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DIGRAPHS CONTRACTIBLE ONTO *Ks3.
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Abstract. We show that any digraph on n > 3 vertices and with not less than 3n — 3 arcs
is contractible onto *K3
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INTRODUCTION

The notation of contraction is well known for non-oriented graphs (cf. [4]). In this
paper, Hadwiger gave the following conjecture: If x(G) = p then G is contractible
onto the complete graph on p vertices K. Here x(G) denotes the chromatic number
of G. Dirac [2] showed this conjecture to be true for p < 4. Wagner [11] showed that
the four color theorem implies the case p = 5. Robertson, Seymour and Thomas [9]
proved the case p = 6. For a good survey on the relationship between the minor’s
existence in G and the generalization of the coloring notion to the digraphs we refer
the reader to [5], where an oriented version of Hadwiger’s conjecture is given, too.
Recently, Jagger [6] has shown that if p is large enough, then any digraph on n
vertices having at least 10°py/log, p - n arcs is contractible onto *K,,. Nevertheless,
this nice asymptotical result does not give a right information about the “little”
cases. In this direction, Duchet and Kaneti [3] proved that any digraph on n vertices
with not less than 5n — 8 arcs is contractible onto *K4. We give a short proof of the
following result discovered by Meyniel [8].

Theorem. Any digraph on n > 3 vertices and with not less than 3n — 3 arcs is
contractible onto *K3, and this bound is attained for any n.
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We consider only finite digraphs without loops and parallel arcs. An arc of a
digraph G = (V(G), A(@)) from x to y is the couple (x,y). We say that (z,y) is
incident to x and y. The couple of arcs (z,y) and (y,x) is called a symmetrical
arc and is denoted by xy. We will say edge instead of arc whenever the orientation
is insignificant. The set of out-neighbours (in-neighbours) of x is A™(x) = {y €
V(G): (z,y) € A(G)} (A7 (2) ={y € V(G): (y,z) € A(G)}). A(x) = AT (2)UA™ (z)
is the set of neighbours of z. We denote by d* (x)(d~(x)) the in-degree (out-degree)
and by d(z) = d¥(x) + d~(z) the degree of x. By contracting one arc we mean
identifying its extremities and omitting the loop(s) created. We say that the digraph
G is contractible onto G’ (or G’ is a minor of G) and we denote G > G’ if G’ can be
obtained from G by a sequence (possibly empty) of contractions of arcs or removing
of arcs or removing of vertices. Clearly, this relation is transitive. The digraph *K,
contains p vertices and a symmetrical arc between any pair of vertices. The digraph
*K3 is given in Fig. 1:

Fig. 1. The digraph *Ks.

PROOF AND REMARKS

Proof. Let G=(V(G),A(G)) be a digraph with n = |[V(G)| and m = |A(G).
The proof is done by induction on 1 + m. The result is clearly true for n = 3, so we
suppose that G has at least 4 vertices. If G contains a vertex z with d(z) < 3, then
it is easy to see that G’ = G — x verifies the induction hypothesis. This means that
G’ > *K3 and by the transitivity of “>”, we have G > *K3. We can assume, in the
following, that d(x) > 4 for every vertex = of G. If all vertices of G have a degree
> 6, then G has at least 3n arcs and the induction hypothesis applies to the graph
G’ obtained from G by removing one arc. So, we can suppose that G contains at
least one vertex u such that d(u) € {4,5}. We can also assume that the following
condition is verified:

(%) If G’ is obtained from G by contraction of one arc with both
its end-vertices in A(u), then |A(G")| < |A(G)| — 4.
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Otherwise, the induction hypothesis applies to G'.

Let us suppose that d*(u) > d~ (u). We can ensure this to be always the case by
changing the orientation of all arcs.

Now, let d(u) = 4. If |A(u)| = 2, let 2 and y be the neighbours of u. G contains
the symmetrical arcs uax and uy because d(u) = 4. The condition (%) implies the
existence of the symmetrical arc xy.

If |A(u)| = 3, let A(u) = {z,y, 2} and suppose that there is a symmetrical arc uz.
By condition (x), there must be at least one symmetrical arc either between z and
y or = and z (see Fig. 2).

Y
Fig. 2.

If this is not the case, then it is easy to see that for any orientation of the arcs
between vertices of A(u), the contraction of any arc incident to u decreases the
number of arcs by at most 3. So, let zz be a symmetrical arc. By the same argument,
we can see that there is at least one arc between y and z (drawn as a segment because
we don’t know its orientation). The graph obtained by the contraction of the edge
uz must verify (x).

This implies that either the two arcs incident to y go to y, or they come out from
y. But then, for any orientation of uz, by contracting either the edge uy or the edge
Yz, we obtain the desired *K3.

Let |A(u)| = 4. The condition () implies that there is at least one arc between
any pair of vertices of A(u). If A(u) = AT (u), then it is clear by (x) that the graph
induced by A(u) is *Ky. If AT (u) = {z,y} and A~ (u) = {2,v} then we obtain a *K3
by identifying  with z and y with v. If AT (u) = {z,y,2} and A~ (u) = {v}, then
the graph induced by A" (u) is a *K3 and this completes the case d(u) = 4.

Suppose now that u has the degree d(u) = 5. Let |A(u)| = 3 and let =,y and =
be the neighbours of u. Suppose (u,z) is not a symmetrical arc. The condition (x)
implies that there is at least one symmetrical arc either between x and y or between
z and z, for example between = and y, and at least one of the edges xz or zy, say
zz. Then we obtain a *K3 by contracting xz.
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If |A(u)| =4 and A" (u) = {x,y,2,v} and A~ (u) = {z} then the graph G induced
by u U A(u) contains at least 14 arcs and if n = 5 we have 14 > 3n — 3. So, we can
remove one of these arcs and apply the induction hypothesis to G;.

Suppose now that A™(u) = {z,y,2} and A~ (u) = {z,v}. If there is at least one
symmetrical arc between x and one of y, z or v, say between z and y, then (x) implies
the existence of at least one of edges vy or vz and at least one edge yz. We obtain
a *K3 by contracting all thee edges. If there is only one edge between z and all the
other vertices of A(u), then there is (by (%)) a symmetrical arc yz and the edge zv.
We obtain a *K3 by contracting zy and zwv.

If |A(u)| = 5 and |A* (u)| = 4 or 5 then the graph G induced by uU A(u) contains
at least 16 arcs and for n = 6 we have 16 > 3n—3, so the induction hypothesis applies
to G1. Suppose that A" (u) = {x,y,2} and A~ (u) = {v,w}. If there is one arc (a, b)
for any a € A~ (u) and for any b € A" (u) then, by contracting (w,x) and (v,y), we
obtain a *K3. On the contrary, if (w, ) is not an arc of G then GG contains (by (*)) the
arcs (z,9), (z,2), (y, x), (w,y), (w, z) and (v, w). We obtain a *K3 by identifying the
vertices of the sets {y, w} and {x, z, v} and this completes the proof of the inequality
in the theorem. The graph G drawn in Fig. 3 is an example showing that the bound
of the theorem is attained for any n.

5 d i Ce e o
Fig. 3. The bound is attained for any n.

In this graph there is a symmetrical arc between 1 and ¢ for ¢ = 2,...,n and an
arc (i,44+ 1) for i = 2,...,n — 1. Thus, G has 3n — 4 arcs and it is not contractible
onto *K3. This completes the proof of the theorem. [

We conclude this paper with some remarks. First, by our Theorem and the result
of Duchet and Kaneti [3] the following intuitive conjecture is suggested:

Conjecture. If a digraph G on p vertices has at least (2h— 3)p— h(h —2) arcs,
then G is contractible onto *K}, for any integer h > 3.

We remark that this conjecture is not true for “great” valued of p. This fact is a
consequence of a result from Bollobas, Catlin and Erdés [1], by taking a “great” a
non-oriented graph and by replacing any edge by a symmetrical arc.
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Concerning the contraction of non-oriented graphs onto cliques, Kostochka and

then Thomason [10] have shown that if there is a constant ¢, that any graph on n

vertices having c,n edges is contractible onto K, then ¢, = o(py/logp). Unfortu-

nately, this bound does not apply to the digraphs.
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