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Abstract. We describe all Mfm-natural operators A : Riem  

RiemP r transforming Riemannian structures g on m-dimensional man-

ifolds M into Riemannian structures A(g) on the r-th order frame bundle

P rM = invJr0 (Rm,M) over M .

Manifolds and maps are assumed to be of class C∞. Manifolds assumed

to be finite dimensional and without boundaries.

Let Mfm denote the category of m-dimensional manifolds and their

embeddings (i.e. diffeomorphisms onto open subsets) and FM denote

the category of fibred manifolds and their fibred maps.

For any m-manifold M we have the r-th order frame bundle P rM =

invJr0 (Rm,M) of M . This is a principal bundle with the corresponding

Lie group Gr
m = Jr0 (Rm,Rm)0 acting on the right on P rM via compo-

sitions of jets. Every Mfm-map ψ : M1 → M2 induces P rψ : P rM1 →

P rM2 by P rψ(jr0ϕ) = jr0(ψ ◦ ϕ), where ϕ : Rm → M1 is a Mfm-map.

The correspondence P r : Mfm → FM is a bundle functor in the sense

of [2].

For any n-manifold N we have the Riemannian bundle Riem(N) =⋃
y∈N Met(TyN) over N , where given a vector space V we denote the set
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of scalar multiplications G : V ×V → R on V byMet(V ). (We recall that

G : V × V → R is a scalar multiplication if it is symmetric bilinear and

positive define.) Clearly, Riem(N) is an open subbundle in the vector

bundle T ∗N ⊙ T ∗N of symmetric tensors of type (0, 2) over N . Sections

g : N → Riem(N) are the so called Riemannian structures on N . Every

embedding ψ : N1 → N2 induces Riem(ψ) : Riem(N1) → Riem(N2)

being the restriction of T ∗ψ ⊙ T ∗ψ : T ∗N1 ⊙ T ∗N1 → T ∗N2 ⊙ T ∗N2.

The correspondence Riem : Mfn → FM is also a bundle functor in the

sense of [2].

In the present short note we study the problem how a Riemannian

structure g on an m-dimensional manifold M can induce (canonically)

a Riemannian structure A(g) on P rM . This problem is reflected in the

concept of Mfm-natural operators A : Riem  RiemP r. In the note

we describe explicitly all Mfm-natural operators A in question.

A general concept of natural operators can be found in the fundamental

monograph [2]. We need only the following partial case of the definition

of natural operators.

An Mfm-natural operator A : Riem RiemP r is a family of Mfm-

invariant regular operators (functions)

A = AM : Riem(M) → Riem(P rM)

for any Mfm-object M , where Riem(N) is the set of all Riemannian

structures on N (sections of Riem(N) → N) for any manifold N . The

invariance means that if g1 ∈ Riem(M1) and g2 ∈ Riem(M2) are related

by an Mfm-map ψ : M1 → M2 (i.e. Riem(ψ) ◦ g1 = g2 ◦ ψ) then A(g1)

and A(g2) are P rψ-related. The regularity means that A transforms

smoothly parametrized families of Riemannian structures into smoothly

parametrized ones.

For r = 1, P 1M is equivalent with the bundle of linear frames over M .

In this case we have the following example basing on a very important

classical construction presented in the proof of Theorem 1.5 in [1].

Example 1. Let g be a Riemannian structure on an m-manifold M .

Let ∇ be the Levi-Civita connection of g and let ω = (ωjk) : TP 1M →

gl(m) be its connection form. Let θ = (θi) : TP 1M → Rm be the

canonical form on P 1M . We put

g̃(X∗, Y ∗) =
∑

i

θi(X∗)θi(Y ∗) +
∑

j,k

ω
j
k(X

∗)ωjk(Y
∗) , X∗, Y ∗ ∈ TuP

1M.
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Then g̃ is a Riemannian structure on P 1M , see the proof of Theorem

1.5 in [1]. Clearly, the correspondence A1 : Riem  RiemP 1 given by

A1(g) = g̃ for all g ∈ Riem(M) is an Mfm-natural operator.

To generalize Example 1 on all r we firstly reformulate it as follows.

Example 2. Let g be a Riemannian structure on M . Let Let (θi, ωjk)

be the basis of 1-forms on P 1M , where θ = (θi) and ω = (ωjk) is as

in Example 1 for g. Let X1(g), . . . , XL1(g), where L1 = dim(P 1Rm) =

m + m2, be the dual (to (θi, ωjk)) basis of vector fields on P 1M . Then

g̃ =
∑L1

s=1(X
s(g))∗ ⊙ (Xs(g))∗ is a Riemannian structure on P 1M (the

same as in Example 1).

So, to generalize Example 1 (or Example 2) on all r we need to con-

struct an absolute parallelism (basis of global vector fields) on P rM

canonically dependent on a given Riemannian structure g on M .

From now on letA1, . . . , Adim(gr
m

) be the standard basis in grm = Lie(Gr
m)

(i.e. the basis jr0(x
α ∂
∂xi ) ∈ (Jr0TRm)0 = grm for i = 1, . . . , m, 1 ≤ |α| ≤ r).

Example 3. Construction of an absolute parallelism on P rM from

a Riemannian structure on M . Let g be a Riemannian structure on

an m-manifold M . Let ∇ be the Levi-Civita connection of g. Let i =

1, . . . , m. We have a vector field Y i(g) on P rM defined as follows. Let

σ = jr0ϕ ∈ (P rM)x, x ∈ M . Let vi = Tϕ( ∂
∂xi |0

) ∈ TxM . We extend vi to

the constant vector field ṽi on TxM . Then on some neighborhood of x we

have the vector field V i(g) = (Exp∇x )∗ṽ
i, where Exp∇x : TxM ⊃ U0x

→

Ũx ⊂ M is the exponent of ∇. We define Y i(g)σ := Pr(V i(g))σ, where

PrV is the flow lifting of a vector field V on M to P rM (if {ϕt} is the

flow of V then {P rϕt} is the flow of PrV ). It is easy to see that Y i(g)σ
projects onto vi by the bundle projection P rM → M . So, it is a simple

observation that Y i(g), A∗
j for i = 1, . . . , m, j = 1, . . . , dim(grm) is an

absolute parallelism on P rM (canonically depending on g), where given

A ∈ Lie(Gr
m) we denote the fundamental vector field on the principal

bundle P rM by A∗.

Now, we are in position to extend Example 1 (or 2) on all r.

Example 4. Let g be a Riemannian structure on an m-manifold

M . Let (Y i(g), A∗
j) be the parallelism from Example 3. Let ωs(g) for
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s = 1, . . . , dim(P rRm) be the dual basis of 1-form on P rM . We put

g̃r :=
∑

s

ωs(g) ⊙ ωs(g) .

Clearly, g̃r is a Riemannian structure on P rM . Clearly, the correspon-

dence A[r] : Riem RiemP r given by A[r](g) = g̃r for all g in question

is an Mfm-natural operator. One can observe easily that A1 = A[1].

To present a general example of Mfm-natural operators Riem  

RiemP r we need some preparation and notations.

According to the global basis of vector fields Y i(g), A∗
j on P rM from

Example 3, given g ∈ Riem(M) we have a canonical (in g) fibred diffeo-

morphism

(∗) Ig : P rM ×Met(RLr) → Riem(P rM)

covering idP rM defined by the condition that the matrix of Ig(σ,G) in the

basis (Y i(g)(σ), A∗
j(σ)) is the same as the one of G in the usual canonical

basis of RLr .

Given g ∈ Riem(M) we have the projection

Ort(g) : P 1M = LM → O(M, g)

given by the Gramm orthonormalization with respect to g (for l = (li) ∈

LxM , Ort(g)(l) is the orthonormalization of l with respect to gx).

From now on we denote

Qr = (Ort(go) ◦ πr1)
−1(lo) ⊂ (P rRm)0 ,

where go is the usual flat Riemannian structure on Rm and lo is the

usual canonical basis in Rm = T0R
m and πr1 : P rM → P 1M is the jet

projection. Of course, Qr is a submanifold in (P rRm)0.

For s = 0, 1, . . . ,∞, let Zs = Js0(Riem(Rm)) be the set of all s-jets js0g

of Riemannian structures g on Rm. If s is finite, Zs is a finite dimensional

manifold (as the fibre of the s-jet prolongation Js(Riem(Rm)) of the

bundle Riem(Rm) → Rm). Z∞ is a topological space with respect to

the inverse limit topology given by the inverse system . . . → Zs+1 →

Zs → . . .→ Z0 of jet projections.

Now, we are in position to present the following general construction.

Example 5. General construction. Let µ : Z∞ × Qr → Met(RLr),

where Lr = dim(P rRm), be a map satisfying the following local finite

determination property (ar):
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(ar) For any ρ ∈ Z∞ and σ ∈ Qr we can find an open neighborhood

U ⊂ Z∞ of ρ, an open neighborhood V ⊂ Qr of σ, a natural number s

and a smooth map f : πs(U)×V →Met(RLr) such that µ = f◦(πs×idV )

on U × V , where πs : Z∞ → Zs is the jet projection.

(A simple example of such µ is µ = f ◦ (πs × idQr) for smooth f :

Zs × Qr → Met(RLr) for finite s.) Given a Riemannian structure g on

an m-manifold M we define a Riemannian structure A<µ>(g) on P rM as

follows. Let σ ∈ (P rM)x, x ∈M . Choose a g-normal coordinate system

ψ on M with center x such that P rψ(σ) ∈ Qr. Of course, such ψ exists.

Then germx(ψ) is uniquely determined. We put

(∗∗) A<µ>(g)σ = Riem(P r(ψ−1))(Iψ∗g(P
rψ(σ), µ(j∞0 (ψ∗g), P

rψ(σ)))) .

Since germx(ψ) is uniquely determined the definition (**) is correct. The

family A<µ> : Riem RiemP r is an Mfm-natural operator.

The main result of the present note is the following theorem.

Theorem 1. Any Mfm-natural operator A : Riem  RiemP r is

A<µ> for some µ : Z∞ ×Qr →Met(RLr) satisfying the property (ar).

Proof. Let A : Riem  RiemP r be an Mfm-natural operator.

Define µ : Z∞ ×Qr →Met(RLr) by

(σ, µ(j∞0 g, σ)) = I−1
g (A(g)(σ)) .

Then by the non-linear Peetre theorem [2], µ satisfies the property (ar).

Then by the definition of µ and A<µ> we see that A(g)(σ) = A<µ>(g)(σ)

for any Riemannian structure g on Rm such that the identity map idRm

is a g-normal coordinate system with center 0 and any σ ∈ Qr. Then

by the invariance of A and A<µ> with respect to normal coordinates we

deduce that A = A<µ>. �

Remark 1. One can observe that A[r] = A<µ> for constant µ :

Z∞×Qr → Met(RLr) equal to the standard scalar multiplication, where

A[r] is as in Example 4.

Remark 2. The map µ from Theorem 1 is not uniquely determined

by A. One can observe that A<µ1> = A<µ2> iff µ1(j
∞
0 g, σ) = µ2(j

∞
0 g, σ)

for all Riemannian structures g on Rm such that the identity map idRm

is a g-normal coordinate system with center 0 and all σ ∈ Qr.
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