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Abstract. In this paper, we characterize the n-line splitting oper-

ation of graphs in terms of cycles of respective graphs and then extend

this operation to binary matroids. In matroids, we call this operation

an element-set splitting. The resulting matroid is called the es-splitting

matroid. We characterize circuits of an es-splitting matroid. We also

characterize the es-splitting matroid in terms of matrices. Also, we show

that if M is a connected binary matroid then the es-splitting matroid

M
e
X is also connected.

1. Introduction

In [9], Slater specified the n-point splitting and n-line splitting opera-

tions in graphs in the following way:

Let G be a graph and U be a vertex of G with deg U ≥ 2n−2. Let G1

be the graph obtained from G by replacing U by two adjacent vertices

U1 and U2, and if vertex X is adjacent to U in G, written X adj U , then

make X adj U1 or X adj U2 (but not both) such that deg U1 ≥ n and

deg U2 ≥ n (see Figure 1.1).

Key words and phrases. Binary matroid, n-line splitting, element-set split-

ting, connected matroid.
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Figure 1.1

G1

We say that G1 is obtained from G by n-point splitting operation. The

operation of n-line splitting is defined as follows.

Let G be a graph and e = UV be an edge of G with deg U ≥ 2n − 3

with U adjacent to X1, X2, . . . , Xk, Y1, Y2, . . . , Yh, where h and k ≥ n−2.

Let H be the graph obtained from G by replacing U by two adjacent ver-

tices U1 and U2 with V adj U1, V adj U2, U1 adj Xi and U2 adj Yj, where

1 ≤ i ≤ k and 1 ≤ j ≤ h and deg U1 ≥ n, deg U2 ≥ n. Let H be said to

arise from G by n-line splitting (see Figure 1.2). We also say that H is

a n-line splitting of G.
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The above operations can be related to the earlier splitting operations.

Let XiU = xi (1 ≤ i ≤ k) and UV = e and U1U2 = a, U2V = γ.

Moreover, let X = {x1, x2, · · · , xk, e} and ∆ = {e, a, γ}. We denote H

by Ge
X . If GX denote the splitting of G with respect to X (see [6]), then

Ge
X = GX+a+γ. If G′

X is obtained from G by n-point splitting operation,

then Ge
X = G′

X+γ. In other words, Ge
X\{a, γ} = GX and Ge

X\{γ} = G′

X .

In the next proposition, we characterize the cycles of the graph Ge
X in

terms of the cycles of G.
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In [2] Raghunathan, Shikare and Waphare generalized the splitting op-

eration of graphs to binary matroids. Shikare, Azadi and Waphare [6,

7] extended the notions of n-point splitting from graphs to binary ma-

troids. The authors in [4] determined the bases of splitting matroids and

Shikare, Azanchiler and Waphare [8] characterized cocircuits of splitting

matroids. We extend the n-line splitting from graphs to binary matroids

in next Section. Also we characterize circuits of the result matroid. For

the matroid theory we refer the reader to [1, 10].

Proposition 1.1. Let G be a graph and e = uv be an edge of G with

deg u ≥ 2n − 3 and u adjacent to X1, X2, · · · , Xk, Y1, Y2, · · · , Yh, where

h and k ≥ n − 2. Let Xiu = xi and Yju = yj for 1 ≤ i ≤ k; 1 ≤ j ≤ h.

Let X = {e, x1, x2, · · · , xk} and Y = {y1, y2, · · · , yh}. Then C is a cycle

in Ge
X if and only if C satisfies one of the following conditions:

(1) C is a cycle in G, containing precisely two elements of X.

(2) C is a cycle in G containing no element of X.

(3) C = C1 ∪C2, where C1 and C2 are edge-disjoint cycles of G, each

contains exactly one edge of X and C1 ∪ C2 contains, no cycle of

type (1) or (2).

(4) C = C1 ∪ {a} when C1 is a cycle of G, containing precisely one

edge of X.

(5) C = C1 ∪ {e, γ}, where C1 is a cycle of G, containing exactly one

element of X − {e}.

(6) C = (C1\e)∪{a, γ}, where C1 is a cycle of G, containing precisely

one element of X − e and the edge e.

(7) C = (C1 \ e) ∪ {γ}, where C1 is a cycle of G, containing the edge

e of X.

(8) C = {e, a, γ}.

2. Splitting of a Binary Matroid with Respect to an

Element and a Set

Now, we extend the notion of n-line splitting operation from graphs to

binary matroids. In the first step, we consider matrix approach to this

operation in binary matroids.

Definition 2.1. Let M be a binary matroid on a set S and X be a subset

of S, e ∈ X. Suppose that A is a matrix over GF (2), that represents the

matroid M . Let Ae
X be the matrix that is obtained by adjoining an extra

row to A with this row being zero everywhere except in the columns

corresponding to the elements of X where it takes the value 1, and then

adjoining two columns a and γ to the resulting matrix such that the
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column a is zero everywhere except in the last row (new row) where it

takes the value 1, and γ is a sum of two column vectors corresponding

to a and e.

Let M e
X be the vector matroid of the matrix Ae

X . We say that M e
X has

been obtained from M by splitting e and X in M . The transition from M

to M e
X is called splitting of M with respect to e and X. For convenience,

we say that M e
X is a element -set splitting (es-splitting) matroid.

Remark 2.2. Let r and r′ be the rank functions of M and M e
X , respec-

tively. Then r′(M e
X) = r(M) + 1.

In the next proposition we characterize the circuits of the matroid M e
X .

Theorem 2.3. Let M = (S, C) be a binary matroid, X ⊆ S, e ∈ X and

a, γ 6∈ S. Then M e
X = (S∪{a, γ}, Ce

X), where Ce
X = C0∪C1∪C2∪C3∪{∆}

with ∆ = {e, a, γ} and

C0 = {C ∈ C | C contains an even number of elements of X};

C1 = The set of minimal members of {C1 ∪ C2 | C1, C2 ∈ C, C1 ∩ C2 = φ

and each C1 and C2 contains an odd number of element of X such that

C1 ∪ C2 contains no member of C0};

C2 = {C∪{a} | C ∈ C and C contains an odd number of element of X}.

C3 = { C ∪{e, γ}, | C ∈ C, e 6∈ C and C contains odd number of elements

of X}.

∪{ (C \ e) ∪ {γ} | C ∈ C, e ∈ C and C contains odd number of elements

of X }.

∪{ (C \ e) ∪ {a, γ} | C ∈ C, e ∈ C and C \ e contains odd number of

elements of X }.

Proof. We prove that Ce
X satisfies the circuit axioms of a matroid.

(1) Let A, B ∈ Ce
X , we show that if A ⊆ B, then A = B. In other

words, we prove that A 6⊂ B and B 6⊂ A. The property clearly holds, if

both A and B belong to C0, C1 or C2.

Now, assume that both A and B belong to C3 and let A = C1 ∪ {e, γ}

and B = (C2 \ e) ∪ {γ}, where C1, C2 ∈ C, C1 and C2 contain an odd

number of element X, e 6∈ C1 and e ∈ C2. Thus e ∈ A and e 6∈ B, so it

follows that A 6⊂ B. Similarly, a 6∈ A and a ∈ B, implies that B 6⊆ A.

Next, let A ∈ Ci and B ∈ Cj, i 6= j and i, j = 0, 1, 2, 3.

(i) Let A ∈ C0 and B ∈ C1. Then B = C1 ∪C2, where C1 and C2 are

circuits of M , satisfying the properties stated in the Definition

4.2.1 of C1.
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(ii) Let A ∈ C0 and B ∈ C2. Then B = B1 ∪{a}, where B is a circuit

of M , containing an odd number of element of X. Since A 6⊂ B1

and B1 6⊂ A, it follows that A 6⊂ B and B 6⊂ A, as desired.

(iii) Suppose A ∈ C0 or C1 and B ∈ C3. Since γ ∈ B and γ 6∈ A, then

A 6⊂ B and B 6⊂ A.

(iv) Let A ∈ C1 and B ∈ C2. Suppose A = C1 ∪C2 and B = B1 ∪{a},

where C1, C2 and B1 are circuits of M , containing an odd number

of element of X. Since a ∈ B and a 6∈ A, B 6⊂ A. Also A 6⊂ B,

for A ⊆ B implies that A ⊆ B1 and C1 ∪ C2 ⊂ B1, leads to a

contradiction.

(v) Let A ∈ C2 and B ∈ C3. Then A = A1 ∪ {a} and B = B1 ∪ {e, γ}

or B = (B2 \e)∪{γ}, where A1, B1 and B2 are circuits in M each

contains an odd number of elements of X and e 6∈ B1, e ∈ B2.

Since γ ∈ B but γ 6∈ A, B 6⊂ A. Similarly, A 6⊂ B.

(2) Let A, B ∈ Ce
X and A 6= B. We prove that there exists D ∈ Ce

X

such that D ⊆ A∆B.

Firstly, let A, B 6∈ C2 ∪ C3 ∪ {∆}. By binarity of M ,

A∆B = C ′

1 ∪ C2 ∪ · · · ∪ C ′

m, (∗)

where C ′

1, C
′

2, · · · and C ′

m are disjoint circuits of M . Since A and B each

contains an even number of element of X, A∆B contains an even number

of element of X. If A∆B contains no element of X, then each circuit

C ′

i, i = 1, 2, · · · , m is a member of C0 and is contained in A∆B. If for some

j, 1 ≤ j ≤ m, C ′

j contains an even number of element of X, then D = C ′

j.

Otherwise, m must be an even integer and for every j = 1, 2, · · · , m, C ′

j

must contain an odd number of element of X. If C ′

1 ∪ C ′

2 contains a

member of C0, say C, then we take D = C. Otherwise; D = C ′

1 ∪ C ′

2 or

a minimal member of C1 contained in it.

Secondly, suppose A, B ∈ C2 ∪ C3 ∪ {∆}, then we have the following

cases:

(I) Let A, B ∈ C2 and A = A1 ∪ {a}, B = B1 ∪ {a}. Then A∆B =

A1∆B1 = C ′

1∪C ′

2∪· · ·∪C ′

m, where C ′

1, C
′

2, · · · and C ′

m are disjoint circuits

of M . Since each of A and B contains an odd number of elements of

X, A∆B contains an even number of elements of X. By similar argument

as above, we can find D ∈ Ce
X such that D ⊆ A∆B.

(II) Let A and B belong to C3, we have the following subcases:

(i) A = A1 ∪ {e, γ} and B = B1 ∪ {e, γ}. (ii) A = (A1 \ e) ∪ {γ} and

B = (B1 \ e) ∪ {γ}. (iii) A = A1 ∪ {e, γ}, B = (B1 \ e) ∪ {γ}. (iv)

A = A1 ∪ {e, γ}, B = (B1 \ e) ∪ {a, γ}. (v) A = (A1 \ e) ∪ {a, γ} and

B = (B1 \ e) ∪ {a, γ}. (vi) A = (A1 \ e) ∪ {a, γ}, B = (B1 \ e) ∪ {a, γ}.
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In cases (i), (ii) and (vi), we have A∆B = A1∆B1 = C ′

1∪C ′

2∪· · ·∪C ′

m,

where C ′

1, C
′

2, · · · , C ′

m are disjoint circuits of M . By the similar arguments

as in (1), we can find D ∈ Ce
X such that D ⊆ A∆B. In case (iii), we have

A∆B = (A1∆B1) ∪ {a}.

Let A1∆B1 = C ′

1 ∪ C ′′

2 ∪ · · · ∪ C ′′

n, where C ′′

1 , C ′′

2 , · · · , C ′′

n are disjoint

circuits of M . If C ′′

1 contains an even number of elements of X, then

it will be an element of Ce
X which is contained in A1∆B1, and hence in

A∆B. If C ′′

1 contains an odd number of elements of X, then C ′′

1 ∪ {a}

is an element of C2, contained in A∆B. By similar argument, the cases

(iv) and (v) follow.

(III) Let A ∈ C2 and B ∈ C3. Then A = A1 ∪ {a} and for B, we have

two subcases: (1) B = B1 ∪ {e, γ}, and (2) B = (B1 \ e) ∪ {γ}. Thus, in

(1), we have A∆B = (A1∆B1)∪{e, a, γ}, where A1 and B1 are circuits of

M , containing an odd number of element of X. Clearly, A1∆B1 ⊆ A∆B.

Let A1∆B1 = C ′

1 ∪ C ′

2 ∪ C ′

m, where C ′

1, C
′

2, · · · , C ′

m are disjoint circuits

of M . By similar arguments as in (2), we can find D ∈ Ce
X such that

D ⊆ A1∆B1 and hence D ⊆ A∆B. In (2), we have A = A1 ∪ {a} and

B = (B1 \ e)∪ {γ}. So A∆B = [(A1∆B1) \ e]∪ {a, γ}, where A1 and B1

are circuits in M . By the argument as given above, we can find D ∈ Ce
X ,

such that D ⊆ A∆B.

(IV) Let A = ∆ and B ∈ C2. Then B = B1∪{a}, where B1 is a circuit

in M containing an odd number of element of X. We have two subcases:

(i) e 6∈ B1. Then A∆B is a circuit of M , containing an even number of

elements of X. Thus D = A∆B. (ii) e ∈ B1. Then A∆B is also a circuit

in M e
X and so D = A∆B.

(V) Let A = ∆ and B ∈ C3. Then B = B1∪{e, γ} or B = (B1\e)∪{γ},

where B1 is a circuit of M , containing an odd number of element of X.

Since A∆B1 ⊂ A∆B, we can find D = ∆, where D ∈ Ce
X such that

D ⊆ A∆B1, and hence D ⊆ A∆B.

We conclude that Ce
X is a collection of circuits of a binary matroid on

the set S ∪ {a, γ}.

�

Definition 2.4. With notation as above, we call the matroid (S ∪

{a, γ}, Ce
X) as the es-splitting of M = (S, C) and denote it by M e

X . Thus

M e
X = (S ′, Ce

X), where S ′ = S ∪ {a, γ}.
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Example 2.5. Consider the matroid M = F7 with ground set S =

{1, 2, 3, 4, 5, 6, 7} and the set of circuits

C = {{1, 2, 4}, {1, 3, 6}, {2, 6, 7}, {4, 5, 6}, {1, 5, 7}, {3, 4, 7},

{2, 3, 5}, {3, 5, 6, 7}, {2, 4, 5, 7}, {1, 3, 4, 5}, {1, 2, 3, 7},

{2, 3, 4, 6}, {1, 2, 5, 7}, {1, 4, 6, 7}}

Let X = {1, 2, 4} and e = 1. Then the circuit set of M e
X is

Ce
X = {{3, 5, 6, 7}, {2, 4, 5, 7}, {1, 3, 4, 5}, {1, 2, 3, 7}, {2, 3, 4, 6},

{1, 2, 5, 6}, {1, 4, 6, 7}, {1, 3, 6, a}, {1, 2, 4, a}, {2, 6, 7, a},

{4, 5, 6, a}, {1, 5, 7, a}, {3, 4, 7, a}, {2, 3, 5, a}, {1, 2, 6, 7, γ},

{1, 4, 5, 6, γ}, {1, 3, 4, 7, γ}, {1, 2, 3, 5, γ}, {2, 4, 8}, {3, 6, γ},

{5, 7, γ}, {1, a, γ}, {3, 4, 5, a, γ}, {2, 3, 7, a, γ}, {2, 5, 6, a, γ},

{4, 6, 7, a, γ}}.

Theorem 2.6. The matrix Ae
X represents the splitting matroid M e

X .

3. Connectedness of the Splitting Matroid M e
X

In [5] Shikare characterized the connectedness in splitting matroidMX .

The next theorem characterize connectedness of M e
X .

Theorem 3.1. Let M = (S, C) be a binary connected matroid. Then

M e
X is connected.

Proof. Let M be a connected matroid on S. Then for every pair x, y ∈

S there is a circuit of M containing x and y. We show that for any

two elements x and y belonging to S ∪ {a, γ}, there is a circuit of M e
X

containing x and y. We consider the following cases:

(1) Let x, y ∈ {a, γ}. Then x, y ∈ ∆ and we are through.

(2) Suppose x, y 6∈ {a, γ}. Then x, y ∈ S and M has a circuit, say C

containing x and y. We have the following two subcases:

(i) C contains an even number of elements of X. Then we are

through.

(ii) C contains an odd number of elements of X. Then C ∪{a}

is a circuit of M e
X containing x and y.

(3) Let x = a and y ∈ S. Then there is a circuit C ∈ C such that

y, e ∈ C. We have two subcases:

(i) Suppose C contains an even number of elements of X. Then

C ∈ Ce
X , e ∈ C ∩ ∆, y ∈ C and a ∈ ∆. By [3], there is a circuit

say C ′ of M e
X such that a, y ∈ C ′.
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(ii) Let C contains an odd number of elements of X. Then

C ∪ {a} is a circuit in M e
X and a, y ∈ C ∪ {a}.

(4) Let x = γ and y ∈ S. Then there is a circuit C ∈ C such that

y, e ∈ C. We consider the following two subcases:

(i) C contains an even number of element of X. Then C ∈

Ce
X , e ∈ C ∩ ∆, y ∈ C and γ ∈ ∆, so by [3], there is a circuit of

M e
X containing γ and y.

(ii) C contains an odd number of element of X. Then (C \ e)∪

{γ} is a circuit of M e
X containing γ and y. �

Remark 3.2. Converse of Theorem 3.1 is not true. For example, let M

be a cycle matroid of the graph G (See Figure 3.1). Let X = {e, x1, x2}.

Then M e
X is a cycle matroid of Ge

X .
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We observe that the matroid M = M(G) is disconnected while M e
X =

M(Ge
X) is connected.

The next theorem shows that one can obtain a connected matroid from

disconnected matroid with the help of es-splitting operation.

Theorem 3.3. Let M be a bridgeless binary matroid on S with n com-

ponents M1, M2, · · · , Mn. Let xi be chosen from Mi for i = 1, 2, · · · , n

and X = {x1, x2, · · · , xn}, e ∈ X. Then M e
X is a connected matroid on

S ∪ {a, γ}.

Proof. Let M1 = (S1, D1), M2 = (S2, D), · · · , Mn = (Sn, Dn) be the

n components of M , where Di denote the collection of circuits of Mi.

Then Si ∩ Sj = φ for i 6= j, i, j = 1, 2, · · · , n and ∪n
i=1Si = S. X =

{x1, x2, · · · , xn}, where xi ∈ Si for i = 1, 2, · · · , n. Since e ∈ X, there is

a j such that xj = e, where 1 ≤ j ≤ n. Suppose Ai = {C ∈ Di | xi 6∈ C}
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for i = 1, 2, · · · , n and An+1 = {Ci ∪ Cj | Ci ∈ Di, Cj ∈ Dj, xi ∈ Ci, xj ∈

Cj, i 6= j and i, j = 1, 2, · · · , n}. Let Bi = {C ∪ {a} | C ∈ Di, xi ∈ C, i =

1, 2, · · · , n} and

Ci = {E ∪ {e, γ} | E ∈ Di, e 6∈ E, xi ∈ E}

∪{(F \ e) ∪ {γ} | F ∈ Di, e ∈ F, xi 6∈ F \ {e}}

∪{(G \ e) ∪ {a, γ} | G ∈ Di, e ∈ G, xi ∈ G \ {e}}.

The matroid M e
X has the circuit set Ce

X , where Ce
X = A1∪A2∪· · ·∪An∪

An+1 ∪ B1 ∪ B2 ∪ · · · ∪ Bn ∪ C1 ∪ C2 ∪ · · · ∪ Cn ∪ {∆}.

Claim. For every pair of elements α, β of S ∪ {a, γ} there is a circuit of

M e
X , containing α and β. We have the following cases:

(I) Let α, β ∈ S. Then we consider the following subcases:

(i) Suppose α and β belong to one component, say Mi. Then

there is a circuit say Ci of Mi, containing α and β. If xi does not

belong to Ci, then Ci is a circuit of M e
X , containing α and β. If

xi ∈ Ci, then for any j 6= i, Cj is a circuit of Mj containing xj.

Thus Ci ∪ Cj is a circuit of M e
X containing α and β.

(ii) Let α and β belongs to different components of M , say

α ∈ Mi and β ∈ Mj. Consider the circuits Ci and Cj, where Ci

contains α and xi and Cj contains β and xj. Then Ci ∪ Cj is a

required circuit of M e
X .

(II) Let α ∈ S and β ∈ {a, γ}. Then α ∈ Si for some i. Consequently,

there is a circuit of Mi, say Ci, containing α and xi. If β = a

then Ci ∪ {a} is a circuit of M e
X containing α and β. If b = γ,

then (Ci \ {e}) ∪ {γ} is a circuit of M e
X containing α and β.

(III) If α = a and β = γ, then α, β ∈ ∆, a 3-circuit in M e
X . �
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