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ABSTRACT. In this paper, the total divergence equation is investi-
gated by means of the methods used in the theory of finite order vari-
ational sequences. Integrability conditions for this equation are found,
and all solutions are described. The correspondence of the solutions
with some differential forms on jet spaces is established.

1. INTRODUCTION

Let U C R" be an open set, let W C R™ be an open ball with cen-
ter at the origin, and denote V = U x W. We consider V as a fibered
manifold over U with the first Cartesian projection © : V' — U. V* de-
notes the s-jet prolongation of V; explicitly, V* = U x W x L(R",R™) x
L (R" R™)x...xLs  (R" R™), where Lt (R™ R™) is the vector space
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72 D. KRUPKA

of k-linear, symmetric mappings from R" to R™ . The Cartesian coor-
dinates on V', and the associated jet coordinates on V* | are denoted by
2 y7 and 2% Y% Y5 Yy o Y.
1<4,91,72,0s <nand 1 <o < m.

Let f: V" — R be a differentiable function (order of differentiability
in different variables can be easily deduced from the context). Our aim
in this paper is to find solutions g = (g%, g2, ..., g") of the total divergence
equation

respectively; in these expressions

whose components ¢* are differentiable real-valued functions on V*, where
s is a positive integer. Since the total divergence d;g* is defined by
dg'  Og’ g’ 9g' 9g'

- 4 ;4 i it ——y . . (2
al’l aya Yi aylal yllZ aya yZIZQZ aygi}”ir ylllg...zrz ( )

1112

dz'gi =

equation (1) is a first order partial differential equation. From this ex-
pression we immediately see that every solution g = ¢ , defined on V* |
such that s < r + 1, satisfies
0 11 0 12 0 is 0 Ts41
g g +—2 T _0 (3

o o o o
Wiis.iner  Wirigiaivi W inoiarivr  OWiri..i,

In this paper, we solve the total divergence equation by means of the
methods, developed in the theory of finite order variational sequences
(Krupka [12]). For additional information on this theory, see also e.g.
Francaviglia, Palese, Vitolo [3], Grassi [4], Grigore [5], Krbek and Musilova
[9], Pommaret [14], and Vitolo [19]. We use standard concepts of the
calculus of differential forms on jet prolongations of fibered manifolds,
applied to open sets in Euclidean topological spaces R" (see e.g. Krupka
[10], [11]). A systematic exposition of variational analysis and differential
equations in this context can be found in Hakova and Krupkova [6], and
Krupkova [13]. We prove two theorems on the structure of solutions of
the total divergence equation. We consider this equation as an overde-
termined equation, and find the corresponding integrability condition,
which guarantees existence of solutions. It turns out that integrability
of the total divergence equation is equivalent with the vanishing of the
Euler-Lagrange expressions of the right-hand side of equation (1), well
known from the multi-dimensional, higher order variational theory. If
the integrability condition is satisfied, we find all solutions. Moreover we
show that the solutions can naturally be interpreted as some differen-
tial forms. The tools we use include among others the theory of Lepage
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forms, the Young decompositions and the trace decompositions of tensor
spaces, and the fibered homotopy operator.

It seems that the total divergence equations, differential operators, and
algebraic constructions related with them, appeared for the first time
in the geometric theory of partial differential equations on infinite jet
spaces and, in particular, in the variational bicomplex theory (see e.g.
Anderson [1], Dedecker and Tulczyjew [2]|, Krasilschik [7], Krasilschik,
Lychagin, and Vinogradov [8], Saunders [15], Takens [16], Tulczyjew [17],
Vinogradov [18], Tsujishita [20], and references therein). These equations
play a crucial role in the proofs of exactness of the bicomplex. However,
no explicit discussion has appeared in this context yet; the structure of
solutions of the total divergence equation, and the meaning of condition
(3), in these sources remain unclear.

2. NOTATION

In what follows we use basic notions from the theory of contact forms
on jet prolongations of fibered manifolds (see e.g. [11], [13]). We denote

1 2 n . . .
Wy = de” Ndx* N ... Ndx , Wi = Z@/azin, Wij = Za/axila/ngwO.

The contact 1-forms w? are defined by

Jij2.--Jk
o o o l
Wiijade = Wirjaji = Yinjagud@s K =0,1,2, 005 = 1.
h and p denote the horizontalization, and the k-contact mappings.
For any smooth function f : V" — R we define an n-form Ay on V"
and a system of functions E,(f): V¥ — R by

)\f = fwo,
and
of of of of
E — . d. = _—d.d. d.—
-(f) o d;, dy7 +d;, d;, y7 d; d;,d;, O
_ of of
-, d;,..d;  —— -1)"d;. d;,...d; ———.
+ + ( ) d21d22 dw—1 ayZiQ,,,ir_l + ( ) dlleQ dlr ayZiQ,,,ir

Ay is the lagrangian associated with f, and the (n + 1)-form
E¢ = E,(f)w’ A wo

is the Fuler-Lagrange form, associated with f.
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3. PROJECTABLE EXTENSIONS OF HORIZONTAL (n — 1)-FORMS

Let us consider a n"-horizontal (n — 1)-form n on V", expressed as

; 1
n=gwi= m
Since

1

-

wW; = (n

we have the transformation formulas

_ 7 k
Pjrjsecijin = €ijajs.jind’s 9

hj2j3mjndl’j2 A dl’j3 AL A dilj’j".

T (n—1)

(4)

L J2 J3 Jn
Eijajs...indT? Ndx?® N N dadm,

kjojs..-gnt,
€ Pjsjs.. -

We prove the following assertion, in which alt and sym denote alternation

and symmetrization in the corresponding indices.

Lemma 1. The functions g' and hj,j, j, , satisfy

Ogh

agkg agk,«

+

1 . g’ N
< Cilyls..ll 75
(r+1) """\ OV ko
Oy,

g
ayikgkg...kT

r(n — 1) 8hi1314,.

An

g
ayklikglm...kr

et
ayklkg...k,«_li>

a YR kgt
Proof. We have
g 1

(r+1) ayﬁtgkg,..

aylglkg...kr (n—1)!

Multiplying this expression by €;,5..

. o 1
st aygle...kT (n—1)!

The rest of the proof is routine.

Eilyls..

An

5t alt(lols...ly)  sym(kiko.. ky).

kr

ij243---Jn ahjzjg---jn
L
aykl ka...ky

1, We obtain

Ohjsjs..jn _ Olisls.y
aygle...kT ayZIkQ,,,kr
[

LY ERL

We say that a n"-horizontal form 7, defined on V", has a projectable

extension, if there exists a form g on V=1 such that

n = hpy.

Let us consider a form 7, expressed in two bases of (n — 1)-forms by

(4).

Lemma 2. The following three conditions are equivalent:

raor—1

(a) n has am

-projectable extension.

(b) The components hi,,. ;. _, satisfy

ahili?ninfl _’I“(TL B 1) ahJSi2i3min71
ayqujz---jr r+1 aygjzj&--jr

67 =0 sym(jijo...jy) alt(irin...in_1).
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(¢) The components g* satisfy

a ) a k1 a ko a ki
=9 = 9 ot —T .
ayklkg...kT ayikgkg...kr ayklik3k4...kr ayklkg...kr_li

Proof. 1. To show that (a) implies (b), suppose that we have an (n — 1)-
form g on V™! such that n = hu. To express u in a fibered chart, we
use multi-indices J = (jiJ2...5,_1) of length |J| <7 — 1. Then (7" 1)*py
is expressible as

r,r—1\x* 1 ) 7 Tn—
(7" 1) u= mhim...in,ldx Adx? AL AN datt

n—2 1
JiJe  Jg o1 o2 ok
+ E —k'(n 1= k)'h0'1‘72"'Ukik+17:k+2~~~inflwt]1 ANWE A AW
— !

Adx™ 1 A dz' 2 A LA da
1 NJs On_
+(n — 1)!h0102...a’;jw§11 ANWEN. AW
Since 1 is defined on V™!, s0 is du. In particular, all terms in (7" ~1)*du
= d(7"""1)* i, containing dy¥ ;, . , should vanish identically. We find the

: r,r—1)* : i 7 e g
terms in d(m )* 1, which do not contain any of the forms w?, w?, w9, ,

WS, s, these terms should vanish separately. Obviously, they can
arise only from the summands
1 . . ,
mhili?nin—ld‘rh ANdx A ... N\dx'?
1, . . . (5)
+—7h)! wi Adx ANdz® AL A det?

(n o 2)] 011213...1n—1

in 7, in which |J;| = r — 1. Writing J; = (j1J2...jr—1), differentiating (5)
and omitting the terms containing w7, we get

1 ' 4 4 |
mdglhmsmindl’“ Adx™ Ndx"™ N ..o\ da™
1 8h2-22-3“_2-nd ,
(n — 1)' ay?ljz...jr J1j2...Jr
1 . i i i i |
_mhgjﬂ%--]r—lZ’3i4...indyj1j2mjrili2/\ A A da A daii A A dan
1 4 4 | |
- delhi?i:&...indlﬂ Ada® Ade® A A dat
n—1):

n 1 ( 1 ahzglg,ln o hjljz---jr—1i3i4 i §]T)
n—2)!'\n-1 OYs i i e

dy? o Ada® Ada® A A dat

+ Adz Adx® AN de
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where d denotes the cut formal derivative,

O
d/ hi2i3 in dilh’igig, in ——28in H W
i i i o j172---Jri
1 Y joge
Consequently, d(7™"~1)* 1 can be written as
(7" Y*dp = delhm%indx“ Adx Ndx™ A ... N dx™
n—1)!

+ 1 ( 1 ahZQZBZn _ hjljg...jr,1 '3 .4 i 6,]7")
o o 13%4...1n V19
(n=2)' \n—19y5;, ;

dy? s, o Nda? Ada A A datt 4T
g o

Ju gz o
d(m""1)*p is 7" Lprojectable, so we see that u satisfies

1 ah’il’iQ...in—l _ hjle”‘jT—l, . . 5]7« — 0
o o 2213...1n—1"9
n—=1 03, ' (6)

alt(iriz...tp—1) sym(jijz...jr)-

w? But

where 7 is generated by the forms w?, w 2 e 1"

w

The structure of this system of algebraic equations for hJ22-ir=1, ;.
is described by the trace decomposition theory. In what follows we use
the trace operation tr, and a complementary operation, denoted by q,
which satisfy U = trqU + qtrU for any tensor U, symmetric in the
superscripts, and antisymmetric in the subscripts (see [11]). In terms of
these operations, equation (6) can be written in the form q X = A, where

1 Oy
r+1 047, 4,

_ pJij2e-dr—1
X = piiidra,

172...9n—2 7

Recall that

rn—1) .. ; S S
qX:%hfm“‘”iﬂgmin152?11 alt(iyig...in_1) sym(jijo...Jr)-

But we have the identities A = trqA + qtr A and qq X = 0, and we

know that a necessary and sufficient condition for existence of a solution

X is q A = 0 or, equivalently, A — qtr A = 0. Since

7’2(71 — 1) ahJSi2i3min71
(r+1)2 aygjgjg...jr

qtrA = 6 sym(jijo.jr)  alt(iriz..in_1),

and

A—qtrA= r Ohiyiyiny 120 = 1) Ohsigig. in s g
r+1 ayqujz---jr (T + 1)2 aygj2j3---jr "

sym(jijo...7r)  alt(iyio...in_1),
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we see that (a) implies (b). Note that condition (b) means that the
expression

has vanishing its traceless component.
2. Property (c) of the form 7 follows from (b) by Lemma 1.
3. Suppose that the functions ¢* satisfy condition (c),

) i1 b) 12 b) i3 0 Tr41
609 +8ag +8ag +...+aag7:0. (7)
Yigis...ipqr Yivis..ipsn Yigitia..ipsn Yigis...iris

We wish to show that these functions are necessarily polynomials of de-
gree < n—1in the variables y7 ; .. In fact we prove that every solution
g of equation (7) is necessarily a polynomial in the variables 3" of degree
< n — 1. It will be convenient to work with multi-indices of length r,

J = (jij2..-jr). We assert that

Ay, 0y ...0yT"

(8)

We prove (8) by showing that all Young diagrams, defining the Young
decomposition of the expression on the left of (8), vanish. Since this
expression is symmetric in the indices entering every of the multi-indices
Ji, Ja, ..., J,, only the diagrams, which contain any of the blocks Jy, Js, ...,
J, in a row, can make a nonzero contribution. Thus, we can restrict our
attention to typical diagrams, which include the blocks Ji, Js, ..., J, as
follows:

T T T Tr,
Jet1 |2 | ey ko

Jk1+k2+1 Jk1+k2+2

(diagrams with different position of indices in each row give analogous
Young projectors). On the other hand, the Young diagrams for the de-
composition of (8) should also include the index i. If this index stands
in a row, which contains at least one of the blocks Jy, Js, ..., J,,, we get
necessarily the zero Young projector, by (7). Thus, a non-zero projector
may possibly arise only from the diagram, in which i is placed on the
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bottom:
A Jo Js T,
1 | Ty |- Tk +ks
Jk1+k2+1 Jk1+k2+2

l

However, then it follows again from (7) and from antisymmetry of the
corresponding Young projector in the first column, that we get the zero
contribution whenever k; > 2; otherwise we simply transform the index ¢
to the first column by a permutation in the first column. Thus, a nonzero
contribution may arise only for the diagram

Ji
Jo

In

1

But the Young projector, corresponding with this diagram, is the zero
projector because this diagram contains n + 1 rows. This proves that ¢
satisfies condition (8). In particular, g* must be a polynomial in 7, .
of degree < n — 1.

Let g; be the homogeneous component of g* of degree p. Then

IS =90+g +9g+.. g1, (9)

and we have for each p =0,1,2,....n —1

agpl agp2 agps agp'r+l 0
o o o o - v
Wiyigoivr  Wirigivys  Wiiviaiops W is..ivin

Moreover, since for every p=1,2,....,n — 1

gi _ l ag;’ yal
Popoypth
we have
.1 g 1.
9= S5 YL Y + ~9p
D p2 aylllaylj Iy JIs P D
ie.,
7 1 8292 o1, 0
gp = pO’Q ylllyI;

p(p — 1) Oy7! Oy7;
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Continuing we get
1 ’gs,
p' ayllﬁy

)

9p =

G y?fy}’j Y (10)
where the coefficients are independent of y7 , |I| = r. Writing
&g, gy
Ayr, Oy7; .0y, 8yJ1]13yJ2]2 Oy,

and analyzing this expression in the same way as above, we see that

(11)

we have a unique Young diagram giving a possibly nontrivial Young
symmetrizer, namely

|
Jo |2
.jp—l Jp—l
jp Jp

7

Thus, the coefficients (11) are antisymmetric in 4, ji, ja, ..., j,. This com-
pletes our description of the functions ¢* (9), satisfying condition (7).
Write for the coefficients in (10)

= 667167257 alt(if1ja...jp)
Y70y ay[ ayh“@yhm ayjpzp T '
1 ’gs,
(p + 1) (n - - ]')' ayjlllayJQ’LQ apr’Lp

e Ji1g2--Jp—1Jplp+1--dn—1
511112...1p,11plp+1...ln,lg

where I, = J,j,. Set

D 0
A it = ! % Eikika.kplpiilpsa...l
0102 "Oplptilp42...ln—1 | o2 Op 1R1R2...Rplp+1lp42.--bn—17
(p + 1) aleklayJQkQ"'aprkp

and for each p=1,2,...,n— 1

1 JidJa  J 2
Mp = ZM_—MAgiai"'UilP+llP+2“‘ln 1dy /\ dy /\ /\ dy

Az A dalr e A A dat
We extend this definition for p = 0, setting
fo = gowi-
Let us now consider the form

M= fho + f1 + fo e fp—1
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w is obviously defined on V"1, Since

gikeksekn . — dqoek2 A daks A LA dabe,
we have
ity = —————— AT Yo YTei Yt
D p‘(n_p_ 1)' 0102 0plpy1lpiro..ln_1 J17,1 ngg Ipip

Az A dz A LA dx' A dztP A A datt

—(p+1)— i R
P (p+1)'ayJ1llaszzz aya". y‘h“y‘]m?'“y‘]plﬁ v

Jpip

I
- gpwia

in accordance with (10). Now we can conclude that

n—1 n—1
hu = hpo + Z Ity = gowi + ng.wi = g'wi = 1.
p=1 p=1
This completes the proof of Lemma 2. O

4. LEPAGE EQUIVALENTS OF A LAGRANGIAN

We have the following assertion.

Lemma 3. For any function f : V" — R, there exists an n-form ©,
defined on V¥ =1, such that (a) A\ = h©, and (b) the form p,dO is w°-

generated.

Proof. We search for © of the form

@:wa+(f oW +f211w +f231]2 +.. _|_f231]2 Jr— 1,9 )/\Wz', (12)

]1]2 J1j2---jr—

with undetermined coefficients f*,, f#t fiiz fiiz-ir=1 Note that

w;'jlljznjr 11/\ Wi = w]l]? Jr— /\ Wi Sym(jle-'-jr—li) (13)
/r o o . . .
T Awyss. o N %’u’) sym(jija---Jr—1)-
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Denote by f¥172-ir-1 the expression fi172-Jr=1 symmetrized in the su-
perscripts. Applying formula (13) to the last term in (12), we obtain

1j1j2---Jr—1 1j1J2--Jr—1 .
f Wy, Aw; = f w]1]2 Jr—1 A Wi

Jij2.--Jr—1

r—1
- 7‘]1]2 ]r 1 ..
f d( J2J3 Jr—1 A wﬂll>
1J1J2---Jr—1 A
f w]l]? ]7‘ 1 /\ wZ
r—1 .
kijojs...jr—1 __ fikjajs...jr—1 )
+ dk(f o " f . )wjzjs Jr—1 A wi
r—1
- Z]l]Q .]7‘ 1 ..
+ d(f*y Whsergroy I Wjyi)

1J1J2.-Jr—1 ..
pdf NWT i iy N Wi

Then
O = fwy + (fZaW + f“lw + fmj2 Wi, jo

1172 Jr—2 15152 Jr—1 i
+-. +f w]l]?] )/\wl—i_f w]l]2 ]rl/\wz

r—1 L
kij1j2...jr—2 __ fikjijz...jr—2 .
+ dk(f o ’ f o )whm Jr—2 A wi
r—1
1J1J2--Jr—1 ..
+ (f . w]2]3 Jr— /\ wﬂl’)
-
Z]l]? ]7‘ 1 ..
pdf N i N Wi
We can apply the same decomposition to the term
j1daedr—a 4 1d (frigiizedrea _ fikjranir-a ) g0 A w;
o r k o o Jij2.--jr—2 ?

defined on V", etc. After r — 1 steps we obtain a form on V2"~ 1,

@ fw0+(flaw +f1]1w +fl]1]2 ]1]2+ +fl]l]2 ]T QWJL]Q ]T ) (14)

fl]l]? Jr— 1('%1]2 e ) /\Wz + dn + i,

with symmetric coefficients f&*, f&192 .. findz-dr=2 fijz-jr-1,

From formula (14) we have
0 0 0 0
p1dO = (ayfgwajt {r wy + / w,‘jlk2+...+07fwglk2mkr) A Wy

1 ol
Yk, Yk ks ayklkg k

—<difigwa+di]a]1w —|—d fz]1]2wjm2+ +d fz]1]2 Jr— lwh]z e 1) A W

(flaw +f”1wz]1+fw1]2 Z]1]2+ +f2]1]2 I 2("}%]1]2 Jr—2

+f2]132 Jr— 1o /\WO‘

1j1j2--Jr— 1)
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Collecting together the terms with the same elements of the basis of
(n 4 1)-forms, we obtain

of
ay;-’l

p1dO = <ﬁ —difz) w? A wy + <
oy°

— diféjl - fcjfl) wy A wo

of o\
+ ( _ dl,fgjlh _ fg2]1) wj1j2 A Wo

o
&yjljz
+ + af _ d,fijljl'-jr—l _ fjr—ljle---jr—Q wU . . /\ w
ayq o o o J1J2.-Jr—1 0
J1j2---Jr—1

af A
+ <ayo— - faj' 192 1) wjljg...jr A Wo-

Jijz---Jr
Consequently, p1dO is w?-generated if and only if

67‘]0 . fgrjljlnjrfl — 07

ay}jljg...jr

aif _ difijlj?“jrfl _ fjr71j1j2~~~jr72 -0

ay}'jljg...jr_l 7 7 7

L _ difijljz--jr—z _ fjr—2j1j2~~~jr—3 -0

ay;'rljg...]T,Q 7 7 7
oL afi <o,

Y552

O _afin - fr—o.

ye, o o

These equations have a unique solution

fjrj1j2~~~jr71 — of
g

fir—1J142+-Jr—2 _ of —_ . of
fo’ o dlr o )
OYF o e Y5 doejrvin
Fir—2j1§2--Jr—3 _ of —d. —af
fo‘ a o Zr—la o
Yjigo.jrs Yjiga.grsir—1
+d of

ir—1 ira o
yj1j2~~~j'r72ir717:r
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ngjl - agf - dis ?f + di3 di4 ff
ayjljz ayjlhizs ayj1j2i3i4
_ of
e (S 2 iy, — 2
( ) ’ ay;'jlj2i3i4~..ir
o af of of
D= iy didy o —
f ay?l aygllé ayj1i2i3
of

e+ (=) iy iy iy ——

J112%3%4...7p

This proves Lemma 3. OJ

Any form O | satisfying properties (a) and (b) of Lemma 3, is called a
Lepage equivalent of f. The form

O = fwo+ (flow” + f;‘jlw]ql + f;jljzw;m Tt féjljg...jr_gwa

J1J2.-gr—2
~ijlj2---jr—1 g .
+f5 WS ygey) N\ Wi

is the principal Lepage equivalent of f.

Note that Lepage equivalents © of f are defined by prescribing some
properties of the exterior derivative d®. The meaning of any © for the
total divergence equation consists in the structure of the form p;d©.
Computing p;dO, we obtain the Fuler-Lagrange form

of
oy°

p1dO = ( — dz-fig) w? Awo = E,(f)w” A wp.

5. THE FIBERED HOMOTOPY OPERATOR

Let U C R"™ be an open set, let W C R™ be an open ball with center
at the origin, and let ( : U — U x W be the zero section. We define a
mapping x : [0,1] x U x W — U x W by

X(s, (2',y7)) = (2, sy7).
Then
Yidat = da',  xFdy® = yds + sdy°. (15)
For any k-form p on U x W, where k > 1, consider the pull-back x*p,

which is a k-form on the set [0,1] x U x W. Obviously, there exists a
unique decomposition

Xp=ds A\ p®(s)+p'(s) (16)

such that the (k — 1)-form p®(s) and k-form p'(s) do not contain ds.
Note that by (15), p/(s) arises from p by replacing each factor dy” by
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sdy®, and by replacing each coefficient f in p by f o x; the factors da!
remain unchanged. Thus, p/(s) obeys

J)=p F0)=aCp. (17)
Define
Ip= / PO (s), (15)

where the expression on the right means integration of the coefficients in
the form p®(s) over s from 0 to 1. If f : xW — R is a function, we
define

If=0.
The mapping p — Ip is called the fibered homotopy operator.
We prove the following result.

Lemma 4. For any differential k-form p on U x W,
p=1Idp+dlp+7*"p.
Proof. 1. Let k= 0. If f is a function, we have by (15)

* _ ﬁ ) ﬁ o o
X df = (c%iox)dx +<8ygox) (y°ds + sdy?),

Ldf :y”/ <8—f ox) ds.
oy°
Now the identity

d(fo 0
Fow s = foxlo = foxioa= [ M0y [(FLoy)as

and

gives the result.
2. Let k =1. p has an expression

p= A;dz' + B,dy°.

Thus
X*p =1y (B, o x)ds + (A; o x)dz" + (B, o x)sdy’,
and
X dp = ds N\ (—d(y“(Bg ox))+ ((XAaii{:X)dxi + a((B(é—:XMdy”)

+ (4 ° X>dxj + (4o X>dy” A dx
oxJ oy

+ (282X 5 ABooX)
oxJ oy

dy”) Ndy?,
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hence
[p:yU/BUOX'd‘Sv
O0s oxt
+/ a((BU o X)S) _ a(y : BI/ OX) dS . dycr7
0s oy°
and

0 , 0
dlp =1y° / %(Bt7 ox)ds - dx' + / By (y" - B, ox)ds-dy°.

Consequently;,

1dp+d1p:/(a(A57:X)) ds-dmw/(a((BB—:X)S)) ds - dy°

=p—7Cp.
3. Let £ > 2. Write p in the form
p=dz' N®; +dy’ ANV,

and we define differential forms <I>Z(-O)(s), @/ (s), U (s), ¥ (s) by the fol-
lowing decompositions
0 =ds AD(s) + Di(s), U, =dsATO(s)+ T (s).
Then we get
Xp=ds A (—dz' A (s) = sdy” A TO (s) + y W (s))
+dz' A ®L(s) + sdy” A VL (s).

Thus,

Ip = —dz' A /@EO)(S) —dy’ A /S\If((,o)(s) + 9y / ! (s)ds.

To determine Idp, we compute x*dp. We get

X'dp = dx*p=ds A | —dz' A d@go)(s) + dx’ A L%(s)
s
—sdy® AdTO(s) — dy® AT (s)
- 05U (s))
-y dqjo‘(8> + dy A T (19)
, - 0Dl(s) 0Pi(s)

—drt J v v i

dx' N\ | dx? A B +dy” A 783/”

_dy(r A dl'] A 6(8@0(8)> +dyu A a(S\IJU(S)) 7
oxJ oy
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where 0n(s)/0s denotes the form, arising from 7(s) by differentiation of
the coefficients with respect to s. Now by (19) and (18),

tap= st [ 0006 ay A [[saw )~ i)

—y"/d\lf{,(s)+dx%/%8@+dy"/\/7a(sgi(s)>.

It is important to notice that the exterior derivatives d@go)(s), d\IJE,O)(s),

and dV’ (s) have the meaning of the derivatives with respect to x*,y°

(the terms containing ds are canceled; see the definition of I (16), (18)).
Now we easily get

[dP+dIP=d$i/\/%+dy”/\/M‘
0s Os

Remembering that the integral symbol denotes integration of coefficients
in the corresponding forms with respect to s from 0 to 1, and using (17),
one obtains the final formula

Idp+dlp=dx' A ®; +dy’ NV, —dz' A",
=p—7Cp.

6. THE TOTAL DIVERGENCE EQUATION

We now prove two theorems, describing solutions of the total diver-
gence equation

dig' = . (20)

where f: V" — R is a given function. By a solution of this equation we
mean any system of functions g = ¢* , defined on V* for some nonnegative
integer s, satisfying condition (20).

Lemma 5. If the total divergence equation has a solution defined on V*
and s > r + 1, then it has a solution defined on V*71,

Proof. Suppose that we have a solution g = ¢* of equation (20), defined
on V°. Since f and g’ do not depend on y%; . ., the functions ¢’
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7
satisfy
0 dg* 1 dght 0g™
- / a L A - g T 9
yi1i2---is+1 2112 As+1 s+1 yi2i3---is+1 yi1i3---is+1
o 13 0 Ts+1
+8C’L + ...+ aggi
Yigivia.issr | yizig...islil | 21)
1 g™ 0g" dg"
= — + +
SHL\0Y i iver O iver  OYiiviaivi
a Z'5+1
Yiois...isin
Analogously, with the help of (21),
8 a 7 82 7
af = d; ag + v J o y}jl]é---jsi
Y iy, Wiigie O Oiris i,
1 dgh 0g™ 0g™ dg's
to gt gt — ety
y2213 s Yivis...is Yigivia...is Yigis...is_1i1 (22)
aq" 1 Ogh 0g™ 0g™
_d;aag L1 8"9 +aag +aag
Yivia...is Yinis...is Yivis...is Yioivia..is
0qg's
+ —|— aff# - O
Yinis..is_1i1
because s > r + 1. From (21) and (22) we obtain
a ) a jl a ]2 a js—l
f = 892‘ agy y;'jl + agu y]ljz +.t a ug ;{13'2...]'572]'571
X ) Y J1]2 Js—2 (23)
a¢g"
—d—T¥ . .
Za ;/1]2 s y]l]Q---]s
We already know that as a consequence of condition (1),
9 =g+ g+t -+ (24)

where g; is a homogeneous polynomial of degree p (proof of Lemma 2,
part 3). Note that substituting from (24) to (23), we get the sum of
homogeneous polynomials of degree p in y7;, ;.

ag; agl v ag]]f v aglj;s_l v / ag; v
oz oy yﬁ+8y;1 Yjrjott o Qyjljz..jsfzjsfl By jsyjljz...js'

Then setting y7 ,;, ;. = 0 on both sides, we obtain

) i o J1 ) J2 o Js—1
f - ag? ag(; y}jl + ag?r y]quz + ot < 7
x Y Y

I
T . Jidzeds—2ds-1 d; g5
le]2 Js—2
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Thus, under the hypothesis (b), we have constructed from the solution
g' of the total divergence equation, defined on V*, a new solution, g,
defined on V71 O

Theorem 1. Let f : V" — R be a function. The following two conditions
are equivalent:
(a) The total divergence equation has a solution, defined on V.

(b) The function f satisfies

E,(f)=0.

Proof. 1. Suppose that (1) has a solution g = g*. Then from (2), Section
L

dd;g’ _ dg’
oye oy’
and for every k=1,2,...,r,
dd; g’ g’ 1 g™t g™ dg'
aag :diaag L1 6”9 +a¢’g +aag
Yivia...ix Yoizin R\ Wi Yivis...ix Yiziia...ix

9y’
+ +L).

~
ayigig...ik_lil

Using these formulas, we can compute the expression E,(f) = E,(d;g")
in several steps. First, we have

, dg  0dyg® dd,g°
E,(dig') = d; - di, 2
() = o (2 o
0d,g*
—.. -1"d,.d;....d; —————
() dids, ay)
0g”?  0dq* od,g®
—didy, |- 2 1 T0 g, 5T
ayil ayilig 8yi1i2i3

Tr—1 ayg ir ayg

11920 0p—1 1119...0p
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Second, using symmetrization,

agiz agz 1 (a 21 agzz) 4 8dsgs

Ea(dlgl) = dzldz - + dz + = + i3A o
’ < ayqu ayzm 2 aym ayg ’ ayglléi?)

Zrlag

1r
1112 Ap_1 ayzlzg A

o (D diyds, =25y ds,dy, 209 )

13 ds s ds S
= d;,dy,d;, 890 809 Vot () dy o ds, 17‘2 J
a 1122 ayiligig a 1122 dp—1

’Lraa-

1112 S

(1) dsd . dy, 229" )

Third, again with the help of symmetrization,

. 0g' od,
Eo(dig) = dydiydy, [ — diy -0 1 g, 209"
a ’27,223 a ;717/213714

r—1 o ir
a 1112 dr—1 aylllQ p

= d;,di,did;, (— 99" | 9dsg

dyg° dyg®
o (U didy, =0Ty d,,dy, 209 )

g g
ayil inis ayil i2isia

T_ 0dsg® ., 0dg*
ot (=) Ny diy . ds, lm + (—1)"d;. d;g.. d“aym ZT).
We continue this process, and obtain after r — 1 steps
E,(dig") = (—1)"d;,ds,...d;, ., d;,d; 8? ) (25)
1122 Ay

But since f is defined on V", the solution g of equation (1) necessarily
satisfies

) k o i1 o 2 o Tp—1 0 iy
Ug Ug Ug + ...+ Ug + Ug =0.
OYfin i aykigig...z’,« ayilkigm...z’,« ayilig...ir,gkiT ayilz’g...ir,lk

Using this formula in (25) we see that condition (b) is satisfied.

2. From now on, we suppose that condition (b) is satisfied. We want
to show that there exist functions ¢* : V" — R such that d;¢* = f, or, in
an explicit form,

7 + o ya + o) y + e + Uiya 2. 'T— '7‘ = f7
Out T Oy T dyg T O gy oy
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and
ayggig...ir+1 aygi3i4...z’r+1 ayggili4i5...ir+1
a ir a ir+1
ot 5 g +aag —0.
Yigis..ip_1ivirs1 Yigis...ip_1irin

Let I be the fibered homotopy operator for differential form on V2,
associated with the projection 7% : V2" — U (Section 5). We have

@f = ]d@f+d]@f+@o = ]pld@f+]p2d@f+d]@f+@o,

where © is an n-form, projectable on U. In this formula, p;1d©; = 0
by hypothesis, and we may suppose that Oy = dy (on U). Moreover
h©; = hd(I©; + ) = fwy. Defining functions g* on V*, where s < 2r,
by the condition

h(I1©; +vYy) = g'w;,

we see we have constructed a solution of the total divergence equation
d;g* = f. Explicitly,

dg*  Ogh Dg’? Dgls+1
9 Oy e T e = f(26)
ax ay J1 ayjl JiJ2 8yjlj2js J1J2.--JsJs+1

Note, however, that in general, we have not yet proved that the total
divergence equation has a solution defined on V.

If s < r, formula (26) shows that condition (a) holds. If s > r + 1,
we apply Lemma 5 several times, and obtain a solution of equation (26)
defined on V.

This concludes the proof. O

Combining Theorem 1 and Lemma 2, we can easily describe all solu-
tions of the total divergence equations d;g° = f such that the right side
f satisfies the integrability condition E,(f) = 0. In particular, we show
that a convenient description of solutions arises when we interpret them
as some differential forms.

Theorem 2. Let f : V" — R be a function such that E,(f) = 0. The
following conditions are equivalent:

(a) g = ¢' is a solution of the total divergence equation d;g' = f,
defined on V.

(b) The form n = g'w; has a projectable extension.

)
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(c) g" is given by

1 111172...tn—1 .. .
9 = (n— 1)!5 <Amz---zn—1

n—1
(n—1)! Jids J
-~ 0000z 1J2 k o1 [P} T
+Z k'(n —1— k)!AUIU'Q“'Ukik+1ik+2~~~inflleilyJQiQ'“kaik ’

L Jids Ik . . r—1
where Aijig.in_1s Aglon - oyinsripsanin OF€ arbitrary functions on V'™,
antisymmetric in all indices and multi-indices, and |J1|,|Ja], ..., | Jn-1| =
r—1.

Proof. Assertions (a) and (b) are equivalent by Lemma 2. To show that
(c) is equivalent with (b), we consider any (n — 1)-form on V"=,

1 . , ,
w= mAilig...in_ldx“ Adz? A .. N dx'nt

n—2
1 Jy J: J o
k=1
AdT* 1 A da'+2 A LA dz?

1 o
mz‘liiizgz:idygll A dy;j AN dyJ::ll + T,

where 7 is a contact form. p has the horizontal component

+

n—1
(TL - 1)' J1 J: J o o o
+Z —k;!( k)!Aaiag"‘aZik+1ik+2...z’n,1yJ11i1ngzz'g"'yJ:z'k
k=
dx A dx® A AN da A dztRA LA datt

Transforming hy we obtain hu = g'w;, where

i 18192 in—
g = ﬁg 1 ! (Ailig...in_l

Z n—1)! Jide

-~ 0000z 1J2 k o1 (o) Ok

+ k'(n —1- k)!AU1U2"'Ukik+1ik+2---in—1yJ1i1yJ2i2"'kaik ’

O

Note that Theorem 2 together with Lemma 2 show that solutions of
the total divergence equation can be interpreted as certain differential
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(n — 1)-forms on V"~ !; the correspondence between these two objects is
given by formula

: 1 ) ) .
n= glu}i = mhhj&..jndxp AN dx’? VANPYRAN d(L’]n,

and Lemma 1.
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