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ABSTRACT. In this paper, we characterize the n-line splitting oper-
ation of graphs in terms of cycles of respective graphs and then extend
this operation to binary matroids. In matroids, we call this operation
an element-set splitting. The resulting matroid is called the es-splitting
matroid. We characterize circuits of an es-splitting matroid. We also
characterize the es-splitting matroid in terms of matrices. Also, we show
that if M is a connected binary matroid then the es-splitting matroid
M5 is also connected.

1. INTRODUCTION

In [9], Slater specified the n-point splitting and n-line splitting opera-
tions in graphs in the following way:

Let G be a graph and U be a vertex of G with deg U > 2n—2. Let G,
be the graph obtained from G by replacing U by two adjacent vertices
U, and Us, and if vertex X is adjacent to U in G, written X adj U, then
make X adj U; or X adj Uy (but not both) such that deg U; > n and
deg Us > n (see Figure 1.1).

Key words and phrases. Binary matroid, n-line splitting, element-set split-
ting, connected matroid.
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Figure 1.1

We say that (1 is obtained from G by n-point splitting operation. The
operation of n-line splitting is defined as follows.

Let G be a graph and e = UV be an edge of G with deg U > 2n — 3
with U adjacent to X1, Xo, ..., X, Y1,Y5,..., Y, where h and k > n—2.
Let H be the graph obtained from G by replacing U by two adjacent ver-
tices Uy and Uy with V' adj Uy, V adj Us, U; adj X; and U, adj Y}, where
1<i:<kand1<j<handdegU; >n,degU; >n. Let H be said to
arise from G by n-line splitting (see Figure 1.2). We also say that H is
a n-line splitting of G.

Figure 1.2

The above operations can be related to the earlier splitting operations.
Let X;U = 2; (1 < i < k)and UV = e and U1Uy = a,U,V = 7.
Moreover, let X = {x1, 29, -+, 2, e} and A = {e,a,7}. We denote H
by G%. If Gx denote the splitting of G’ with respect to X (see [6]), then
G% = Gx+a+y. If G is obtained from G by n-point splitting operation,
then G5 = G'x+7. In other words, G&\{a,v} = Gx and G \{7} = G%.

In the next proposition, we characterize the cycles of the graph G% in
terms of the cycles of G.
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In [2] Raghunathan, Shikare and Waphare generalized the splitting op-
eration of graphs to binary matroids. Shikare, Azadi and Waphare [6,
7] extended the notions of n-point splitting from graphs to binary ma-
troids. The authors in [4] determined the bases of splitting matroids and
Shikare, Azanchiler and Waphare [8] characterized cocircuits of splitting
matroids. We extend the n-line splitting from graphs to binary matroids
in next Section. Also we characterize circuits of the result matroid. For
the matroid theory we refer the reader to [1, 10].

Proposition 1.1. Let G be a graph and e = uv be an edge of G with
deg u > 2n — 3 and u adjacent to Xq, X5, -, Xy, Y1, Y5, -+ | Y}, where
hand k >n —2. Let X;u =2, and Yju =y, for 1 <i <k; 1< j <h.
Let X ={e,x1,29, -+ ,xx} and Y = {y1, 92, -+ ,yn}. Then C is a cycle
in G% if and only if C' satisfies one of the following conditions:

(1) Cis a cycle in G, containing precisely two elements of X.

(2) Cis a cycle in G containing no element of X.

(3) C = C1UCy, where C) and C; are edge-disjoint cycles of G, each
contains exactly one edge of X and C; U Cy contains, no cycle of
type (1) or (2).

(4) C = Cy U{a} when C is a cycle of G, containing precisely one
edge of X.

(5) C' = CyU{e, v}, where C is a cycle of G, containing exactly one
element of X — {e}.

(6) C' = (Cy\e)U{a,v}, where C} is a cycle of G, containing precisely
one element of X — e and the edge e.

(7) C = (Cy\ e) U{~}, where C} is a cycle of G, containing the edge
e of X.

(8) € ={e,a,7}.

2. SPLITTING OF A BINARY MATROID WITH RESPECT TO AN
ELEMENT AND A SET

Now, we extend the notion of n-line splitting operation from graphs to
binary matroids. In the first step, we consider matrix approach to this
operation in binary matroids.

Definition 2.1. Let M be a binary matroid on a set S and X be a subset
of S,e € X. Suppose that A is a matrix over GF'(2), that represents the
matroid M. Let A% be the matrix that is obtained by adjoining an extra
row to A with this row being zero everywhere except in the columns
corresponding to the elements of X where it takes the value 1, and then
adjoining two columns a and 7 to the resulting matrix such that the
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column a is zero everywhere except in the last row (new row) where it
takes the value 1, and v is a sum of two column vectors corresponding
to a and e.

Let M be the vector matroid of the matrix AS. We say that M5 has
been obtained from M by splitting e and X in M. The transition from M
to M is called splitting of M with respect to e and X. For convenience,
we say that M§ is a element -set splitting (es-splitting) matroid.

Remark 2.2. Let r and 7’ be the rank functions of M and M, respec-
tively. Then r'(M§) =1r(M) + 1.

In the next proposition we characterize the circuits of the matroid M.

Theorem 2.3. Let M = (S,C) be a binary matroid, X C S,e € X and
a,v ¢ S. Then Mg = (SU{a,~},C%), where C = CoUC; UC,UC3U{A}
with A = {e, a,v} and

Co = {C € C | C contains an even number of elements of X'};

C; = The set of minimal members of {C; UCy | C1,Cy € C,C1NCy = ¢
and each C] and Cy contains an odd number of element of X such that
C1 U Cy contains no member of Cy};

Cy = {CU{a} | C € C and C contains an odd number of element of X }.
Cs ={CU{e,v},| C €C,e & C and C contains odd number of elements
of X}.

U{ (C\e)U{y} | C eC,e € C and C contains odd number of elements
of X }.

U{(C\e)U{a,v} | C e€C,e e C and C\ e contains odd number of
elements of X }.

Proof. We prove that C% satisfies the circuit axioms of a matroid.

(1) Let A, B € C%, we show that if A C B, then A = B. In other
words, we prove that A ¢ B and B ¢ A. The property clearly holds, if
both A and B belong to Cy, C; or Cs.

Now, assume that both A and B belong to C3 and let A = C, U {e, v}
and B = (Cy \ ) U {v}, where C;,Cy € C,C; and Cy contain an odd
number of element X,e & C; and e € C;. Thus e € A and e ¢ B, so it
follows that A ¢ B. Similarly, a € A and a € B, implies that B ¢ A.

Next, let A€ C; and Be€Cj,i# jandi,j=0,1,2,3.

(i) Let A € Cy and B € C;. Then B = C; UCsy, where Cy and Cy are
circuits of M, satisfying the properties stated in the Definition
4.2.1 of C4.
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(ii) Let A € Cy and B € Cy. Then B = By U{a}, where B is a circuit
of M, containing an odd number of element of X. Since A ¢ B,
and By ¢ A, it follows that A ¢ B and B ¢ A, as desired.

(iii) Suppose A € Cy or C; and B € Cs. Since v € B and v ¢ A, then
A¢ Band B ¢ A.

(iv) Let A € C; and B € Cy. Suppose A = C,UC, and B = By U{a},
where C', C5 and By are circuits of M, containing an odd number
of element of X. Since a € Banda ¢ A,B ¢ A. Also A ¢ B,
for A C B implies that A C By and C; U Cy C By, leads to a
contradiction.

(v) Let A€ Cyand B € C3. Then A = A, U{a} and B = B;U{e, 7}
or B = (By\e)U{y}, where A, By and By are circuits in M each
contains an odd number of elements of X and e € Bj,e € Bs.
Since y e Bbut y¢ A, B ¢ A. Similarly, A ¢ B.

(2) Let A,B € C§ and A # B. We prove that there exists D € C%
such that D C AAB.
Firstly, let A, B ¢ C, UC3 U {A}. By binarity of M,

AAB=ClUC,U---UC" ()

where C7,C), --- and C] are disjoint circuits of M. Since A and B each
contains an even number of element of X, AAB contains an even number
of element of X. If AAB contains no element of X, then each circuit
Clyi=1,2,---,misamember of Cy and is contained in AAB. If for some
J,1 < j < 'm, Cj contains an even number of element of X, then D = C".
Otherwise, m must be an even integer and for every j =1,2,---,m,C’
must contain an odd number of element of X. If C] U C) contains a
member of Cy, say C, then we take D = C. Otherwise; D = C] U C} or
a minimal member of C; contained in it.

Secondly, suppose A, B € C, UC3 U {A}, then we have the following
cases:

(I) Let A,B € C and A = Ay U{a},B = B; U {a}. Then AAB =
A1ABy = ClUCLU- - -UC!  where C7, CY, - - - and C) are disjoint circuits
of M. Since each of A and B contains an odd number of elements of
X, AAB contains an even number of elements of X. By similar argument
as above, we can find D € C% such that D C AAB.

(IT) Let A and B belong to C3, we have the following subcases:

(i) A=A, U{e,v} and B = By U{e,~v}. (ii) A= (A1 \ e)U{y} and
B = (Bi\e)u{r} (i) A=A1U{e}, B=(Bi\e)U{r} (iv)
A=A U{en}, B= (B \e)U{a,v}. (v) A= (A1 \e)U{a,~v} and
B=(Bi\e)U{a,n}. (vi) A= (A \e)U{a, v}, B=(Bi\e)U{a,}
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In cases (i), (ii) and (vi), we have AAB = A{AB, = C{UCiU---UC! |
where C7, C4, - -+, C] are disjoint circuits of M. By the similar arguments
as in (1), we can find D € C% such that D C AAB. In case (iii), we have

Let AJAB; = C{UCy U ---UC), where C{,C3,---,C) are disjoint
circuits of M. If C7 contains an even number of elements of X, then
it will be an element of C§ which is contained in A;AB;, and hence in
AAB. If C] contains an odd number of elements of X, then C7 U {a}
is an element of Cy, contained in AAB. By similar argument, the cases
(iv) and (v) follow.

(III) Let A € Cy and B € C3. Then A = Ay U {a} and for B, we have
two subcases: (1) B = By U{e,v}, and (2) B = (B; \ ) U{7y}. Thus, in
(1), we have AAB = (A1AB;)U{e, a,~}, where A; and Bj are circuits of
M, containing an odd number of element of X. Clearly, A{AB; C AAB.
Let A;AB; = C{UC,U (] where C},C%, -+, C; are disjoint circuits
of M. By similar arguments as in (2), we can find D € C% such that
D C AjAB;y and hence D C AAB. In (2), we have A = A; U {a} and
B = (By\e)U{vy}. So AAB = [(A1ABy) \ e]U{a,~}, where A; and B,
are circuits in M. By the argument as given above, we can find D € C%,
such that D C AAB.

(IV) Let A = A and B € Cy. Then B = B;U{a}, where B; is a circuit
in M containing an odd number of element of X. We have two subcases:
(i) e & By. Then AAB is a circuit of M, containing an even number of
elements of X. Thus D = AAB. (ii) e € By. Then AAB is also a circuit
in M% and so D = AAB.

(V) Let A= A and B € C3. Then B = B1U{e,v} or B = (B;\e)U{v},
where B is a circuit of M, containing an odd number of element of X.
Since AAB; € AAB, we can find D = A, where D € C% such that
D C AABq, and hence D C AAB.

We conclude that C% is a collection of circuits of a binary matroid on
the set S U {a,7}.

O
Definition 2.4. With notation as above, we call the matroid (S U
{a,7},C%) as the es-splitting of M = (5,C) and denote it by M§. Thus
M§ = (5,C%), where S" = S U{a,~}.
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Example 2.5. Consider the matroid M = F; with ground set S =
{1,2,3,4,5,6,7} and the set of circuits

C = {{17274}’{173’6}7{2767 7}7{475’6}’{17577}7{3747 7}7
{2,3,5},{3,5,6,7},{2,4,5,7},{1,3,4,5},{1,2,3,7},
{2,3,4,6},{1,2,5,7},{1,4,6,7}}

Let X ={1,2,4} and e = 1. Then the circuit set of M is

Ci = {{3,5,6,7),12,4,5,7},{1,3,4,5},{1,2,3,7}, {2,3,4,6}
{1,2,5,6},{1,4,6,7},{1,3,6,a}, {1.2,4,a}, {2,6,7, a},
{4,5,6,a},{1,5,7,a},{3,4,7,a},{2,3,5,a},{1,2,6,7,v},
{1,4,5,6,v},{1,3,4,7,v},{1,2,3,5,v},{2,4,8},{3,6,7},
5,7, v} {1, a,7},{3,4,5,a,v},{2,3,7,a,7},{2,5,6,a,7v},
{4,6,7,a,7v}}.

Theorem 2.6. The matrix AS represents the splitting matroid M%.

3. CONNECTEDNESS OF THE SPLITTING MATROID M§

In [5] Shikare characterized the connectedness in splitting matroid M x.
The next theorem characterize connectedness of M.
Theorem 3.1. Let M = (S5,C) be a binary connected matroid. Then
MY is connected.
Proof. Let M be a connected matroid on S. Then for every pair x,y €
S there is a circuit of M containing x and y. We show that for any
two elements z and y belonging to S U {a,~}, there is a circuit of M§
containing x and y. We consider the following cases:

(1) Let z,y € {a,7}. Then x,y € A and we are through.
(2) Suppose z,y & {a,7}. Then z,y € S and M has a circuit, say C
containing x and y. We have the following two subcases:
(i) C contains an even number of elements of X. Then we are
through.
(ii) C' contains an odd number of elements of X. Then CU{a}
is a circuit of M§ containing x and y.
(3) Let + = a and y € S. Then there is a circuit C' € C such that
y,e € C. We have two subcases:
(i) Suppose C contains an even number of elements of X. Then
CeCs,ec CNAye Candaec A By [3], there is a circuit
say C" of M such that a,y € C’.
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(ii) Let C' contains an odd number of elements of X. Then

C'U{a} is a circuit in M§ and a,y € C' U {a}.
(4) Let x = v and y € S. Then there is a circuit C' € C such that

y,e € C. We consider the following two subcases:

(i) C' contains an even number of element of X. Then C €
Ci,e € CNAjy € Cand vy € A, so by [3], there is a circuit of
M5 containing v and y.

(ii) C contains an odd number of element of X. Then (C'\ e)U
{7} is a circuit of M§ containing v and y. O

Remark 3.2. Converse of Theorem 3.1 is not true. For example, let M
be a cycle matroid of the graph G (See Figure 3.1). Let X = {e,z1, x2}.
Then M% is a cycle matroid of G%.

U
T ! X2

x To

Figure 3.1

We observe that the matroid M = M (G) is disconnected while M§ =
M (G ) is connected.

The next theorem shows that one can obtain a connected matroid from
disconnected matroid with the help of es-splitting operation.

Theorem 3.3. Let M be a bridgeless binary matroid on S with n com-
ponents My, My, --- , M,. Let x; be chosen from M; for i = 1,2,--- . n
and X = {xy,x9, -+ ,x,},e € X. Then M is a connected matroid on
SU{a,v}.

Proof. Let M; = (S1,D;1), My = (S3,D),--+, M, = (S, D,) be the
n components of M, where D; denote the collection of circuits of M;.
Then S;NS; = ¢ for i # j,4,7 = 1,2,--- ,nand U, 5, = 5. X =
{x1,29,+ ,2,}, where z; € S; for i =1,2,--- n. Since e € X, there is
a j such that z; = e, where 1 < j <n. Suppose A; = {C € D; | z; ¢ C}
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fori:1,2,'~ ,n and An+1:{CiUCj ‘ CZ EDZ',C]' ED]',JIZ'ECZ',JI]' S
Cj,i#jandi,jzl,l-'- ,n}. Let BZ:{CU{CL} ’ CGDi,l’iEC,’i:
1,2,-+- ,n} and

Ci = {Fu{e,v} | E€D;e¢ E,x; € E}
U{(F\e)U{~} | F € D;e € Fx; & F'\ {e}}
U{(G\e)U{a,v} | G€ D;ec G x; € G\ {e}}.

The matroid M has the circuit set C§, where C = A UA,U---UA, U
A1 UBUByU---UB,UCLUCyU---UC, U{A}.

Claim. For every pair of elements «, 3 of S U{a,~} there is a circuit of
M§,, containing o and 3. We have the following cases:

(I) Let «, 5 € S. Then we consider the following subcases:

(i) Suppose « and [ belong to one component, say M;. Then
there is a circuit say C; of M;, containing v and (. If x; does not
belong to C}, then C; is a circuit of M, containing o and 3. If
x; € C;, then for any j # 4, C; is a circuit of M; containing z;.
Thus C; U Cj is a circuit of M§ containing o and 3.

(ii) Let a and [ belongs to different components of M, say
a € M; and 8 € M;. Consider the circuits C; and C;, where C;
contains o and z; and C; contains # and x;. Then C; UCj is a
required circuit of M%.

(IT) Let « € S and 8 € {a,v}. Then a € S; for some i. Consequently,
there is a circuit of M;, say C;, containing v and z;. If § = a
then C; U {a} is a circuit of M$ containing o and 5. If b = ~,
then (C; \ {e}) U {7} is a circuit of M§ containing o and f3.

(IIT) If « = a and 3 = 7, then o, f € A, a 3-circuit in M. O
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