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Abstract. We show that the set of the equivalence classes of multi-

foliate structures is in one-to-one correspondence with the set of equiv-

alence classes of finite complete projective systems of vector space epi-

morphisms. After that we give the complete description of all product

preserving bundle functors on the categories of multifibered and multi-

foliate manifolds.

In the middle 1980s Eck [2], Kainz and Michor [3], Luciano [8] de-

scribed all product preserving bundle functors on the category of smooth

manifolds in terms of Weil bundles [14] (see also [5]). In 1996 Mikulski [9]

classified all product preserving bundle functors on fibered manifolds. In

the recent years Weil functors and product preserving functors are of

great interest, see e.g. Kolář and Mikulski [6], Kriegl and Michor [7],

Muños, Rodrigues, and Muriel [11], Mikulski and Tomáš [10, 13].

Kodaira and Spencer in [4] introduced the notion of a multifoliate

structure on a smooth manifold. In the present paper, we introduce the

category of multifibered manifolds which is a subcategory of the category

of multifoliate manifolds and, following the lines of Mikulski [9], describe

all product preserving bundle functors on these categories.
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We denote the category of smooth manifolds byMf and that of fibered

manifolds by FM [5]. All manifolds and maps between manifolds under

consideration are assumed to be of class C∞.

1. Projective systems of vector spaces

Let (Λ = {α, β, . . .},≤) be a partially ordered set. A projective system

(an inverse system) over Λ [1] is a collection (Sα, ζ
β
α ,Λ) consisting of sets

Sα, α ∈ Λ, and maps ζβ
α : Sβ → Sα, α ≤ β, called projections, such that

ζα
α = idSα

for all α ∈ Λ and ζβ
α ◦ζ

γ
β = ζγ

α when α ≤ β ≤ γ. The projective

limit of a projective system (Sα, ζ
β
α ,Λ) is the subset

S = lim
←−

Sα ⊂
∏

α∈Λ

Sα

consisting of all elements x = (xα) such that ζβ
α(xβ) = xα. If the set S is

not empty, then by ζβ : S → Sβ we denote the map which sends x = (xα)

into xβ . These maps are called canonical projections.

It will be convenient to denote projective systems under consideration

as follows: ζ = (Sα, ζ
β
α ,Λ, S).

In this section, we will consider projective systems of vector spaces

ξ = (Lα, ξ
β
α,Λ, L) satisfying the following conditions:

i) Lα, α ∈ Λ, and L are finite-dimensional vector spaces over R;

ii) all the maps ξβ
α and ξα are linear epimorphisms.

By an isomorphism between two projective systems ξ = (Lα, ξ
β
α,Λ, L)

and ξ′ = (L′α′ , ξ
β′

α′ ,Λ′, L′) we mean a collection (ω, {ψα}α∈Λ) consisting

of an isomorphism ω : Λ → Λ′ of partially ordered sets and linear

isomorphisms ψα : Lα → L′ω(α) such that ξ
ω(β)
ω(α) ◦ ψβ = ψα ◦ ξ

β
α for

α ≤ β. An isomorphism (ω, {ψα}α∈Λ) gives rise to the isomorphism

ψ := lim
←−

ψα : L → L′ defined by ψ((xα)) = (ψα(xα)). The map ψ is

the unique isomorphism between L and L′ such that ξω(α) ◦ ψ = ψα ◦ ξα.

Projective systems ξ = (Lα, ξ
β
α,Λ, L) and ξ′ = (L′α′ , ξ

β′

α′ ,Λ′, L′) are said

to be isomorphic if there exists an isomorphism between them.

An isomorphism from ξ to itself of the form (id, {fα}α∈Λ) is said to be

an automorphism of ξ. Denote by GL(ξ) the group of all linear automor-

phisms of L of the form f = lim
←−

fα where (id, {fα}) is an automorphism

of ξ.

Definition. A vector subspace K ⊂ L is said to be invariant if every

f ∈ GL(ξ) maps K into itself.
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One can easily see that the sum and the intersection of two invariant

subspaces are invariant subspaces. For any α ∈ Λ, the subspace Kα :=

ker ξα ⊂ L is invariant and Lα
∼= L/Kα. In what follows we will identify

Lα and L/Kα.

Definition. A projective system ξ = (Lα, ξ
β
α,Λ, L) is said to be complete

if any finite-codimensional invariant subspace of L is of the form ker ξα
for some α ∈ Λ.

Let ξ = (Lα, ξ
β
α,Λ, L) be a projective system (not necessarily com-

plete). Consider the set {Ka}a∈eΛ of all finite-codimensional invariant

subspaces Ka of L. For any two invariant subspaces Ka, Kb such that

Ka ⊃ Kb, denote by ξb
a : Lb = L/Kb → La = L/Ka the canonical epi-

morphism. Let us endow Λ̃ with the partial order defined as follows:

a ≤ b if and only if Ka ⊇ Kb. One can easily see that the collection

ξ̃ = (La, ξ
b
a, Λ̃, L̃ = lim

←−

La) is a complete projective system. We call it

the completion of ξ. Obviously, ξ̃ is complete. Since, for any α ∈ Λ, the

subspace Kα = ker ξα is invariant, one can consider Λ as a subset of Λ̃.

Definition. A projective system ξ = (Lα, ξ
β
α,Λ, L) is called finite if Λ is

finite.

Obviously, when ξ is finite, its limit L is a finite-dimensional vector

space.

Proposition 1.1. If ξ = (Lα, ξ
β
α,Λ, L) is a finite complete projective

system then

(1) Λ contains the greatest element ε;

(2) L is isomorphic to Lε.

Proof. Indeed, the zero subspace is invariant and of finite codimension.

Definition. Two projective systems

ξ = (Lα, ξ
β
α,Λ, L) and ξ′ = (L′α, ξ

β′

α′ ,Λ
′, L′)

are said to be equivalent if there exists an isomorphism ϕ : L→ L′ such

that ϕ ◦ f ◦ ϕ−1 ∈ GL(ξ′) for any f ∈ GL(ξ) and

Φ : f ∈ GL(ξ) 7→ ϕ ◦ f ◦ ϕ−1 ∈ GL(ξ′)

is a group isomorphism.

One can easily see that isomorphic projective systems are equivalent.

Proposition 1.2. Let ξ = (Lα, ξ
β
α,Λ, L) be a projective system and

ξ̃ = (La, ξ
b
a, Λ̃, L̃) its completion. Then ξ and ξ̃ are equivalent.
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Proof. In fact, the maps

ϕ = (ϕα) : L̃→ L, ϕα : L̃ ∋ x = (xa)a∈eΛ 7→ xα ∈ Lα

and

ψ = (ψa) : L→ L̃, ψa : L ∋ x 7→ x+Ka ∈ La = L/Ka

are mutually inverse isomorphisms which induce an isomorphism of the

groups GL(ξ) and GL(ξ̃). �

The proof of the following proposition is immediate.

Proposition 1.3. If complete projective systems ξ = (Lα, ξ
β
α,Λ, L) and

ξ′ = (L′α, ξ
β′

α′ ,Λ′, L′) are equivalent, then ξ is isomorphic to ξ′.

Definition. Let ξ = (Lα, ξ
β
α,Λ, L) be a projective system. A local

diffeomorphism ϕ : U ⊂ L → V ⊂ L between two open subsets of

L is called a ξ-diffeomorphism if for any x ∈ U there exist an open

subset W (x) ⊂ U and a system of diffeomorphisms {ϕα : ξα(W ) →

ξα(ϕ(W ))}α∈Λ such that ϕα ◦ ξα = ξα ◦ ϕ for any α ∈ Λ.

Denote the pseudogroup of all ξ-diffeomorphisms by Γ(ξ). The tangent

map dϕx of any ξ-diffeomorphism ϕ : U → V at every point x ∈ U can

be viewed as an element of GL(ξ).

Definition. A ξ-structure on an n-dimensional smooth manifold (n =

dimL) is a maximal atlas compatible with the pseudogroup Γ(ξ). A

smooth manifold endowed with a ξ-structure is called a ξ-manifold.

Definition. Let ξ = (Lα, ξ
β
α,Λ, L) and ξ′ = (L′α, ξ

′β
α,Λ, L

′) be two pro-

jective systems over the same partially ordered set Λ. A smooth map

g : U ⊂ L → V ⊂ L′ is called a Λ-smooth map if for any x ∈ U

there exist an open subset W (x) ⊂ U and a system of smooth maps

{gα : ξα(W )→ ξ′α(g(W ))}α∈Λ such that gα ◦ ξα = ξ′α ◦ g for any α ∈ Λ.

Definition. Let M be a ξ-manifold and M ′ a ξ′-manifold. A smooth

map f : M →M ′ between a ξ-manifold M and a ξ′-manifold M ′ is called

a Λ-smooth map if it is Λ-smooth in terms of the atlases defining ξ- and

ξ′-structures on these manifolds.

For a fixed finite partially ordered set Λ, all ξ-manifolds for all projec-

tive systems ξ over Λ together with Λ-smooth maps as morphisms form

a subcategoryMfproj(Λ) of the categoryMf .

Proposition 1.4. The category Mfproj(Λ) admits products.
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Proof. Let M be a ξ-manifold and M ′ a ξ′-manifold, where

ξ = (Lα, ξ
β
α,Λ, L) and ξ′ = (L′α, ξ

′β
α,Λ, L

′).

Then M ×M ′ is a (ξ × ξ′)-manifold, where ξ × ξ′ denotes the projective

system (Lα × L
′

α, ξ
β
α × ξ

′β
α,Λ, L× L

′). �

2. Multifoliate manifolds

Multifoliate structures on smooth manifolds were introduced by K. Ko-

daira and D.C. Spencer [4] as follows.

Definition. A pair (Λ, p) consisting of a finite partially ordered set Λ

and a surjective map

p : {1, . . . , n} ∋ i 7→ p(i) ∈ Λ

is called a multifoliate structure on the set {1, . . . , n}.

Denote by GL(Λ, p) the group of all linear isomorphisms

f : R
n ∋ (xi) 7→ (f i

jx
j) ∈ R

n

satisfying the condition

f i
j = 0 if p(i) 6≥ p(j),

and by Γ(Λ, p) the pseudogroup of all local diffeomorphisms g : U ⊂

R
n → V ⊂ R

n such that dgx ∈ GL(Λ, p) for all x ∈ U .

Definition. A (Λ, p)-multifoliate structure on an n-dimensional smooth

manifold is a maximal atlas compatible with the pseudogroup Γ(Λ, p).

We call the local coordinates determined by a chart of this atlas adapted

coordinates. A smooth manifold endowed with a (Λ, p)-multifoliate struc-

ture is called a (Λ, p)-multifoliate manifold.

Definition. Let M be a (Λ, p)-multifoliate manifold and N be a (Λ, p′)-

multifoliate manifold. A Λ-multifoliate map f : M → N is a smooth

map, satisfying the condition

∂fa

∂xi
= 0 if p′(a) 6≥ p(i)

in adapted coordinates. Clearly, this definition does not depend on the

choice of a local coordinate system.

For a fixed finite partially ordered set Λ, all (Λ, p)-multifoliate man-

ifolds for all surjective maps p : {1, . . . , n} → Λ and for all natural

numbers n ≥ card Λ together with Λ-multifoliate maps as morphisms

form a subcategoryMfΛ of the categoryMf . We call it the category of

multifoliate manifolds over Λ.
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Proposition 2.1. The category MfΛ admits products.

Proof. If Ma is a (Λ, pa)-multifoliate manifold, pa : {1, . . . , na} → Λ,

a = 1, 2, then the product M1 × M2 is a (Λ, p)-multifoliate manifold,

where p : {1, . . . , n1 + n2} → Λ is defined by

p(i) =

{
p1(i), i ≤ n1;

p2(i− n1), i > n1.

�

Definition. We say that two multifoliate structures (Λ, p) and (Λ′, p′)

on the same set {1, . . . , n} are equivalent if there exists a linear auto-

morphism ϕ : R
n → R

n such that ϕ ◦ f ◦ ϕ−1 ∈ GL(Λ′, p′) for any

f ∈ GL(Λ, p) and

Φ : f ∈ GL(Λ, p) 7→ ϕ ◦ f ◦ ϕ−1 ∈ GL(Λ′, p′)

is a group isomorphism.

Clearly, if (Λ, p) is a multifoliate structure on {1, . . . , n}, then, for

each permutation σ on {1, . . . , n}, the multifoliate structure (Λ, p ◦ σ) is

equivalent to (Λ, p).

For a multifoliate structure (Λ, p) on {1, . . . , n}, define the sets Hα ={
i
∣∣ p(i) ≤ α

}
, α ∈ Λ, and let k(α) = cardHα. The vector spaces

Lα =
{
(xi1 , . . . , xik(α))

∣∣ xis ∈ R, is ∈ Hα, s = 1, . . . , k(α)
}

and the natural epimorphisms prβ
α : Lβ → Lα, α ≤ β, form a projective

system whose limit can be naturally identified with R
n. Denote this

system and its completion, respectively, by ξ(Λ, p) and ξ̃(Λ, p).

Theorem 2.1. [12] The correspondence (Λ, p) 7→ ξ̃(Λ, p) induces a bi-

jection between the equivalence classes of multifoliate structures (Λ, p)

and the equivalence classes of finite complete projective systems of vector

space epimorphisms.

Proof. We give here a sketch of the proof and refer for details to [12].

Show first that the correspondence (Λ, p) 7→ ξ̃(Λ, p) induces a map

from the set of equivalence classes of multifoliate structures to the set of

equivalence classes of finite complete projective systems of vector space

epimorphisms. By Propositions 1.2 and 1.3, it suffices to show that the

groups GL(Λ, p) and GL(ξ(Λ, p)) are isomorphic. In fact, there is a natu-

ral isomorphism GL(Λ, p)→ GL(ξ(Λ, p)) which assigns to g ∈ GL(Λ, p) a

collection of maps {gα : Lα → Lα} defined as follows: gα(yα) = prα(g(y))

where y ∈ R
n is such that prα(y) = yα.
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To prove that the correspondence indicated in the theorem is one-to-

one, we need to pass to the dual inductive system [1].

Let ξ = (Lα, ξ
β
α,Λ, L) be a finite complete projective system and let

ε ∈ Λ be the greatest element. The dual spaces L∗α together with the dual

maps (ξβ
α)∗ form an inductive system ξ∗ = (L∗α, (ξ

β
α)∗,Λ). The existence

of the greatest element implies that the inductive limit of ξ∗ exists and

can be identified with the dual space L∗. Under this identification the

dual maps ξ∗α : L∗α → L∗ are the canonical maps of ξ∗. Obviously, all the

maps (ξβ
α)∗ and ξ∗α are monomorhisms. We will call the inductive system

ξ∗ = (L∗α, (ξ
β
α)∗,Λ, L∗) the dual of ξ.

For any f ∈ GL(ξ) and for each α ∈ Λ, we have ξ∗α ◦ f
∗

α = f ∗ ◦ ξ∗α.

Denote by GL(ξ∗) the group of all linear automorphisms h : L∗ → L∗

which are the limits of inductive systems of linear automorphisms hα :

L∗α → L∗α. Since the maps ξ∗α are monomorphisms, it will be convenient to

consider each L∗α as a subspace of L∗. Then hα = h|L∗α or, in other words,

h maps L∗α into itself. The correspondence f 7→ f ∗ is an isomorphism of

the groups GL(ξ) and GL(ξ∗).

The dual system ξ∗ is complete in the sense that it contains all sub-

spaces which are invariant with respect to each f ∗ ∈ GL(ξ∗).

By a chain in ξ∗ we mean a sequence of embeddings

L∗αk

(ξ
αk
αk−1

)∗

←− L∗αk−1

(ξ
αk−1
αk−2

)∗

←− · · ·
(ξ

α2
α1

)∗

←− L∗α1

such that α1 < α2 < · · · < αk and αi is the successor of αi−1 in Λ,

i = 2, . . . , k, (that is, αi−1 ≤ β ≤ αi implies that either β = αi−1 or

β = αi). The space L∗αk
is called the end of the chain.

L∗α is said to be a subspace of the first floor if α is a minimal element

of Λ. L∗α is said to be a subspace of the k-th floor if each chain with

end L∗α is of length no greater than k and among all such chains there is

at least one of length k.

If L∗α is a subspace of the first floor, we take a basis Bα = {e1α, . . . , e
s(α)
α }

in L∗α and call the index α distinguished. Let C1 be the union of Bα for

all subspaces of the first floor. One can verify that the system C1 is

linearly independent. In fact, the assumption that the system is linearly

dependent contradicts the completeness of ξ∗ (see [12] for details).

Let now L∗β be a space of the second floor. Then either L∗β ⊂ L{C1},

where L{C1} is the linear span of the system C1, or one can choose a

system of linearly independent elements Bβ = {e1β, . . . , e
s(β)
β } in L∗β such

that L∗β = L{e1β, . . . , e
s(β)
β }⊕ (L∗β ∩L{C1}). In the latter case the index β

is also called distinguished. Let C2 be the union of Bβ for all subspaces
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of the second floor. The system C1 ∪C2 is linearly independent (see [12]

for details).

Suppose that we have chosen systems Cℓ for every ℓ ≤ k. If L∗γ is a

space of (k + 1)-th floor, then either L∗γ ⊂ Lk := L{C1 ∪ · · · ∪ Ck} or

there exists a system of linearly independent elements Bγ = {e1γ , . . . ,

e
s(γ)
γ } such that L∗γ = (L∗γ ∩ Lk) ⊕ L{e

1
γ, . . . , e

s(γ)
γ }. In the latter case

the index γ is called distinguished. Let Ck+1 be the union of Bγ for all

subspaces of the (k+1)-st floor. As above, the system C1∪C2∪· · ·∪Ck+1

is linearly independent.

This process stops when we reach L∗. As a result, we obtain a subset

Λ′ ⊂ Λ consisting of distinguished elements and the corresponding basis

{e1, . . . , en} in L∗. Let p : {1, . . . , n} → Λ′ be the map defined as follows:

p(m) = α where α is the minimal distinguished element such that em ∈

L∗α. The pair (Λ′, p) is a multifoliate structure on {1, . . . , n} and the

group GL(ξ) is isomorphic to GL(Λ′, p). �

Corollary 2.1. For any finite partially ordered set Λ, the categories

Mfproj(Λ) and MfΛ are isomorphic.

Corollary 2.2. Let (Λ, p) be a multifoliate structure on {1, . . . , n} and

ξ(Λ, p) the corresponding projective system. Let ξ̃(Λ, p) = (L̃a, ξ
b
a, Λ̃, L̃)

be the completion of ξ(Λ, p) and (Λ′, p′) the multifoliate structure on

{1, . . . , n} determined by ξ̃(Λ, p). Then

(1) the partially ordered sets Λ and Λ′ are canonically isomorphic;

(2) the multifoliate structures (Λ, p) and (Λ′, p′) are equivalent.

Proof. (1) Every invariant subspace of ξ̃(Λ, p) is of the form

L̃(α1,...,αk) = L/(ker ξα1 ∩ · · · ∩ ker ξαk
),

where α1, . . . , αk ∈ Λ are pairwise incomparable. Thus, Λ̃ is isomor-

phic to the set of all finite collections of pairwise incomparable ele-

ments (α1, . . . , αk) endowed with the partial order defined as follows:

(α1, . . . , αk) ≤ (β1, . . . , βℓ) if and only if ker ξβ1 ∩ · · · ∩ ker ξβℓ
⊆ ker ξα1 ∩

· · · ∩ ker ξαk
.

The index (α1, . . . , αk) ∈ Λ̃ is distinguished if and only if k = 1, and

so the set of all distinguished elements is naturally isomorphic to Λ.

(2) From Theorem 2.1 it follows that GL(Λ, p) ∼= GL(ξ(Λ, p)) and

GL(ξ̃(Λ, p)) ∼= GL(Λ′, p′). The rest of the proof follows from Proposition

1.2. �

Corollary 2.3. If (Λ, p) and (Ω, q) are equivalent multifoliate structures

on {1, . . . , n}, then
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(1) the partially ordered sets Λ and Ω are isomorphic;

(2) there exists a permutation σ on {1, . . . , n} such that q = p ◦ σ.

Proof. (1) Let (Λ′, p′) and (Ω′, q′) be the multifoliate structures corre-

sponding to the complete projective systems ξ̃(Λ, p) and ξ̃(Ω, q) respec-

tively. The systems ξ̃(Λ, p) and ξ̃(Ω, q) are equivalent. By Proposition

1.3, these systems are isomorphic. Hence the sets Λ′ and Ω′ of their

distinguished elements are isomorphic. By Corollary 2.2, Λ and Ω are

isomorphic.

(2) Let ω : Λ ∋ α 7→ ω(α) ∈ Ω be an isomorphism. Recall that, for any

distinguished index β ∈ Λ′ ∼= Λ, s(β) denotes the number of linearly in-

dependent elements in the system Bβ defined in the proof of Theorem 2.1.

One can easily see that the cardinality of the subset p−1(β) ⊂ {1, . . . , n}

coincides with s(β). Since the projective systems ξ̃(Λ, p) and ξ̃(Ω, q) are

isomorphic, for every distinguished index β ∈ Λ′ ∼= Λ, the numbers s(β)

and s(ω(β)) coincide. This means that p−1(α) and q−1(ω(α)) have the

same cardinality for any α ∈ Λ. From this observation it follows that one

can find a permutation σ on {1, . . . , n} such that q = p ◦ σ. In general,

such a permutation is not unique. �

3. Multifibered manifolds. The classification

theorem

Definition. Let ξ = (Lα, ξ
β
α,Λ, L) be a projective system of vector spaces

and let π = (Mα, π
β
α,Λ,M) be a projective system such that all Mα and

M = lim
←−

Mα are smooth manifolds and all maps πβ
α : Mβ → Mα and

πα : M →Mα are surjective submersions. Let A be a ξ-structure on M .

We call π = (Mα, π
β
α,Λ,M) a multifibered manifold if the ξ-structure A

on M is compatible with all projections πα in the following sense: for

any point x = (xα) ∈M , there are charts (U, h) centered at x on M and

(Uα, hα) centered at xα on Mα, α ∈ Λ, such that the following diagram

commutes

U
h

−−−−−−→ L

πα

y

yξα

Uα

hα−−−−−−→ Lα .

It follows from Corollary 2.1 that M carries a structure of multifoliate

manifold. For any point x = (xα) ∈ M the projective system of tangent

spaces ξx = (Txα
Mα, (dπ

β
α)xβ

,Λ, TxM) is isomorphic to ξ.
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Definition. A multifibered map f : π → π between two multifibered

manifolds π = (Mα, π
β
α,Λ,M) and π = (Mα, π

β
α,Λ,M) is a collection of

maps {fα : Mα →Mα}α∈Λ such that for all α ≤ β the diagram

Mβ

fβ
−−−−−−→ Mβ

πβ
α

y
yπβ

α

Mα

fα
−−−−−−→ Mα

commutes. Each multifibered map determines a unique smooth map

f : M →M .

Multifibered manifolds over Λ together with multifibered maps form a

subcategory of the category MfΛ of multifoliate manifolds over Λ. We

denote it by FMΛ.

Proposition 3.1. The category FMΛ admits products.

Proof. If π = (Mα, π
β
α,Λ,M) and π = (Mα, π

β
α,Λ,M) are two mul-

tifibered manifolds, then their product is π × π := (Mα × Mα, π
β
α ×

πβ
α,Λ,M ×M). �

The categories FMΛ andMfΛ are local categories over manifolds.

Definition. An inductive system of Weil algebra homomorphisms over

Λ is a collection µ = (Aα, µ
β
α,Λ) consisting of Weil algebras Aα, α ∈ Λ,

and Weil algebra homomorphisms µα
β : Aα → Aβ, α ≤ β, such that

µα
α = idAα

for all α ∈ Λ and µβ
γ ◦ µ

α
β = µα

γ when α ≤ β ≤ γ. Let

µ = (Aα, µ
β
α,Λ) and µ = (Aα, µ

β
α,Λ) be two inductive systems of Weil

algebra homomorphisms. By a morphism ν : µ → µ we mean a family

ν = (να)α∈Λ of Weil algebra homomorphisms {να : Aα → Aα} such that

for all α ≤ β the diagram

Aα

να−−−−−−→ Aα

µα
β

y
yµα

β

Aβ

νβ
−−−−−−→ Aβ

commutes.

Theorem 3.1. Any product preserving bundle functor F on the category

FMΛ or MfΛ is uniquely determined by the inductive system µ = (µα
β :

Aα → Aβ) of Weil algebra homomorphisms. Any natural transformation

η : F → F is uniquely determined by the morphism ν : µ→ µ of inductive

systems of Weil algebra homomorphisms.
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Since, by Theorem 2.1, any multifoliate manifold is locally a multi-

fibered manifold, it is enough to consider the case of a bundle functor

F : FMΛ → FM .

The proof of the Theorem 3.1 is essentially the same as the Mikulski’s

proof [9] for the case of a bundle functor FM → FM . We will reproduce

the main scheme of the proof.

Let µ = (Gα, µ
α
β ,Λ) be an inductive system of natural transformations

of bundle functors, i.e., for any α ∈ Λ, there is given a bundle functor

Gα :Mf → FM and for any α, β ∈ Λ such that α ≤ β, there is given a

natural transformation µα
β : Gα → Gβ with the properties µα

β ◦ µ
β
γ = µα

γ

and µα
α = id. We define a bundle functor

∏
µ Gα : FMΛ → FM as

follows.

Consider a multifibered manifold π = (Mα, π
β
α,Λ,M). We let

∏
µ
Gα(π) := {(xα) |Gβ(π

β
α)(xβ) = µα

β(Mα)(xα)} ⊂
∏

α∈Λ

Gα(Mα).

The set
∏

µ Gα(π) is a submanifold in
∏

α∈ΛGα(Mα). We define the map

pµ(π) :
∏

µ
Gα(π)→M

as follows. Consider the bundle projection
∏

α∈Λ

Gα(Mα) →
∏

α∈Λ

Mα.

The image of its restriction to
∏

µ Gα(π) coincides with M = lim
←−

Mα,

thus defining the map pµ(π) :
∏

µ Gα(π) → M which is a surjective

submersion.

Let f = (fα) : π → π be a multifibered map. We set
∏

µ
Gα(f) := the restriction of

∏

α∈Λ

Gα(fα).

The map ∏
µ
Gα(f) :

∏
µ
Gα(π)→

∏
µ
Gα(π)

is well-defined since all µα
β are natural transformations.

The correspondence
∏

µ
Gα : FMΛ → FM

is a bundle functor.

Now let µ = (µα
β : Gα → Gβ) be another inductive system of natural

transformations of bundle functors. Suppose that there is given a family
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ν = (να : Gα → Gα) of natural transformations such that, for any

manifold X and α ≤ β, the diagram

Gα(X)
να(X)
−−−−−−→ Gα(X)

µα
β(X)

y
yµα

β(X)

Gβ(X)
νβ(X)
−−−−−−→ Gβ(X)

(1)

commutes. Then we define the natural transformation
∏

µ,µ

να :
∏

µ
Gα →

∏
µ
Gα

as follows.

For a multifibered manifold π = (Mα, π
β
α,Λ,M), we define the map

∏
µ,µ
να(π) :

∏
µ
Gα(π) →

∏
µ
Gα(π)

to be the restriction of
∏

α∈Λ να(Mα). Since each να is a natural trans-

formation, the map
∏

µ,µ να(π) is well-defined. The family
∏

µ,µ

να =
{∏

µ,µ

να(π)
}

:
∏

µ
Gα →

∏
µ
Gα

is a natural transformation.

Let us denote by pt a one-point manifold. Consider a smooth mani-

fold X. For any α ∈ Λ, we construct a multifibered manifold iα(X) =

(Xγ , r
γ
δ ,Λ, X) in the following way. We let Xγ = X if γ ≥ α, andXγ = pt

otherwise. Each projection rγ
δ is either the identity map idX : X → X

if γ ≥ α, δ ≥ α, or the unique map ptX : X → pt if γ ≥ α, δ 6≥ α, or

the unique map pt → pt if γ 6≥ α, δ 6≥ α. Clearly, lim
←−

Xα = X. We can

consider any map f : X → Y as a multifibered map f : iα(X) → iβ(Y )

for α ≤ β. Thus we obtain the bundle functors

iα :Mf → FMΛ

and the natural transformations

idα
β : iα → iβ, α ≤ β,

consisting of FMΛ-morphisms idX : iα(X) → iβ(X). Obviously, the

functors iα preserve products.

Let F : FMΛ → FM be a bundle functor. Consider the bundle

functors

GF
α : = F ◦ iα :Mf → FM. (2)

If F preserves products, then the functors GF
α also preserve products.



PRODUCT PRESERVING BUNDLE FUNCTORS 119

We define an inductive system µF = ((µF )α
β) of natural transformations

as follows:

(µF )α
β := F (idα

β) : GF
α → GF

β . (3)

Let F : FMΛ → FM be another bundle functor, and let η = {ηπ} :

F → F be a natural transformation. We define the family of natural

transformations

νη = (νη
α : GF

α → GF
α )

by

νη
α(X) := ηiα(X) : GF

α (X)→ GF
α (X) (4)

for any manifold X. The diagram

GF
α (X)

νη
α(X)

−−−−−−−→ GF
α (X)

(µF )α
β(X)

y
y(µF )α

β(X)

GF
β (X)

νη
β(X)

−−−−−−−→ GF
β (X)

commutes for any manifold X and any α ≤ β.

Let F : FMΛ → FM be a bundle functor. Following Mikulski, we

construct a natural transformation

Θ = {Θπ} : F →
∏

µF
GF

α .

Let π = (Mα, π
β
α,Λ,M) be a multifibered manifold. For any α ∈ Λ we

define a multifibered map jα : π → iα(Mα) as follows: we let (jα)γ := πγ
α

if α ≤ γ and (jα)γ := ptMγ
otherwise.

The image of the map
∏

α∈Λ

F (jα) : F (π)→
∏

α∈Λ

F (iα(Mα)) =
∏

α∈Λ

GF
α (Mα)

is contained in
∏

µF GF
α (π). Therefore, the map

Θπ :=
∏

α∈Λ

F (jα) : F (π)→
∏

µF
GF

α (π) ⊂
∏

α∈Λ

GF
α (Mα).

is well-defined.

The family Θ = {Θπ} : F →
∏

µF GF
α is a natural transformation.

Let now µ = (µα
β : Gα → Gβ) be an inductive system of natural

transformations of bundle functors Gα : Mf → FM . Consider the

corresponding bundle functor F :=
∏

µGα : FMΛ → FM . Denote by
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◦

µ = (
◦

µα
β :

◦

Gα →
◦

Gβ) the corresponding inductive system of natural

transformations (3). Then

◦

Gγ(X) = {xα ∈ Gα(Xα) | (µF )α
β(Mα)(xα) = GF

β (πβ
α)(xβ)} ⊂

∏

α∈Λ

Gα(Xα),

where Xα = X for α ≥ γ, otherwise Xα = pt.

For any manifold X and for any α ∈ Λ, we define the map

Oα(X) :
◦

Gα(X)→ Gα(X) (5)

as the restriction of the standard projection
∏

β∈ΛGβ(Xβ)→ Gα(X).

The families

Oα = {Oα(X)} :
◦

Gα → Gα

are natural transformations. They all are natural equivalences if and

only if every map µα
β(pt) : Gα(pt) → Gβ(pt) is a diffeomorphism. The

diagram
◦

Gα(X)
Oα(X)
−−−−−−−→ Gα(X)

◦

µα
β(X)

y

yµα
β(X)

◦

Gβ(X)
Oβ(X)
−−−−−−−→ Gβ(X)

is commutative for any manifold X and any α ≤ β.

Suppose now that the inductive system µ = (µα
β : Gα → Gβ) satisfies

the condition that all the maps µα
β(pt) : Gα(pt)→ Gβ(pt) are diffeomor-

phisms.

For any multifibered manifold π = (Mα, π
β
α,Λ,M) we let

T µ(π) =

{
Gα(X) if π = iα(X) for some X ∈Mf, α ∈ Λ,∏

µGα (π) otherwise.

Then T µ(π) is a fibered manifold over M = lim
←−

Mα. We also define the

map

Iπ : T µ(π)→
∏

µ
Gα (π)

as follows:

Iπ =

{
O−1

α (X) if π = iα(X),

idΠµ Gα (π) otherwise,

where Oα(X) :
◦

Gα(X) =
∏

µGα (iα(X)) → Gα(X) are defined by (5).

We let

T µ(f) := I−1
π ◦

∏

α∈Λ

Gα(fα) ◦ Iπ.
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The correspondence T µ thus defined is a bundle functor FMΛ → FM ,

and the family

I = {Iπ} : T µ →
∏

µ
Gα

is a natural transformation.

If all Gα preserve products, then Gα(pt) = pt, hence the maps µα
β(pt)

are diffeomorphisms. In this case, I is a natural equivalence and the

functor T µ also preserves products.

Let now µ = (µα
β : Gα → Gβ) be another inductive system of natural

transformations such that all µα
β(pt) are diffeomorphisms, and let ν =

(να : Gα → Gα) be a family of natural transformations such that the

diagram (1) is commutative. Following Mikulski, we define a natural

transformation ν̃ = {ν̃π} : T µ → T µ to be the composition

ν̃π : T µ(π)
Iπ−−−→

∏
µ
Gα (π)

Πµ,µ να(π)
−−−−−−−→

∏
µ
Gα (π)

I
−1
π−−−→ T µ(π)

for any multifibered manifold π.

In the case F = T µ the natural transformations (µF )α
β : GF

α → GF
β

coincide with µα
β , i.e.,

µF = µ if F = T µ.

Let F : FMΛ → FM be a bundle functor such that (µF )α
β(pt), α ≤ β,

are diffeomorphisms.

Then we define a natural transformation κ = {κπ} : F → T µF

to be

the composition

κπ : F (π)
Θπ−−−→

∏
µF
GF

α (π)
I−1
π−−−→ T µF

(π) (6)

for any multifibered manifold π.

The proofs of the following propositions are similar to the proofs of

Theorems 2.1 and 2.2 in [9].

Proposition 3.2. (1) Let F : FMΛ → FM be a product preserving

bundle functor. Then the natural transformation κ : F → T µF

is a

natural equivalence.

(2) If µ = (µα
β : Gα → Gβ) is an inductive system of natural trans-

formations between product preserving bundle functors Gα :Mf → FM

and κ is the natural transformation (6) for F = T µ, then κ : T µ → T µ

and κπ = idT µ(π) for any multifibered manifold π.

(3) For µ = (µα
β : Gα → Gβ) the functor T µ is a product preserving

bundle functor on the category FMΛ unique up to a natural equivalence
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such that the natural transformation µF corresponding to F = T µ coin-

cides with µ.

Proposition 3.3. Let F, F : FMΛ → FM be two product preserving

bundle functors. Let µF = ((µF )α
β : GF

α → GF
β ) and µF = ((µF )α

β : GF
α →

GF
β ) be the corresponding inductive systems of natural transformations.

Let ν = (να : GF
α → GF

α ) be the family of natural transformations such

that the diagram

GF
α (X)

να(X)
−−−−−−−→ GF

α (X)

(µF )α
β(X)

y

y(µF )α
β(X)

GF
β (X)

νβ(X)
−−−−−−−→ GF

β (X)

is commutative for any manifold X. Then the natural transformation

η = {ηπ} : F → F given by the compositions

ηπ : F (π)
κπ−−−→ T µF

(π)
eνπ−−−→ T µF

(π)
κ−1

π−−−→ F (π)

is the unique natural transformation F → F such that νη
α = να, where

νη
α is defined by (4).

Definition. We say that two bundle functors F and F are equivalent if

there exists a natural equivalence η : F → F . We say that two inductive

systems of natural transformations µ and µ are equivalent if there exists

a family ν = (να) of natural transformations such that the diagram (1)

is commutative for any manifold X.

The following proposition completes the proof of Theorem 3.1. It is

proved just the same as Corollary 2.3 in [9].

Proposition 3.4. The correspondence F → µF induces a bijection be-

tween the equivalence classes of product preserving bundle functors on the

category FMΛ and the equivalence classes of inductive systems of natu-

ral transformations of product preserving bundle functors on the category

Mf . The inverse bijection is induced by the correspondence µ→ T µ.
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[6] I. Kolář, W.M. Mikulski, On the fiber product preserving bundle functors. Diff.

Geom. and its Appl., 11 (1999), 105–115.

[7] A. Kriegl, P.W. Michor, Product preserving functors of infinite dimensional man-

ifolds. Arch. Math., 32 (1996), 289–306.

[8] O.O. Luciano, Categories of multiplicative functors and Weil’s infinitely near

points. Nagoya Math. J., 109 (1988), 67–108.

[9] W.M. Mikulski, Product preserving bundle functors on fibered manifolds. Arch.

Math., 32 (1996), 307–316.
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