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ABSTRACT. In this paper, by virtue of Holmgren’s approach, we show
the uniqueness of the bounded solutions to a class of parabolic equation
with two kinds degeneracies at the same time under some necessary
conditions on the growth of the convection and sources.

1. INTRODUCTION

This paper concerns the uniqueness of the bounded solutions to the
initial-boundary value problem of the strongly degenerate parabolic equa-
tion

do(u)  9*A(u)  OB(u)

% o2 + e + f(u,z,t), (x,t) € Qr, (1.1)
A(u(0,1)) = g1(t),  A(u(l,1)) = g2(t), € (0,T), (1.2)
o(u(z,0)) = ug(x), z € (0,1), (1.3)
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where Q7 = (0,1) x (0,7,

o(u) = /0 " e(s)ds,  Afu) = /0 Ca(s)ds,  Bu) = /0 " b(s)ds,

and c(s) > 0,a(s) > 0,b(s), f(s,x,t),g;(t)(i = 1,2),up(x) are suitably
smooth functions.

The equation (1.1) can be used to describe a variety of diffusion phe-
nomena appeared widely in nature(see [1]). It is degenerate at the sets
E ={seR;c(s) =0} or FF={s € R;ja(s) = 0}. Generally speaking,
the equation (1.1) is a classical parabolic-hyperbolic equation if ¢(s) # 0
and when a(s) # 0 an elliptical-parabolic equation, whose degeneracy
appears respectively in the sets {s;a(s) = 0} and {s;c(s) = 0}. As we
know, the equation (1.1) with only one kind of degeneracy, especially
for the case A(s) = s and o(s) = s respectively was studied in many
papers, see [1-5] and the references therein. In this paper, we investi-
gate the equation (1.1) with two degeneracies at the same time, the sets
E={seR;c(s) =0} and F = {s € R;a(s) = 0} are allowed to have a
infinite points.

In [6], the authors considered the equation (1.1) with f(u,z,t) = 0,
they proved the uniqueness of the bounded solutions under the assump-
tion that [b(s)|* < h(s)c(s) with h(s) is a given continuous function.

The purpose of the present paper is to generalize the result obtained
by the authors in [6] to a more general case, i.e., we establish the unique-
ness of the bounded solutions of the problem (1.1)—(1.3) under the as-
sumptions that |b(s)[P* < hq(s)c(s), |[fi(s,z,t)[P2 < ha(s)c(s), where
1 <pr <2,1<py<2and h;(s)(i = 1,2) are given continuous function.
It is easy to see that our result also improves the condition in [6].

The main theorem on the uniqueness of the bounded solutions and its
proof will be given in the next section.

2. MAIN THEOREM AND ITS PROOF

The bounded solution of the problem (1.1)—(1.3) is defined as follows.

Definition A function v € L*>(Qr) is called a bounded solution of
the problem (1.1)—(1.3), if the following integral equality holds

//Q <a(u)88—f + A(u)% - B(u)g—i + f(u,a:,t)gp)dx dt

—I—/O gl(t)g—i(o,t)dt—/o gg(t)g—i(l,t)dt—l—/o uo(x)p(z,0)dz =0
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for any test function ¢ € C*(Qr) with ¢(0,t) = p(1,t) = ¢(x,T) = 0.
The following theorem is our main result in this paper.

Theorem 2.1. Assume that the set E = {s;a(s) = 0} has no interior
point, there are p1,po € R : 1 < p; <2, 1 < py < 2 and continu-
ous, bounded functions hi(s) > 0,ha(s,x,t) > 0, such that |b(s)|"* <
c(s)hi(s), | fu(s,x, 1) P2 < c(s)ho(s,z,t). Then the problem (1.1)-(1.3)
admits at most one bounded solution.

The proof of Theorem 2.1 will be completed by the reduction to ab-
surdity. Let uy,us € L®(Qr) be two bounded solutions of the problem
(1.1)—(1.3). It only needs to show u; = us a.e. on Qr. We firstly show
o(uy) = o(uz) a.e. on Qr by the Holmgren’s method which used in [3],
6].

By the definition of bounded solution, we have

s@ PP &p

for any function ¢ € CZ(QT) with ¢(0,t) = p(1,t) = ¢(z,T) = 0, where

1
B = Blur,us) = / b(Bus + (1 — 0)up)do,
0

1
f:f(Ub'UQ,x,t) :/ f;(eul‘l'(l_e)ug,l',t)de
0

If for any g € C5°(Qr), the adjoint problem

&p 0% <0y B
Ot +AW_30 +fs0 ag,

©(0,1) = ¢(1,t) = 0,
oz, T)=0

admits a solution ¢ € C*(Q), then we have

//T(U(Ul) — o(uy))gdz dt = 0.

Then the arbitrariness of g implying that o(u;) = o(ug). But we see
that the smooth solution of the above problem may not exist since that
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the coefficients of it are not smooth enough. Thus, we will consider the
approximation of the above adjoint problem.

Let 6. > 0 and A. > 0 be a C*™ approximation of & and A respectively,
such that

limo, =, limA.=A, ae z€Qr,
e—0 e—0

5.<C, A.<C.
For sufficiently small n > 0,6 > 0,7 > 0, let

0, if (z,t) € Gs,
e { (n+ AP0 +0) B, i (1) € B

0, if (x,t) € Gs,
e - { (n+A) 20 +6) M, it () € B

where G5 = {(l’,t) € QT, |U1—U2| < 5}, Fs = {(l’,t) € QT, |U1—Ug| > 5}
Clearly, the assumptions in Theorem 2.1 imply that

p1

Br— (/01 b(Ouy + (1 — «9)u2)d9> < 03, (2.1)

! 2
i = ( / folbur + (1= Byus, . 0)d0) " < Co, (22)
0
and furthermore,
B < 0(5)1/101 <Oy + 5)1/101’ f < 0(5)1/p2 < C(y+ 5)1/;:2.

Here and in the sequel, we use C' to denote a universal constant indepen-
dent of 6,7, and e, K(J) a constant depending only on §, which may
take different values on different occasions.

Since A(s) is strictly increasing and wy, us € L>®(Qr), there must be
constants L(d) > 0, K(0) > 0 depending on J, but independent of 1 and
7, such that

Alur) — Alug)
U1 — U
|)‘n6'yB| < K(5)> |)‘n6'yf| < K(é)

A=

> L(§), whenever (z,t) € Fy,

Let A0s,p and AZ; » be a € approximation of As,p and Asyp respec-
tively, such that

e e :
llir(l) NyovB = Aoy B llir(l) Npovf = Anovs, @€ in Qr,

[Asypl < K(0), | Asysl < K(0). (2.3)
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Denote B -
B. = Xogp(n+ A)? (v + 62) 17,

fo=Xosys(n+ AP (y + 62) 17,
For any given g € C3°(Qr), consider the approximate adjoint problem

do  n+ A% B. 9y fo

8t+7+058x2 Y +6.01 4t+5. "9 (24)
©(0,t) = p(1,t) =0, (2.5)
o(a,T) = 0. (2.6)

It is easy to see that the problem (2.4)—(2.6) admits a smooth solution
@ by the classical theory of parabolic equations. We give some useful
estimates on ¢ as follows.

Lemma 2.1. The solution ¢ of the problem (2.4)-(2.6) satisfies

Sup oz, t) < C, (2.7)
[ B was ko ko, e
//Q (a_i ) dedt < K@ + K(9) (2.9)

Proof. The inequality (2.7) follows from the maximum principle. To
2

prove (2.8) and (2.9), multiply (2.4) by O_xf and integrate over Qp. In-

tegrating by parts and using (2.5), (2.6), we have

1 (x() 77—|—A
2/0( ddt+//Q . ax2>ddt
B. 0pd 2
_//T7+a€a_x@d dt+//”+o_€¢8x2godxdt

// gax2 ? dx dt. (2.10)

Using Young’s inequality and (2.3), we obtain

B. 0pd*p
//T7+a€8x8x2d vt

1/2 2
// (n+ ANV 0% . (7 + 6.) /7 1/2f3s0d ot

fy_i_a 1/2 Ox2 775“/B

A
// n: . 2) dadt + K (5 // dmdt (2.11)
Qr V0. \Ox r
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[ @Y asat=— [[ i

77+A
<5//Q o agﬂ “dwdt + CH (B > 0), (2.12)

// SOal dt < = // ”+A 2>d9:dt+8017, (2.13)
Qr QT7+U€ Ox

P
//T7+U€ axzalxdt

TH‘A )12 92 o
://Q (v + 6.)Y/2 92 Soup (7 + G) P2 P od dt
T

n+ A
d dt + K(9). 2.14
Let g = 1/( 4K n (2. 12) Then from (2.10)-(2.14) we obtain (2.8)
immediately. The mequahty (2.9) follows from (2.8) and (2.12)(8 = 1).

The proof is complete.

Lemma 2.2. The solution ¢ of the problem (2.4)-(2.6) satisfies

1
sup/ ‘%‘dmﬁ& vVt € (0,7).

0<t<T Jo
Proof. For small g > 0, let
1, s> f3, .
sgna(s) =3 s/B. |s|<B.  Iy(s) = / sgns(0)d6.
—1, s< -4, ‘

Differentiate (2.4) with respect to z, multiply the resulting equality by

0
sgnf;(&—@) and integrate over S; = (0,1) x (¢,7"). Then integrating by
x
parts and by (2.6) we have

L 0p(x,t) n+ A, 1020\2  , 0p
[ (== [ 2 () soni (52 e
B. 0p 9% O o 0P 0y
— dx dt— — — |dz dt
+//sﬂ+5eé‘x &rzsgnﬁ(@ ) ! /stw&fax?sg"ﬁ(ax) v
T 1 2 ~
77+A6890 Ba 890 fa 8(,0
+/t (74—&8 0x?  ~v+0.0x +7+&€(’0)89nﬁ(8 ) :c:odt

//St 8_3:89”6 d:c dt. (2.15)

r=1
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Notice that the first term on the right side is non-positive, the second and
third term tends to 0 while § — 0 respectively, the last term is bounded.
By the boundary condition (2.5) and g € C§°(Qr), we see that

/T<n+f1582<p_ B. 90 [ SO)Sgn (8_<p)
. \yY+0.01r2 ~y+6.0r ~vy+0. A\ oz

T =
- o= GG

Therefore, letting § — 0 in (2. 15) gives

r=1
dt

=0

dt = 0.

&pxt

sup ’d <C.

0<t<T

0
Lemma 2.3. The solution ¢ of the problem (2.4)-(2.6) satisfies

// d:c dt < KO 'y '+ K@)y '+ C. (2.16)
QT

Proof. Multiplying (2.4) by ((;_w and integrating it over Q7 yield

2
// da:dt+// ntA:Ppdo dt—// B: 9000,
ot QT7+05 dx? Ot o Y+ 0 0x Ot

// = agOaz dt = // SOazg:dt (2.17)
Qr Ue Qr

Using Young’s inequality, we obtain

// 7}+A8<p8<pd it
QTv—l—ae Ox? Ot
< // ) daar + P 7’+A // ”+A 2>ddt
4 Qr ’}/‘I‘O'g ox
gl / / ﬁ drdt+ K()n 'y + K(6)y™, (2.18)
1)y, )
// B. &O&pd gt
Qr 7+a€8a¢8t
<SuP n+ A sup(y + G.)2/P1—1 D
o+ A) ( // ) (5 )dxdt

S A

< i//Q (%‘f) dodt + K@)~y + K(8)y (2.19)
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// wg a‘pdg:dt
Qr €

sup(n+A )sup(7+0 )2/p2—1 Dy
o) (52 ) da dt

LG

=y <g_f>2dm+w-1, o

}//Q dedt‘ — ‘// d:)sdt‘ < C. (2.21)

By (2.17)-(2.21) we obtain (2.16). The proof is complete.

Lemma 2.4. Under the assumptions in Theorem 2.1, if uy and uy are
bounded solutions of the problem (1.1)-(1.3), then o(uy) = o(ug) a.e. on
Qr.

Proof. For any given g € C3°(Qr), let ¢ be a solution of (2.4)—(2.6),
then

/ / (o) — o) gardt = / / oot
N //QT (11 = u2)(6 = 0c)gdw dt + //QT(Ul — up) (7 + 6.)gdxdt

- // (ug —ug)ygdrdt =1, + I, + I5. (2.22)
T

It is not difficult to see that
1/2
| = ) // (w1 — u2) (5 — 5€)gdxdt‘ < C(// (G — 55)2dxdt) ,
T : (2.23)

5 = | / / (11— o) di] < O (2.24)

Hence, lir%f 1 =0, 111%13 = 0. As indicated above, from the definition of
£—> y—

bounded solution, we have

dp 0 0
// (1 w) (558 + AS 2 — BEE 4 fo)dwdi =0,

T
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Combining with the equation (2.4) yields

I = // (ur — us)(y + 6. )gd dt
Op [alt 0p
//QTul—uQ 7+0€)8t (A )82 Ba +f€g0)da:dt
0
//QTU1_U27§dxdt+//QTU1_U2 —a)afd x dt
—// (ul—u2)(B€—B)a—id:cdt+// (w1 — w)(J. — Fpdz dt

= Iy + Iog + Iz + Loy + Io5 + Iog. (2.5)

In the following, we estimate all terms on the right of the above inequality.
0 1/2 1/2
|I51| <Cv // (—(p)2dx dt) < C’y(K(é)n_ly—l + K(6)y ™ + C’) :
| Iys] <C // d:rdt // EAALY dt
1/2 1/2
SC(K((S)U v K(8)yt + C // )2 dt)
| Ins| gc(// (A. — A)%dz dt // )2d dt
1/2 /2
<o (k) + K@) ([[ @ Apas dt) |
Qr

For any fixed 3 > 0, Fj, G5 are defined just as Fs, Gs. By the Cauchy
inequality, we have

| 1o4] <‘//Fﬁ U — Us nmdxdt‘ —I—’//Gﬁ Uy — Us nmdxdt‘

0.€|1/2 77—|—A
SCﬁsup ~1/2 (//F Y 89:2 d dt
1/2
+ Cnp // 2d dt
Qr

/
~ 11/2 (K(é)n_l + K((S))l 2 ) 5 1/2
gCnsllTlg)h—l—o‘J L3 + CB(K(S) + K(0)n) /=

)
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Let 3=6K(6)""? and n — 0, § — 0. We see that Iy tends to 0.

| 25| <‘//G up — uz)B d:cdt‘—i—‘//G U — uz) —dxdt‘
5 5
¥
n // (ul—u2)(B€—B)—d:cdt‘
Fs
/2
/ / ) de dt ) / / Yy dt ey
+C // (BE—B)zd:rdt // PPN2dy dt
Fys

1 2
O(K(d)n‘1+K ( / / “p) d:):dt ? Lo

+C(K(5)77‘1 + K(é))l/2 / /F (B. — B)2da dt) "

Since limA7; 5 = 0 a.e. on G, limB. = B a.e. on Fs. Then lim|l55] <
e—0 e—0 e—0

C'§. Similar to the analysis on Iss, it yields @\Igd < (9.

From the above inequalities, let ¢ — 0, v — 0,7 — 0,0 — 0 in turn in
(2.25). Then Iy — 0. Thus combining with (2.23), (2.24), it is seen from

(2.22) that
// <U(u1> - U(“2))gd:c dt = 0.

Because of the arbitrariness of g, we obtain o(u;) = o(ug) a.e. on Q7.
The proof is complete.

Proof of Theorem 2.1. By the definition of bounded solutions, we
have

dp P00y
//QTul—uz +A@—Ba +f<p>dxdt—0

According to Lemma 2.4, it yields

// Uy — Us) A—dxdt
Qr
// Uy — Us) —dxdt // U — Us fgpdxdt
Qr Qr

=1 — .
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Using Young’s inequality and Holder inequality, we have

’h’ < //QT ’(ul —uQ)l/’“B(ul —uQ)l/qlg—i’dxdt

< (//Tl(m —uQ)Bpl\dxdt)l/m(//T\(ul —“2>(g—i)q1\dxdt)”ql,
| < (//Q o —ug)fm|dxdt)1/”2(//QT (1 — o)l dadr)

where ¢, go satisfy 1/p; +1/¢1 = 1 and 1/py+1/g, = 1. From (2.1) and
(2.2), we obtain

n| < o(//QT (g — uQ)6|d:):dt>1/p1
« (//T (s — uz)(g—i)q1|d:cdt>l/ql 0,
SC’(//T\(ul—u2)5|d:cdt>l/p2<//T\(ul—u2)<p2\dxdt)l/q2 0.

Obviously, we obtain

//QT (A(Ul) - A(Uz) —dzdt // Uy — Us) A%d dt =0,

Since the function ¢ is arbitrary, we have A(u;) = A(us) a.e. on Qr.
Furthermore, owing to that A(s) is a strictly increasing function, it has
been shown that u; = us a.e. on Q. The proof is complete.

Iy
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