε

)2

+ 1

x3 =

(

E2 − E1

2ε

)

+

√

(

E2 − E1

2ε

)2

+ 1

x4 =
T1

ε
+

√

(

T1

ε

)2

− 1
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and where T1 is determined by the condition x1x4 = 1. The dotted curve

in the figure corresponds to s = 1 and the solid curve to the case s = −1.

All the other quantities in the theory can now be computed from x.

Figure 3 gives the energy as a function of T for the weak interaction

case. This means that the interaction energy ε is less than half the

energy difference between the two levels. This is of course the usual

situation. A similar figure exists for the strong interaction case, but we

will not discuss it here.

Figure 3.

For each value of the parameter T there are up to four different values

of the energy corresponding to equally many different wave functions.

The small drawings indicate the probabilities p1 and p2 of finding the

system in the two eigenstates of H0 for the wave function corresponding

to that point in the diagram. The lowest energy eigenstate is to the left

in each drawing. The dotted curves and the solid curves corresponds to

the two cases s = 1 and s = −1 as in the previous figure. Since the

entropy is S = p1 ln p1 +p2 ln p2 each eigenstate has zero entropy and the

uniform case p1 = p2 = 1
2

has maximum entropy. Using this it is easy to

read off how the entropy vary along each branch in the figure. If we for

example consider the lower solid curve, then the entropy start off at zero

for T = −∞ , increase monotonically and reach its maximum at T = ∞.

In order to find the maximum entropy wave function corresponding to

a given value of the energy E = 〈H〉 we draw a horizontal line and mark

the intersection of this line with the curves in the figure. There is always

more than one intersection but only one of these corresponds to a wave

function of maximal entropy. Thus for each value of E there is a unique
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T and a wave function depending on T that is a maximum entropy wave

function for the given value of the energy.

Using the figure and numerical calculations we find that

(1) For E− < E < Em − ε, points on the lower solid curve for T > 0

corresponds to the maximum entropy wave function. Thus for

these energies this curve gives the energy, E(T ), as a function of

T and T is positive and run from zero to infinity. If we denote the

corresponding curve found by using the density matrix by ED(T )

we have

E(T ) ≈ ED(T ) for T ' 0

E(T ) /
E1 + E2

2
− ε T −→ ∞

ED(T ) /
E1 + E2

2
T −→ ∞

For T close to zero the two curves are indistinguishable but for

large T they asymptotes to different energies. The difference is

determined by the size of the coupling between the two levels. If

this is small, then they are close also for large T .

(2) For Em + ε < E < E+, points on the upper dotted curve for

T < 0 corresponds to the maximum entropy wave function. We

now find

E(T ) ≈ ED(T ) for T / 0

E(T ) /
E1 + E2

2
+ ε T −→ −∞

ED(T ) /
E1 + E2

2
T −→ −∞

As in the previous case our method and the density matrix

method gives results that are indistinguishable for T close to zero

and that differ by an amount given by the interaction energy when

T goes to negative infinity.

(3) When the energy cross the value Em + ε, points on the solid

upper curve corresponds to the maximum entropy wave function.

The parameter T start out large negative and then increase as we

increase the energy past Em+ε. At a critical energy between Em−
ε and Em + ε the point representing the maximum entropy wave

function jumps to the lower dotted curve and the corresponding

T jumps from a negative to a positive value. As E increase from

the critical energy towards Em + ε the point representing the
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maximum entropy wave function follows the lower dotted curve

and the parameter T increase towards positive infinity.

The behavior described under point 3 above has no counterpart in the

density matrix approach ,but for ε small it all occurs in a very narrow

range of energies.

5. The particle in a box

We will in this section find the maximum entropy wave function for a

particle in a box and compare with what we get using the usual approach

to quantum statistics. For this problem we will let our phase space be

the real line between 0 and 1. We will consider a single observable given

by the operator

H = −∂xx.

This operator represents the energy for a particle in a box if we use

units where Planck’s constant is 1 etc. In order to set up and solve the

equation for the maximum entropy wave function we must assign a prior

wavefunction. We will in this example assume that our prior information

is that the particle can be anywhere in the box with uniform probability.

A prior distribution that represents this information is chosen to be

ρ = 1 0 ≤ x ≤ 1.

The maximum entropy wave function is now a solution to the following

nonlinear boundary value problem

−∂xxϕ + Tϕ lnϕϕ = hϕ,

ϕ(0) = ϕ(1) = 0

The Lagrange multipliers h and T are determined by the constraints

E = 〈ϕ, Hϕ〉
1 = 〈ϕ, ϕ〉

Note that since the entropy is given by the formula

S = −
∫

ϕϕ ln ϕϕdx

it is clear that if we can find a real wave function that satisfy the con-

strained maximum problem then no complex solution can have higher

entropy and the real solution is a maximum entropy wavefunction. We

will in the following assume that ϕ is real.
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If we multiply the differential equation by ϕx and integrate we find the

following equation

−(ϕx)
2 + T (ϕ2 ln ϕ2 − ϕ2) − hϕ2 + c = 0,

where c is a constant of integration. We can simplify this equation by

introducing a new function θ through the identity

ϕ(x) = Exp(
T + h

2T
)θ
(

√

|T |x
)

.

Then the function θ is found to satisfy the following simplified boundary

value problem

(θy)
2 = a + sθ2 ln θ2

θ(0) = θ(
√

|T |) = 0

where s = sgn(T ) and a is a new constant. The solutions of the boundary

value problem is quite different depending on whether s is 1 or −1. We

will first discuss the case s = −1 corresponding to negative values for the

Lagrange multiplier T .

Figure 4

Figure 4 is a drawing of the integral curves of the differential equation

when s = −1. Note that the integral curves for a < 0 does not cross the

θy axis. This means that the nonlinear boundary problem does not have

a solution for these values of the constant. The value a = 0 corresponds

to the separatrix and a > 0 corresponds to integral curves outside the

separatrix. All these curves cross the θy axis.The ground state of the

nonlinear boundary value problem corresponds to the situation where

the integral curve starts on the θy axis with θ(0) = 0 and have completed

half a period when it cross the θ axis. In order to find which value of a
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that realize this situation for a given value of T < 0 we must solve the

following integral equation
∫ θ

0

dθ√
a − θ2 ln θ2

=
1

2

√

|T |,

where θ is a solution of the equation

a − θ
2
ln θ

2
= 0

Using the Lambert W function θ can be expressed in closed form as

θ =

√

a

W (a)

For a given T < 0, solution of the nonlinear integral equation gives us

a(T ) and the function θ corresponding to this value of a is found by

integrating the differential equation. Using these, ϕ and all quantities of

interest can be found

ϕ(x) =

(

1
√

|T |

∫

√
|T |

0

θ(y)dy

)− 1

2

θ
(

√

|T |x
)

E(T ) =

∫ 1

0

(ϕx)
2dx

S =

∫ 1

0

ϕ2 ln ϕ2dx

In general the integral equation must be solved numerically but the

separatrix corresponding to a = 0 can easily be found explicitly and is

a Gaussian. It has infinite period and thus can not be a solution of our

boundary value problem but we expect that as T −→ −∞ we will have

a −→ 0 and the solution should look more and more like a Gaussian.

Our numerical calculations verifies that this is the case. In figure 5 the

solution and the Gaussian are compared for T = −10 and T = −20. The

Gaussian is the dotted curve. We see that the solution for large negative

T is converging to the Gaussian.

If we use this observation and substitute the separatrix solution into

the expression for E(T ), now taking the integral from −∞ to ∞, we get

the following expression for the value of E(T ) for large negative values

E(T ) ∼ 1

2
|T |.

For T . 0 the nonlinear eigensolutions converge to the quantum mechan-

ical ground state for the particle in a box and the energy approaches the

groundstate energy E1 = π2 from above.
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Figure 5

So far we have discussed the ground state of the nonlinear eigenvalue

problem. In general for each integer p there is a solution that starts at

the θy axis with θ(0) = 0 and that complete 1
2p

of a period at the first

intersection with the θ axis. For this solution the corresponding a(T )

and solution θ is determined by
∫ θ

0

dθ√
a − θ2 ln θ2

=
1

2p

√

|T |,

where θ is as in the formula for the ground state. We can absorb this

equation into the equation determining the ground state if we let T −→
T
p2 . For large negative T the nonlinear eigensolution approach more and

more closely to a sequence of Gaussian where the number of Gaussian is

equal to p. Figure 6 compare the sequence of Gaussian and the nonlinear

eigensolution for p = 2. The dotted line is the Gaussian and the full line

is the nonlinear eigensolution.

Figure 6

As for the ground state this correspondence between Gaussian and

eigensolutions gives us a asymptotic estimate for the energy as a function
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of T for large negative T that turns out to be exactly the same as for

the groundstate. For T . 0 the p’th nonlinear eigenstate converge to the

p’th excited state for the particle in a box Ep = p2π2. This completes

our description of the eigensolutions for the case of negative T .

We now turn to the case when T > 0. Figure 7 show the phase portrait

for this case.

Figure 7

Only for a in the range 0 < a < e−1 will there be closed integral curves

that intersect the θy axis. For each a in this range the integral curves

actually consists of three disjoint components but only one of them is

closed. Since only closed integral curves can correspond to solutions that

satisfy the boundary conditions, only this range of a’s is relevant. The

closed components of the integral curves are created as a point at the

origin for a = 0, expands for increasing a and reach an separatrix of

infinite period for a = e−1. In order to find the value of a and nonlinear

eigensolution θ corresponding to a given value of T we must solve the

following equation

∫ θ

0

dθ√
a + θ2 ln θ2

=
1

2p

√
T ,

where now

θ =

√ −a

W−1(−a)
,

where W−1 is a branch of the Lambert function and where the integer p

enumerate the nonlinear eigensolutions as previously. For this case the

equation for the separatrix can not be solved in closed form. However if

we expand the equation close to the point θ = e−1writing θ = e−1 + ε we



48 PER K. JAKOBSEN, V.V. LYCHAGIN

get the following equation for ε

(εy)
2 = 2ε2

and this equation has solutions ε ∼ e−
√

2y. We postulate that this for-

mula gives the shape of the eigensolutions over the whole interval, also

close to the endpoints. Since large T corresponds to a close to e−1we

thus postulate that the following formula gives a approximation to the

eigensolutions for large T

ϕ(x) = α(T )

{

1 − e−
√

2Tx 0 ≤ x ≤ 1
2

1 − e−
√

2T (1−x) 1
2
≤ x ≤ 1

The function α(T ) is determined by normalization. For large T we find

that α(T ) ∼ 1. Numerical calculations show that the formula is a very

good approximation even for T as small as 5.

Similar formulas applies for p > 1. As T become large the nonlinear

eigenstate corresponding to p = 1 becomes flat over a larger and larger

part of the interval and vary very quickly near x = 0 and x = 1 in order to

satisfy the boundary conditions. The nonlinear eigenstates correspond-

ing to higher values of p consists of essentially constant pieces joined

together by very short intervals where the functions vary very quickly. In

figure 8 we compare the approximate and exact solutions for p = 1. The

approximate formula is the dotted curve.

Figure 8.

Using these formulas we can now compute expressions for the energy

and entropy for large values of T .

Ep(T ) ∼ p
√

2T

Sp(T ) ∼ − ap√
2T

,

where a is a positive numerical constant. These formulas show that for

fixed large T the nonlinear eigenstate corresponding to p = 1 has the
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highest entropy. Numerical calculations show that this is generally true.

Figure 9 show the energy E1(T ), as a function of T for the ground state

p = 1. The small pictures show the shape of the nonlinear eigenstate at

the corresponding point in the diagram.

Figure 9

For any given value of the energy , E, above the ground state energy π2

, there are finitely many nonlinear eigenstates that has E as expectation

value for the energy operator but the one on the p = 1 branch for positive

T always have maximal entropy. The maximal entropy wave functions

thus always has a general shape as in figure 8. This is actually intuitively

obvious, since for a given energy these are the eigensolutions that are least

localized. They are exactly as localized as they need to be in order to

reproduce the measured mean. For a given energy the point on E1(T ) for

negative T corresponds to the wave function that has minimum entropy

while satisfying the constraints. These are the minimum entropy wave

functions. Note that as T goes to negative infinity the corresponding

minimum entropy wave function goes to a delta function located at x = 1
2
.

In this limit we recover a classical particle with a definitive location.

We will now compare with what we get by using the usual density

operator approach to this problem. The ensemble is then described by

the operator

ρ =
1

Z(T )
e−

H

T

and the energy as a function of T is given by

E(T ) = Tr(Hρ)

If we expand in an eigenbasis for H = −∂xx we get the expression

E(T ) =

∑∞
i=1 n2Exp(−π2n2

T
)

∑∞
i=1 Exp(−π2n2

T
)
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These formulas only makes sense for positive values of T . Note that in

this context the parameter T is interpreted as the physical temperature

(Boltzman’s constant equal to 1). Figure 10 show the function E(T ).

Figure 10

Note that the graph of E(T ) for positive T is quite similar to the graph

of E1(T ) for negative T . It is in fact easy to show that E(T ) for large

positive T and E1(T ) for large negative T both grow at the same rate

E(T ) ∼ 1

2
T T >> 1

E1(T ) ∼ 1

2
T T<< − 1

This correspondence actually extends to higher moments also. Figure

11show the standard deviation

σ(T ) =
√

〈H2〉 − 〈H〉2

as a function of T using the minimum entropy wave function and the

density operator. In order to compare them more easily, we have flipped

sign on T for the first of these in order to have both on the same interval.

The dotted curve is the standard deviation computed on the basis of the

density operator.

They appear to stay close to each other and increase at the same rate.

Asymptotics show that they do in fact grow at the same rate and this

common rate is
1√
2
T

Thus for the case of a particle in a box we have a close correspondence be-

tween the minimum entropy wave function and quantum statistics based

on the von Neumann entropy and the canonical ensemble. For the par-

ticle in a box this is important because it implies that, from a maximum

entropy point of view, using the canonical ensemble is the worst possible
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Figure 11

thing we can do. Of course we know that the use of the canonical ensem-

ble is very well established in quantum statistics and that it will take a

lot to change this practice. Our calculations in this section show however

that may be it is time to ask some pointed questions about the canonical

ensemble and the von Neumann entropy from which it is derived.

Recall that the von Neumann entropy is given by the formula

S = −Tr(ρ ln ρ)

In all applications of the maximum entropy principle in classical proba-

bility and statistics the prior plays a pivotal role. Where is the prior in

the von Neumann entropy?

The connection between the wave function and probability was first

noted by Max Born. The probability P (U) of finding a particle in a

domain U is given by

P (U) =

∫

U

ϕϕdx

This formula leads to the interpretation of ρ = ϕϕ as a probability den-

sity. From this, introducing the density operator and writing down the

canonical ensemble is but a short step. Note that in quantum mechanics

the relation between the wave function and probability theory appears

accidental, something that could have been different. It is interesting

in this connection that probability theory has been generalized[10] in a

very natural way to operator valued probabilities and in this extended

theory the connection between probabilities and a natural generalization

of the wave function is not accidental but necessary. Furthermore in this

generalized theory probability densities do not exist, only wave functions

exists. Thus a notion of entropy, if any exists at all in this generalized

context, must be formulated in terms of wave functions, not densities. In
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fact our decision to use the entropy S(ϕ, ϕ) was in part inspired by this

observation.

In our formalism there appears to be a interesting connection between

the prior and the potential. If we assume that the prior is specified in

physical space then if the energy is our only observable, our fundamental

equation for the maximal entropy wave function is

Hϕ + Tϕ ln
ϕϕ

ρ
= hϕ

For quantum analogs of classical mechanical systems, H = K +V where

V is the potential energy and K is the kinetic energy operator. Note

that the fundamental equation can be written as

H ′ϕ + Tϕ lnϕϕ = hϕ,

where the operator H ′ is given by

H ′ = K + V − T ln ρ

Thus the prior appear as an extra term in the classical potential energy.

The extra term will have a different effect depending on the sign of the

parameter T . If T is positive then the extra term will give a repulsive

force in the classical domain whereas for negative T the force will be

attractive. Thus for positive T the term should be expected to have

a dispersive effect leading to a broadening of probability distributions

whereas in the opposite case it will have a localizing effect on the dis-

tributions. This is what we observed for the case investigated in this

section.

6. The free particle

The Hamiltonian for a free particle on the real line is

H = −∂xx

The Hamiltonian for a free particle has a continuous spectrum with for-

mal eigenfunctions ϕk = 1√
2π

eıkx where

Hϕk = k2ϕk

The partition function is

Z =

∫ ∞

−∞
〈ϕk, e

−H/T ϕk〉dk =
√

πT

The energy as a function of T > 0 is

E = 〈H〉 = Tr(Hρ) =
1

2
T
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I order to apply our formalism to this case we have to specify a prior

distribution ρ on the line. We will use that the choice ρ = 1 gives a

very good correspondence between our theory and the Von Neumann

approach. From a strict probabilistic point of view this prior does of

course not make sense since it is not normalizable, but out theory still

gives sensible answers. In fact the choice of a prior representing total

ignorance about a unbounded random variable is a difficult, interesting

and unsolved problem in statistics. This problem is evaded in various

ways in classical and quantum statistics but it is not solved. In quantum

statistics the prior, is any exists at all, is embedded in the definition of

the trace and from the elementary theory of traces it is quite evident

that this prior is in fact uniform.

Thus we will proceed with ρ = 1 in our theory. The equation we must

solve is

−∂xxϕ + Tϕ lnϕϕ = hϕ

This is the same equation as in the previous section but now we need

solutions that are normalizable on the whole real line. From the phase

plots for positive and negative values of T and the discussion there it

is evident that solutions normalizable on the real line only exists for

negative values of T and in fact corresponds exactly to the separatrix.

The maximum entropy wave function is found by integrating the equation

for the separatrix as in the previous section.

ϕ(x) =
4

√

|T |
π

e−
1

2
|T |x2

The energy can now easily be found

E = 〈H〉 = 〈ϕ, Hϕ〉 =
1

2
|T |

This is exactly the same as we found for the von Neumann method if we

let T −→ −T . In fact it is simple to show by direct calculations that

all moments 〈Hn〉 are the same for the von Neumann method and our

maximum entropy wave functions.

7. The Harmonic Oscillator

The Hamiltonian for the Harmonic oscillator on the line can be written

as

H = −1

2
∂xx +

1

2
εx2,

where ε > 0 is a measure of the width of the potential.The von Neumann

method gives the following expression for the energy as a function of
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T > 0

E(T ) =

√
ε

2
coth(

√
ε

2T
)

The maximum entropy wave function for the Harmonic Oscillator is a

solution of

−1

2
∂xxϕ +

1

2
εx2ϕ + Tϕ ln ϕϕ = hϕ,

where we assume a uniform prior with the same caveat as before. As an

interesting aside note that for T > 0 this equation is the same as the

equation for a free particle with a Gaussian prior

ρ =

√

a

π
e−ax2

if we use ε = 2Ta.

We will in this paper not find the general solution to the above equa-

tion but limit ourselves to finding a special closed form solution. It is

well know that the logarithmic Schrődinger equation with a harmonic

potential has an exact Gaussian solution. This solution is

ϕ(x) =
4

√

b(T )

π
e−

1

2
b(T )x2

,

where

b(T ) =
√

T 2 + ε − T

From this is now a simple matter to show that the energy as a function

of T is

E(T ) =
1

2

√
T 2 + ε

For ε −→ 0 the harmonic oscillator potential goes away and the so-

lution approaches the maximum entropy wave function for the free case

for T < 0 and the energy becomes E(T ) = 1
2
|T | as for the free case. For

T > 0 the solution approaches a uniform non-normalizable function. The

entropy for the Gaussian solution is

S(T ) =
1

2
− 1

2
ln

b(T )

π

The energy as a function of T is symmetric in T so that for a fixed value

of E there are two values of T

T = ±
√

2E − ε

and thus two possible Gaussian solutions. These are different because

b(T ) is not symmetric in T . The expression for the entropy show that

the one corresponding to positive T has highest entropy of the two. We

do not know if this solution has maximum entropy among all solutions of
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the equation but we strongly suspect this because the solution we have

found connects to the ground state of the Harmonic Oscillator when

T −→ 0 and we have seen that the branch emanating from the ground

state is in fact the maximum entropy solution for the particle in a box.

For small values of T our energy function and the one derived using the

von Neumann method agrees but for large T they deviate. Our grow as

∼ 1
2
|T | whereas the one derived using the von Neumann formula grows

as ∼ T .

This means that for a given value of the energy our method predicts

a higher value of T and thereby a larger value of the dispersion than the

von Neumann method. One could say that our Harmonic Oscillator is

”hotter” than the usual one.

However note that our result depends on an explicit choice of prior

information whereas the prior behind the von Neumann is hidden. As

noted before the elementary theory of trace indicate strongly that the

prior behind the von Neumann method is the uniform distribution on the

index space of whatever basis chosen to evaluate the trace. In the current

example this means that the von Neumann prior is a uniform prior in

the discrete uncountable space of energies for the Harmonic oscillator. If

we use this prior, our method produce exactly the same result as the von

Neumann method in all cases. The strength of our method is that the

choice of prior information is explicit and enforced.
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