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Abstract. The purpose of this paper is finding a lower bound for

summability matrix operators on sequence spaces lp(w) and Lorentz

sequence spaces d(w, p) and also the sequence space e(w,∞). Also, this

study is an extension of some works of Bennett.

1. Introduction

We study the lower bounds of summability matrix operators on lp(w)

and Lorentz sequence spaces d(w, p) and also the Banach sequence space

e(w,∞) considered in [1] on lp spaces. The problem of finding the upper

bound and lower bound of certain matrix operators such as Cesaro, Cop-

son and Hausdorff and Hilbert operators are considered in [3], [4], [5], [6]

and [7] on weighted sequence spaces.

Let 1 ≤ p < ∞, lp be the normed linear space of all sequences (xn)

with finite norm ‖x‖p, where

‖x‖p = (
∞
∑

n=1

|xn|
p)1/p.

If (wn) is a decreasing non-negative sequence, we define the weighted

sequence space lp(w) as follows:

lp(w) = { (xn) :

∞
∑

n=1

wn|xn|
p < ∞ },
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with norm, ‖.‖p,w, which is defined in the following way:

‖x‖p,w = (
∞
∑

n=1

wn|xn|
p)1/p.

Also, if (wn) is a decreasing non-negative sequence such that limn→∞ wn =

0 and
∑∞

n=1 wn = ∞, then the Lorentz sequence space d(w, p) is defined

as follows:

d(w, p) = { (xn) :
∞
∑

n=1

wnx
∗p
n < ∞ },

where (x∗
n) is the decreasing rearrangement of (|xn|). Then d(w, p) is the

space of null sequences x for which x∗ is in lp(w), with norm ‖x‖d(w,p) =

‖x∗‖p,w.

Let X∗
k = x∗

1 + · · ·+ x∗
k and Wk = w1 + · · ·+ wk. The conjugate space of

d(w, 1) is e(w,∞), where

e(w,∞) = { (xn) : sup
k

X∗
k

Wk

< ∞ },

and its norm is defined by

‖x‖w,∞ = sup
k

X∗
k

Wk
.

Let A be a matrix with non-negative entries. We consider lower bounds

of the form

‖Ax‖p,w ≥ L‖x‖p,v, (‖Ax‖d(w,p) ≥ L‖x‖d(v,p)),

valid for every decreasing non-negative sequence x and L is a constant

not depending on x. We seek the largest possible value of L and denote

the best lower bound by Lp,v,w for matrix operator from lp(v) into lp(w)

and also it is denoted by Lp,w(A) and Ld(w,p)(A) on lp(w) and d(w, p),

respectively.

When 0 < p < 1, we use notation ‖.‖ without assuming that it is a norm.

We denote transpose matrix of A by At. Suppose that A = (an,k) is a

summability matrix, then At is quasi-summability matrix and

(Atx)n =

∞
∑

k=n

ak,nxk.

Also, denote by p∗ the conjugate exponent of p, so that p∗ = p/(p − 1).

Throughout this paper, we apply the following lemma and state some

statements on weighted sequence space lp(w) and some results on weighted

sequence space d(w, p).
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Lemma 1.1. Let p ≥ 0 and A = (ai,j) be a matrix with non-negative

entries. The following condition is equivalent to the statement that Ax

is decreasing for every decreasing, non-negative sequence x in d(w, p):

(1) ri,n =
∑n

j=1 ai,j decreases with i for each n.

Proof. Let x ∈ d(w, p) be a decreasing, non-negative sequence and y =

Ax. If (1) holds, by Abel summation, we have

yi =

∞
∑

j=1

ai,jxj =

∞
∑

j=1

ri,j(xj − xj+1),

it follows that Ax is decreasing. The converse deduce from the fact that

yi = ri,n when x = e1 + · · ·+ en.

Above lemma shows that for the matrix A with condition (1), we have

Lp,w(A) = Ld(w,p)(A).

2. Summability matrix operator on d(w, 1) and e(w,∞)

In this section, we consider the lower bound problem for summability

matrix operators on d(w, 1) and e(w,∞). These are lower triangular

matrices with entries of the form:

(i) an,k ≥ 0;

(ii) an,k = 0 if k > n;

(iii)
∑n

k=1 an,k = 1.

We generalize Theorem 1 of [3] for summability matrix operators from

d(v, 1) into d(w, 1). We write ‖.‖w instead of ‖.‖d(w,1) and denote lower

bound by Lv,w(A) for matrix operator from d(v, 1) into d(w, 1) and it

is denoted by Lw(A) on d(w, 1). Moreover, we denote lower bound of

matrix operator A from e(w,∞) into itself with Lw,∞(A). Throughout

this section, we assume A is a summability matrix operator satisfying

condition (1) in Lemma 1.1.

Theorem 2.1. Suppose that A = (ai,j) is a summability matrix operator

from d(v, 1) into d(w, 1) with non-negative entries. We write Sn = Wn +
∑∞

k=n+1 wkrk,n and Vn = v1 + · · · + vn. Then

Lv,w(A) = inf
n

Sn

Vn

.

Proof. Denote the stated infimum by M. Let x be in d(v, 1) such that

x1 ≥ x2 ≥ · · · ≥ 0 and y = Ax. By Abel summation, we have

yn =

n−1
∑

k=1

rn,k(xk − xk+1) + xn.
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Hence

‖Ax‖w =
∞
∑

n=1

wn

(

n−1
∑

k=1

rn,k(xk − xk+1) + xn

)

=
∞
∑

n=1

Sn(xn − xn+1)

≥ M
∞
∑

n=1

Vn(xn − xn+1)

= M‖x‖v.

Therefore

Lv,w(A) ≥ M.

To show that the constant M is the best possible, we take x1 = x2 =

· · · = xn = 1 and xk = 0 for all k ≥ n + 1. Then

‖x‖v = Vn, ‖Ax‖w = Sn.

Therefore

Lv,w(A) = M.

The following lemma is needed in the sequel.

Lemma 2.1. Let α > 0 and X(n) =
∑∞

k=n
1

k1+α , then (n − 1)αX(n)

increases and tends to 1
α
.

Proof. Let xn = 1
n1+α and yn =

∫ n

n−1
dt

t1+α , then

Y(n+1) =
∞
∑

k=n+1

yk =
1

αnα
.

By the usual integral comparison,

1

αnα
≤ X(n) ≤

1

α(n − 1)α
,

which implies the stated limit. Write zn = n1+αyn, then

zn+1 = (n + 1)1+α

∫ n+1

n

dt

t1+α
= (n + 1)1+α

∫ n

n−1

dt

(t + 1)1+α
.

For n−1 ≤ t ≤ n, we have n+1
t+1

≤ n
t
, hence (n+1)1+α

(t+1)1+α ≤ n1+α

t1+α and zn+1 ≤ zn.

Therefore (xn

yn
) is increasing, then so is (

X(n)

Y(n)
).

Theorem 2.2. Let A be a summability matrix operator from d(w, 1)

into itself. If for k > n

rk,n ≤
n

k
,
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and wn ≤ 1
n

for all n, then

Lw(A) = 1.

Proof. We have Sn = Wn +
∑∞

k=n+1 wkrk,n, hence Sn ≥ Wn for all n, and

so

L1,w(A) ≥ 1.

Since rk,n ≤ n
k

for k > n,

Sn ≤ Wn + n
∞
∑

k=n+1

1

k2
.

Applying Lemma 2.1, n
∑∞

k=n+1
1
k2 ≤ 1. Therefore

Sn

Wn

≤ 1 +
1

Wn

.

Since Wn → ∞ as n → ∞, hence

L1,w(A) ≤ 1.

This deduces the statement.

We note that the Hausdorff matrix, Nörlund mean matrix, weighted

mean matrix, and in particular Cesaro matrix are summability matrix

operators.

We denote the Cesaro matrix by C, with entries:

ci,j =

{

1
i

if i ≥ j

0 if i < j.

The lower bound problem of C is discussed in [3].

Corollary 2.1. If N ≥ 0 and wn = 1
n+N

, then

Lw(C) = 1.

Theorem 2.3. Let A be a summability matrix operator from e(w,∞)

into itself. If w1 = 1 and wn ≥ an,1 for all n, then

Lw,∞(A) = 1.

Proof. Let x be in e(w,∞) such that x1 ≥ x2 ≥ · · · ≥ 0 and y = Ax.

Then for all n

yn =

n
∑

k=1

an,kxk ≥ xn

n
∑

k=1

an,k = xn.

Hence
Xn

Wn
≤

Yn

Wn
, (∀n).
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Therefore ‖x‖w,∞ ≤ ‖Ax‖w,∞ and so Lw,∞(A) ≥ 1. To show that the

constant is the best possible, we take x1 = 1 and xn = 0 for all n ≥ 2.

Then ‖x‖w,∞ = 1 and yn = an,1. Thus yn ≤ wn and

Yn ≤ Wn, (∀n).

Therefore ‖Ax‖w,∞ ≤ 1 and Lw,∞(A) ≤ 1. This establishes the proof of

the theorem.

Theorem 2.4. Suppose that A = (an,k) is a summability matrix opera-

tor from e(w,∞) into itself, then

Lw,∞(At) = 1.

Proof. Let x be in e(w,∞) such that x1 ≥ x2 ≥ · · · ≥ 0 and y = Atx.

Then for all n

Yn =
n
∑

k=1

yk =
n
∑

k=1

(
∞
∑

i=k

ai,kxi)

= Xn +
∞
∑

i=n+1

(
n
∑

k=1

ai,k)xi.

Hence Xn ≤ Yn for all n and so ‖x‖w,∞ ≤ ‖Atx‖w,∞. Therefore

Lw,∞(A) ≥ 1.

To show that the constant is the best possible, we take x1 = 1 and xn = 0

for all n ≥ 2. We have Atx = x, hence ‖Atx‖w,∞ = ‖x‖w,∞ and so we

have the statement.

3. Summability matrix on lp(w)

In this section, we consider summability matrix operator and its trans-

pose on lp(w). First, we shall give some lemmas which will be useful in

the sequel.

Lemma 3.1. Let (xn), (yn) and (wn) be non-negative sequences. If (wn)

is decreasing and

n
∑

i=1

xi ≤

n
∑

i=1

yi (n = 1, 2, · · · ),

then
n
∑

i=1

wixi ≤

n
∑

i=1

wiyi (n = 1, 2, · · · ).
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Proof. Suppose that Xi =
∑i

k=1 xk and Yi =
∑i

k=1 yk. Fixing n and

summing by parts, we have

n
∑

i=1

wixi =

n−1
∑

i=1

(wi − wi+1)Xi + wnXn

≤
n−1
∑

i=1

(wi − wi+1)Yi + wnYn

=

n
∑

i=1

wiyi.

Lemma 3.2. Let p ≥ 1 and (xn), (yn) and (wn) be non-negative se-

quences. If (xn) and (wn) are decreasing and

n
∑

i=1

xi ≤

n
∑

i=1

yi (n = 1, 2, · · · ),

then
n
∑

i=1

wix
p
i ≤

n
∑

i=1

wiy
p
i (n = 1, 2, · · · ).

Proof. Applying Lemma 3.1 and then Hölder’s inequality, we have
n
∑

i=1

xp
i =

n
∑

i=1

xix
p−1
i ≤

n
∑

i=1

yix
p−1
i

≤ (

n
∑

i=1

yp
i )

1/p(

n
∑

i=1

xp
i )

1/p∗ .

Therefore
∑n

i=1 xp
i ≤

∑n
i=1 yp

i and again by Lemma 3.1, we deduce

n
∑

i=1

wix
p
i ≤

n
∑

i=1

wiy
p
i .

In the following, we consider the lower bound problem for quasi-sum-

mability matrix operators.

Theorem 3.1. Suppose that p ≥ 1 and A = (an,k) is a summability

matrix operator from lp(v) into lp(w). Also, let v = (vn), w = (wn) be

non-negative decreasing sequences. If v1 = w1 and
n
∑

i=1

vi ≤

n
∑

i=1

wi,

for all n, then

Lp,v,w(At) = 1.
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Proof. Let x = (xn) be a non-negative decreasing sequence and y = Atx.

Then
n
∑

i=1

yi =

n
∑

i=1

∞
∑

k=i

ak,ixk

≥

n
∑

i=1

n
∑

k=i

ak,ixk

=
n
∑

i=1

xi.

Applying Lemma 3.2, we deduce that ‖y‖p,w ≥ ‖x‖p,w. Since (xp
i ) is

a non-negative decreasing sequence and
∑n

i=1 vi ≤
∑n

i=1 wi, we have

‖x‖p,v ≤ ‖x‖p,w. Therefore ‖y‖p,w ≥ ‖x‖p,v and Lp,v,w(At) ≥ 1. Further

a1,1 = 1 and Ate1 = e1, hence ‖Ate1‖p,w = ‖e1‖p,v. This completes the

proof of the theorem.

We establish a lower bound for summability matrices with increasing

rows.

Lemma 3.3. Suppose p ≥ 1 and A = (ai,j), B = (bi,j) are summability

matrices. If
n
∑

j=1

ai,j ≤

n
∑

j=1

bi,j , (i, n = 1, 2, · · · ) (I)

then

Lp,w(A) ≤ Lp,w(B).

Proof. Let x be a decreasing non-negative sequence. Applying Lemma

3.1 for (I), we have
i
∑

j=1

ai,jxj ≤

i
∑

j=1

bi,jxj .

Hence ‖Ax‖p,w ≤ ‖Bx‖p,w, and so

Lp,w(A) ≤ Lp,w(B).

In the following statement, we compare lower bound of summability ma-

trix with Cesaro matrix.

Theorem 3.2. Suppose p ≥ 1 and A = (ai,j) is a summability matrix.

If the rows of A are increasing, then

Lp,w(A) ≤ Lp,w(C).
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Proof. We show that
n
∑

j=1

ai,j ≤

n
∑

j=1

ci,j (i, n = 1, 2, · · · ).

It is clear that for n ≥ i, we have
n
∑

j=1

ai,j =

n
∑

j=1

ci,j = 1.

When n < i, since the rows of A are increasing, we have

i
n
∑

j=1

ai,j = n
n
∑

j=1

ai,j + (i − n)
n
∑

j=1

ai,j

≤ n
n
∑

j=1

ai,j + n
i
∑

j=n+1

ai,j

= n
i
∑

j=1

ai,j

= n.

Hence
n
∑

j=1

ai,j ≤
n

i
=

n
∑

j=1

ci,j .

We now apply Lemma 3.3 for A and C to establish the theorem.

In the following we state some result of Theorem 3.2 showing the exact

value of the lower bound for summability matrix, where wn = 1
n
.

Corollary 3.1. Suppose p ≥ 1 and A = (ai,j) is a summability matrix

with increasing rows. If w is defined by wn = 1
n
, then

Lp,w(A) = 1.

Proof. Let x be a decreasing, non-negative sequence in lp(w). We have

‖Ax‖p
p,w =

∞
∑

n=1

wn(
n
∑

k=1

an,kxk)
p

≥
∞
∑

n=1

wnxp
n(

n
∑

k=1

an,k)
p

= ‖x‖p
p,w,

hence Lp,w(A) ≥ 1. Applying Theorem 3.1 and Corollary 2.1, we deduce

that

Lp,w(A) ≤ 1.
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Therefore Lp,w(A) = 1. Bennett considered summability matrices with

increasing or decreasing rows in [1]. For example

Γ(2) =













1 0

1/3 2/3 0

1/6 2/6 3/6 0

1/10 2/10 3/10 4/10 0

. . . . . .













Γ(2) is the summability matrix with increasing rows and for wn = 1
n
, we

have

Lp,w(Γ(2)) = 1.

4. Quasi-summability matrix

In this section, we establish a lower bound for quasi-summability ma-

trix on lp(w) for 0 < p ≤ 1, where sequences are non-negative. Note

that we shall use the norm only as a notation and do not use norm’s

properties. First, we compare lower bound of quasi-summability matrix

with Copson matrix.

Lemma 4.1. Suppose 0 < p ≤ 1 and u, v and w are N-tuples with

non-negative entries. If u, w are decreasing, and

N
∑

i=n

ui ≥

N
∑

i=n

vi (n = 1, . . . , N),

then
N
∑

i=n

wiu
p
i ≥

N
∑

i=n

wiv
p
i , (n = 1, . . . , N).

Proof. Set xi = uN−i+1 and yi = vN−i+1 for 1 ≤ i ≤ N − n + 1, we have
∑N−n+1

i=1 xi =
∑N

i=n ui and
∑N−n+1

i=1 yi =
∑N

i=n vi. Applying Lemma 3.1

and Hölder’s inequality, we deduce the statement.

Lemma 4.2. Suppose 0 < p ≤ 1 and A = (ai,j), B = (bi,j) are summa-

bility matrices. If the rows of B are decreasing and

n
∑

i=1

aj,i ≥
n
∑

i=1

bj,i, (j, n = 1, 2, . . .) (I)

then

Lp,w(At) ≤ Lp,w(Bt).
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Proof. Let N be fixed and x be a sequence with non-negative entries.

We define u and v by

ui =

N
∑

j=i

bj,ixj , vi =

N
∑

j=i

aj,ixj , (i = 1, 2, . . .).

It is clear that ui decreases with i. Definition of summability matrix and

(I) follow that

N
∑

i=n

ui ≥
N
∑

i=n

vi, (n = 1, 2, . . . , N),

hence applying Lemma 4.1, we deduce that

N
∑

i=n

wiu
p
i ≥

N
∑

i=n

wiv
p
i , (n = 1, 2, . . . , N).

Therefore ‖Btx‖p,w ≥ ‖Atx‖p,w, and so

Lp,w(At) ≤ Lp,w(Bt).

The transpose of Cesaro matrix is called the Copson matrix and we

denote it with Ct. Applying Theorem 2.1 of [6], we have

Lp,w(Ct) = p.

Theorem 4.1. Suppose A = (ai,j) is a summability matrix. If the rows

of A are decreasing, then

Lp,w(At) ≤ p,

where 0 < p ≤ 1.

Proof. It is clear that the rows of C are decreasing. For n ≥ j, we have
n
∑

i=1

aj,i =
n
∑

i=1

cj,i = 1.

Also, when n < j, since the jth row of A is decreasing, the average

1

n

n
∑

i=1

aj,i

decreases with n. Hence
n
∑

i=1

aj,i ≥
n

j
(j = 1, 2, . . .),

and so we have (I). We now apply Lemma 4.2 for At and Ct to establish

the theorem.
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In the following, we evaluate lower bound of summability matrix with

increasing rows.

Lemma 4.3([1], Lemma 3.13). Let 0 < p ≤ 1, and u be N-tuple with

positive entries. Then

p

N
∑

k=n

uk(

N
∑

j=k

uj)
p−1 ≤ (

N
∑

j=n

uj)
p, (n = 1, . . . , N), (II)

and if p ≥ 1, the inequality in (II) is reversed. The constant p is best

possible in either version of (II) and there is strict inequality unless p = 1

or u = 0.

Theorem 4.2. Let 0 < p ≤ 1 and A = (ai,j) be the summability matrix.

If the rows of A are increasing, then

Lp,w(At) ≥ p.

Proof. Suppose x is a sequence with non-negative terms. Applying

Lemma 4.3, we have

‖Atx‖p
p,w =

∞
∑

n=1

wn(

∞
∑

k=n

ak,nxk)
p ≥ p

∞
∑

n=1

wn

∞
∑

k=n

ak,nxk(

∞
∑

j=k

aj,nxj)
p−1

= p
∞
∑

k=1

xk

k
∑

n=1

wnak,n(
∞
∑

j=k

aj,nxj)
p−1

≥ p
∞
∑

k=1

wkxk

k
∑

n=1

ak,n(
∞
∑

j=k

aj,nxj)
p−1.

Since A has increasing rows,

∞
∑

j=k

aj,nxj , (n = 1, . . . , k),

is increasing with n, hence

k
∑

n=1

ak,n(

∞
∑

j=k

aj,nxj)
p−1 ≥ (

∞
∑

j=k

aj,nxj)
p−1.
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Thus applying Hölder’s inequality, it follows that

‖Atx‖p
p,w ≥ p

∞
∑

k=1

wkxk(

∞
∑

j=k

aj,kxj)
p−1

≥ p

∞
∑

k=1

w
1/p
k xk(w

1/p∗(p−1)
k

∞
∑

j=k

aj,kxj)
p−1

≥ p(

∞
∑

k=1

wkx
p
k)

1/p(

∞
∑

k=1

(w
1/p
k

∞
∑

j=k

aj,kxj)
p)1/p∗

= p‖x‖p,w‖A
tx‖p−1

p,w .

Therefore ‖Atx‖p,w ≥ p‖x‖p,w, and so Lp,w(At) ≥ p.

Proposition 4.1([6], Proposition 2.2). Let 0 < p, q < 1, and A be a

matrix with non-negative entries. Then

‖Ax‖q,w ≥ L‖x‖p,w,

for all non-negative x if and only if

‖Aty‖p∗,w ≥ L‖y‖q∗,w.

for all non-negative y.

Theorem 4.3. Let p < 0 and A = (ai,j) be the summability matrix. If

A has increasing rows, then

∞
∑

j=1

wj(

j
∑

k=1

aj,kxk)
p ≤ (p∗)p

∞
∑

k=1

wkx
p
k,

for any sequence x with positive terms. Proof. Since 0 < p∗ < 1, Theorem

4.2 follows that

Lp∗,w(At) ≥ p∗.

Applying Proposition 4.1, we deduce that

Lp,w(A) ≥ p∗.

Hence for any sequence x with positive terms, we have

‖Ax‖p,w ≥ p∗‖x‖p,w.

This completes the proof of theorem.

Corollary 4.1. Let p > 0, and x be a positive sequence. Then

∞
∑

j=1

wj max
1≤i≤j

(
j − i + 1

1
xi

+ · · ·+ 1
xj

)p ≤ (
p + 1

p
)p

∞
∑

k=1

wkx
p
k.
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Proof. We apply Theorem 4.3, by replacing p with −p and xk with
1
xk

. The left hand side of inequality is ‖Ax‖p
p,w, where A = (ai,j) is a

summability matrix operator with

aj,k =

{

1
j−ij+1

k = ij, . . . , j

0 otherwise

where ij is chosen to be first value of i at which the maximum

max
1≤i≤j

(
1

j − i + 1

j
∑

k=i

xk)

is attained(j = 1, 2, . . .). The rows of A are increasing and its entries

depend on x, but this is not damaging, because applying Theorem 4.3,

for any positive sequence x, we have

‖Ax‖p,w ≤ p∗‖x‖p,w

and this establishes the statement.

The following statement is an extension of famous inequality due to

Carlemann([2], Theorem 334).

Corollary 4.2. If (xk) is a sequence with non-negative terms, then

∞
∑

i=1

wj max
1≤i≤j

(xi · · ·xj)
1

j−i+1 ≤ e

∞
∑

k=1

wkxk.

Proof. We apply Corollary 4.1, by replacing xk with x
1/p
k and tending

p −→ 0, we have the statement.
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