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Abstract. In this paper we present an iterative algorithm for the construction of Mathieu
functions of any order N in the form of Fourier series (practically, polynomials), and also
the corresponding Quick-BASIC program for realization of this algorithm with numerical
values of the parameter.
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The Mathieu functions are solutions (see [1]) of the so called Mathieu equation

(1) z′′ + (a+ q cos 2t)z = 0,

where a, q are constants. If the constant q (taken as a parameter) is fixed, then

periodic solutions of this equation exist only for certain values of a depending on q and
are called the eigenvalues of this equation or the corresponding Mathieu functions.

These values form two sequences:

acn, n = 0, 1, 2, . . . and asn, n = 1, 2, . . .

The eigenvalues acn correspond to the functions cen(t) called the Mathieu cosine-

functions of order n and these functions tend to cosnt as q → 0. The values asn

correspond to the functions sen(t) called the Mathieu sine-functions of order n tend-

ing to sinnt as q → 0.
In [2], [3] certain variants of analytical iterative algorithms for the construction of

Mathieu functions in the form of trigonometric series (practically, polynomials) have
been considered. Convergence of these algorithms has been proved if the parameter
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q does not exceed certain bounds (different for different Mathieu functions); certain

estimates for these bounds have been obtained. In [2] we have presented examples
of realization of these algorithms with the aid of a computer in the cases of ce1(t),
se1(t). In the present paper we offer a unified algorithm for the construction of

Mathieu functions of any order n in the form of Fourier polynomials and also the
corresponding Quick-BASIC program for realization of this algorithm.

1. Construction of algorithm

We will seek Mathieu cosine- and sine-functions cen(t), sen(t) of order n as periodic

solutions of the equation

(2) z′′ + (n2 + qh+ q cos 2t)z = 0,

where q is a given numerical parameter (> 0), the constant h is to be found simulta-

neously with functions cen(t) or sen(t). The eigenvalues of these functions equal to
A = n2+qh. (For negative values of the parameter q we did not obtain new Mathieu

functions, see [1].)

In the case of sen(t), n = 1, 2, 3, . . . we put

z = sinnt+ x,(3)

x =
L0∑

L=1

EL sin (n − 2L)t+
K0∑

K=1

FK sin (n+ 2K)t,(4)

where EL, FK are unknown coefficients, K0 is a relatively large number (we set

K0 = 50), L0 = 1
2 (n − 1) for odd n and L0 = 1

2n − 1 for even n.

In the case of cen(t), n = 0, 1, 2, . . . we put

z = cosnt+ x,(5)

x =
L0∑

L=1

EL cos (n − 2L)t+
K0∑

K=1

FK cos (n+ 2K)t,(6)

where L0 = 1
2 (n− 1) for odd n, L0 = 1

2n for even n and En/2 is replaced for even n

by 12En/2.

The equations for x in the cases (3), (5) are

x′′ + n2x = −q
[
h sinnt+ cos 2t sinnt+ (h+ cos 2t)x

]
,(7)

x′′ + n2x = −q
[
h cosnt+ cos 2t cosnt+ (h+ cos 2t)x

]
,(8)
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Substituting (4), (6) into these equations and equating on the left- and righthand

sides the corresponding expressions we obtain algebraic recurrent relations for FK ,
EL, h. These expressions are as follows.
Coefficients FK , K � 1 for all functions cen(t), sen(t) satisfy one and the same

relation

(9) FK = GK(FK−1 + 2hFK + FK+1),

where GK = q/(8K(n+K)), F0 = 1 for n > 0 and F0 = 2 for n = 0.

Denoting ML = −q/(8L(n − L)), L = 1, 2, 3, . . . we obtain for coefficients E1, E2
in the case of functions ce4(t), cen(t), sen(t), n � 5 the relation

(10) E1 =ML(1 + 2hE1 + E2).

In the cases of functions ce2(t) and se2(t) we have

(11) E1 = 2M1(1 + hE1) and E1 = 0,

respectively. If N = 3 then

(12) E1 =M1(1 + 2hE1 ± E1),

where plus corresponds to ce3(t) and minus to se3(t). In the case of se4 we have

(13) E1 =M1(1 + 2hE1).

The constant h is connected with F1, E1 by the relations

h+ 12F1 = 0 for ce0(t), se2(t),(14)

h ± 1
2 +

1
2F1 = 0 + for ce1(t), − for se1(t),(15)

h+ 12 (F1 + E1) = 0 for ce2(t) and for all cen(t), sen(t), n > 2.(16)

Coefficients EL, 2 < L < 1
2n (for even n), 2 < L < 1

2 (n−1) (for odd n) for functions

cen(t), sen(t) satisfy the relations

(17) EL =ML(EL−1 + 2hEL + EL+1).

If L = 1
2n (for even n) then

(18) EL = 2ML(EL−1 + hEL)

in the case of cen(t) and EL = 0 in the case of sen(t).
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If L = 1
2 (n − 1) (for odd n) then

(19) EL =ML(EL−1 + 2hEL ± EL),

where plus corresponds to cen(t) and minus to sen(t).

These are the basic relations. The required iterative algorithm for the calculation

of h, FK , EL is derived from them. We can use the method of the so called simple
iterations (see [2, 3]). Then, for example, in the case of ce2(t) we have

F
(1)
1 = G1, E

(1)
1 = 2M1, h1 = − 12 (F (1)1 + E

(1)
1 ), F

(1)
K = GKF

(1)
K−1, K � 2,(20)

F
(2)
1 = G1(1 + 2h1F

(1)
1 + F

(1)
2 ), E

(2)
1 = 2M1(1 + h1E

(1)
1 ), etc.

If we leave q as a variable parameter then these iterations enable us to obtain the

approximations F
(j)
K , E

(j)
L , hj, j = 1, 2, 3, . . . in analytical form as polynomials in

q. But the realization of simple iterations for different numerical values of q shows

that the convergence range of these iterations is relatively small. For example, the
upper bound q∗ of the convergence range in the case of ce0(t) equals approximately
4,7–4,8.

We use in the present paper another algorithm (of irrational structure) realized
for a given numerical value of q and having a sufficiently large convergence range.

2. The scheme of calculations

1. The calculation at the first step (the loop counter IR = 1) of the first approxi-

mation F
(1)
1 , E

(1)
1 , h1 for F1, E1, h according to (10)–(16), where we put F2 = E2 = 0

(subprogram T1).

2. The calculation at the same step of the first approximation F
(1)
K , E

(1)
L , K � 2,

L � 2 according to (9), (17)–(19), where we put FK+1 = EL+1 = 0 (subprogram

T2).

3. The calculation at the second step (IR = 2) of the second approximation F
(2)
1 ,

E
(2)
1 , h2 according to (10)–(16), where we put F2 = F

(1)
2 , E2 = E

(1)
2 (subprogram

T1).

4. The calculation at the same step of the second approximation F
(2)
K , E

(2)
L ,K � 2,

L � 2 according to (9), (17)–(19), where we put FK+1 = F
(1)
K+1, EL+1 = E

(1)
L+1

(subprogram T3).

5. The calculation at the third step (IR = 3) of the third approximation F
(3)
1 ,

E
(3)
1 , h3 according to (10)–(16), where we put F2 = F

(2)
2 , E2 = E

(2)
2 (subprogram

T1), etc.
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Subprogram T1 for the calculation of F1, E1, h consists of two parts. The first

provides the calculation of F1, h for

ce0(t), ce1(t), se1(t), se2(t) (then E1 = 0).

For example, we have for ce1(t) according to (9), (16) and provided F2 = 0

(21) F
(1)
1 = 1

2G

(√
1 + 4G2 − 1), h1 = − 12 − 1

2F
(1)
1 , G = 1

4q.

After calculating F
(1)
K , K � 2 following subprogram T2 we obtain at the second step

(IR = 2)

(22) F
(2)
1 = 1

2G

(√
1 + 4G2(1 + F

(1)
2 )− 1

)
, h2 = − 12 − 1

2F
(2)
1 ,

etc. Algorithms in the cases of ce0(t), se1(t), se2(t) are analogous.

In the cases of ce2(t), cen(t), sen(t), n � 3 the relations for F1, E1, h are more

complicated. It is possible to write these relations in the following unified form:

E1 + F1 = −2h,(23)

E1 [1 + q3 − q1(E1 + F1)] = −q4(1 +R),(24)

F1 [1 + q2(E1 + F1)] = q2(1 + S),(25)

where

q1 = q/(8n− 8), q2 = q(8n+ 8), S = F2,

q3 = 0 for n = 2 and for all n > 3,

q3 = q1 for ce3(t) and q3 = −q1 for se3(t),

q4 = 2q1 for n = 2 and q4 = q1 in the other cases,

R = 0 for ce2(t), ce3(t), se3(t) and R = E2 in the other cases.

The calculations of F1, E1, h provided R, S are known are realized by the second

part of subprogram T1 (by subprogram T11 imbedded in T1).

At the first step (IR = 1) we put R = S = 0 and consider relations (24)–(25) as
a system of algebraic equations in E1, F1. If q is relatively small (q < 2N), then we

use the iterational Newton’s algorithm with the initial approximation

E01 = −q4, F 01 = q2.

The maximal admissible number of Newton’s iterations is taken to be J1 = 150.
Iterations are stopped if adjacent approximations for F1, E1 coincide with accuracy
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α = 10−10, and the values obtained are taken for the first approximation F
(1)
1 , E

(1)
1 .

The first approximation

h1 = − 12
(
F
(1)
1 + E

(1)
1

)
is also calculated.

If the mentioned coincidence is not attained after 150 iterations, then the infor-

mation “No convergence of T11” is displayed and printed out.
The initial values F 01 , E

0
1 in the cases q � 2N are selected more accurately (other-

wise these iterations may converge to extraneous roots). For this purpose we reduce
relations (23)–(25) provided R, S are known to a cubic equation in h:

(26) c0h
3 + c1h

2 + c2h+ c3 = 0,

where c0, . . . , c3 are expressed in terms of q1, . . . , q4, R, S. For F1, E1 we obtain the
expressions

(27) F1 =
q2(1 + S)
1− 2hq2

, E1 = − q4(1 +R)
1 + q3 + 2hq1

The analysis and the corresponding calculations show that eq. (26) has for all con-

sidered values of n, q three real roots. The required root h0 = h0(q) depends contin-
uously on q and tends to zero as q → 0. For the calculation of this root we use the
Cardano-Hudde algorithm. Namely, substitution h = y − c1/3c0 reduces (26) to the
equation

(28) y3 − b1y + b2 = 0,

where b1, b2 are expressed in terms of c0, . . . , c3.

At the first step (IR = 1) we put R = S = 0 in the expressions of c0, . . . , c3. The

required root y0 is calculated in this case by the formula

(30) y0 =

√
b1
3

(− cosD +√
3 sinD

)
,

where

D = 1
3D1 if b2 < 0, and D = D1 + � if b2 > 0,

D1 = arctanD0, − 12� < D1 < 1
2�, D0 = −2√D00/b2,

D00 = 1
27b
3
1 − 1

4b
2
2.

After the calculation of y0 we determine h0 = y0 = −c1/3c0, and also F 01 , E01
by (27) provided R = S = 0. These values F 01 , E01 are taken as initial values for
the above mentioned Newton’s iterations. As the result of a relatively small number
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of these iterations we obtain the required values F
(1)
1 , E

(1)
1 with accuracy up to

α = 10−10. Thereafter we calculate

h1 = − 12
(
F
(1)
1 + E

(1)
1

)

and F
(1)
K , E

(1)
L , K � 2, L � 2 according to subprogram T2.

At the second step (IR = 2) we put R = E
(1)
2 , S = F

(1)
2 and use the same scheme

for the calculation of F
(2)
1 , E

(2)
1 , h2. If q < 2n, then we obtain these quantities

from (24)–(25) using Newton’s algorithm with the initial approximation F 01 = F
(1)
1 ,

E01 = E
(1)
1 . If q � 2n, then the initial F 01 , E01 are calculated again with the aid of

the cubic equation (26) etc.
The maximal amount of coefficients FK calculated is restricted by the number

K0 = 50. The amount of all coefficients EL equals L0 and depends on the order n.
The calculations show that the modules of the coefficients FK , EL decrease suffi-

ciently quickly as their indices grow. It is natural to take into account only the first
coefficients satisfying the estimates

|FK | > α = 10−10, |EL| > α = 10−10.

The amount of such coefficients obtained by calculations is denoted by K1, L1,

respectively. As a rule, K1 < K0 and L1 < L0 for large N .
The maximal number IR of iterations taken is Imax = 200. The adjacent approx-

imations for FK , EL (K � K1, L � L1), h corresponding to the steps IR and IR+1
are compared with each other. If they coincide with accuracy up to eps = 10−8 at
the step IR � Imax, then we take the iterational process for a convergent one (to say
correctly, practically convergent), calculations are stopped and the values FK , EL, h

obtained at the last step are taken for the final result. If the required coincidence is
not attained for IR � Imax, then the calculations are stopped and the information

“No convergence” for given n, ICS, q and also the results obtained at the last step
IR = 200 are displayed and printed out.

3. Quick-BASIC program

PRINT "Construction of Mathieu functions CE(t),SE(t) of order N(<=100)"
PRINT "for diff.eq. Z’’ + (N^2 + QH + Qcos2t) Z = 0 in form of polynomials"
PRINT "...+E(2)cos(N-4)t+E(1)cos(N-2)t+cosNt+F(1)cos(N+2)t+F(2)cos(N+4)t+..."
PRINT "or"
PRINT "...+E(2)sin(N-4)t+E(1)sin(N-2)t+sinNt+F(1)sin(N+2)t+F(2)sin(N+4)t+..."
PRINT "for given numerical value of parameter Q. Coefficients E(1),...,"
PRINT " E(LO),F(1),...,F(K0) and constant H are required quantities"
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PRINT "Maximal number of coeff.E(L) equals L0,maximal number of"
PRINT "coeff.F(K0) is taken K0.The indicator ICS=1 corresponds to CE(t)"
PRINT "and indicator ICS=0 corresponds to SE(t)."
DEFDBL B-H, M, Q-S, X-Z
DIM F(2, 51), E(2, 51), G(50), H(2), M(50), U(50), V(50)
K0 = 50: IMAX = 200: EPS = 1E-08: ALPH = 1E-10
100 :
INPUT ; "N="; N: INPUT ; " ICS="; ICS: INPUT " Q="; Q
IF N MOD 2 = 0 THEN

L0 = N / 2
ELSE

L0 = (N - 1) / 2
END IF
FOR K = 2 TO K0

G(K) = Q / (8 * K * (N + K))
NEXT K
FOR L = 2 TO L0

M(L) = -Q / (8 * L * (N - L))
NEXT L
FOR J = 1 TO 2
FOR I = 1 TO 51
F(J, I) = 0: E(J, I) = 0
NEXT I
NEXT J
IR = 1
R = 0: S = 0
GOSUB T1 ’Calculation of X,Y,Z for F(1,1),E(1,1), H(1)
F(1, 1) = Y: E(1, 1) = X: H(1) = Z
GOSUB T2 ’Calculation of F(1,K), E(1,L), K>1, L>1
NextIteration:
IR = IR + 1
R = E(1, 2): S = F(1, 2)
GOSUB T1 ’Calculation of X,Y,Z for F(2,1), E(2,1), H(2)
F(2, 1) = Y: E(2, 1) = X: H(2) = Z
GOSUB T3 ’Calculation of F(2,K), E(2,L), K1, L1
W0 = H(2) - H(1)
IF N + ICS > 2 THEN
U1 = F(2, 1) - Q2 * (1 + 2 * H(2) * F(2, 1) + F(2, 2))
END IF
IF N = 2 AND ICS = 1 THEN
V1 = E(2, 1) + 2 * Q1 * (1 + H(2) * E(2, 1))

ELSEIF N = 3 AND ICS = 1 THEN
V1 = E(2, 1) + Q1 * (1 + 2 * H(2) * E(2, 1) + E(2, 1))

ELSEIF N = 3 AND ICS = 0 THEN
V1 = E(2, 1) + Q1 * (1 + 2 * H(2) * E(2, 1) - E(2, 1))

ELSEIF N = 4 AND ICS = 1 THEN
V1 = E(2, 1) + Q1 * (1 + 2 * H(2) * E(2, 1) + E(2, 2))

ELSEIF N = 4 AND ICS = 0 THEN
V1 = E(2, 1) + Q1 * (1 + 2 * H(2) * E(2, 1))

ELSEIF N - 4 > 0 THEN
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V1 = E(2, 1) + Q1 * (1 + 2 * H(2) * E(2, 1) + E(2, 2))
END IF
FOR J = 1 TO K1
U(J) = F(2, J) - F(1, J)

NEXT J
FOR J = 1 TO L1
V(J) = E(2, J) - E(1, J)

NEXT J
IF K1 < L1 THEN J1 = L1 ELSE J1 = K1
FOR J = 1 TO J1

IF ABS(U(J)) > EPS OR ABS(V(J)) > EPS GOTO 200
NEXT J
IF ABS(W0) > EPS GOTO 200
IF ABS(U1) > EPS OR ABS(V1) > EPS GOTO 200
GOTO PrintRes
200 :
IF IR = IMAX GOTO 300
FOR J = 1 TO J1

F(1, J) = F(2, J): E(1, J) = E(2, J): H(1) = H(2)
NEXT J
GOTO NextIteration
300 :
PRINT "No convergence for Q="; Q; SPC(3); "N="; N; SPC(3); "ICS="; ICS
LPRINT "No convergence for Q="; Q; SPC(3); "N="; N; SPC(3); "ICS="; ICS
PrintRes:
A = N ^ 2 + Q * H(2)
PRINT "N="; N; SPC(3); "ICS="; ICS; SPC(3); "Q="; Q
PRINT "IR="; IR; SPC(3); "K1="; K1; SPC(3); "L1="; L1
LPRINT "N="; N; SPC(3); "ICS="; ICS; SPC(3); "Q="; Q
LPRINT "IR="; IR; SPC(3); "K1="; K1; SPC(3); "L1="; L1
IF N + ICS > 2 THEN
PRINT "U1="; U1; SPC(1); "V1="; V1; SPC(1); "D00="; D00

LPRINT "U1="; U1; SPC(1); "V1="; V1; SPC(1); "D00="; D00
END IF
PRINT "H="; H(2); SPC(1); "W0="; W0; SPC(1); "A="; A
LPRINT "H="; H(2); SPC(1); "W0="; W0; SPC(1); "A="; A
FOR J = 1 TO K1
PRINT "F("; J; ")="; F(2, J); : PRINT TAB(35); "U("; J; ")="; U(J)
LPRINT "F("; J; ")="; F(2, J); : LPRINT TAB(35); "U("; J; ")="; U(J)
IF J MOD 17 = 0 THEN
PRINT "press any key"
AA$ = "": WHILE AA$ = "": AA$ = INKEY$: WEND

END IF
NEXT J
PRINT "press any key"
AA$ = "": WHILE AA$ = "": AA$ = INKEY$: WEND
FOR J = 1 TO L1
PRINT "E("; J; ")="; E(2, J); : PRINT TAB(35); "V("; J; ")="; V(J)
LPRINT "E("; J; ")="; E(2, J); : LPRINT TAB(35); "V("; J; ")="; V(J)
IF J MOD 17 = 0 THEN
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PRINT "press any key"
AA$ = "": WHILE AA$ = "": AA$ = INKEY$: WEND

END IF
NEXT J
400 :
PRINT "If you want to repeat calculations with others or with the same"
PRINT "parameters N,ICS,Q, then enter 1 else 0"
INPUT "W="; W
IF W = 1 GOTO 100
PRINT "Calculations are ended": END
T1: ’Calculation of X,Y,Z for F1, E1, H
IF N = 0 THEN
G = Q / 4
Y = (SQR(1 + (2 + S) * G ^ 2) - 1) / G: X = 0: Z = -Y / 2
RETURN

ELSEIF N = 1 AND ICS = 1 THEN
G = Q / (16 + Q): X = 0
Y = (SQR(1 + 4 * (1 + S) * G ^ 2) - 1) / (2 * G):
Z = -(1 + Y) / 2
RETURN

ELSEIF N = 1 AND ICS = 0 THEN
G = Q / 16: X = 0
Y = (G - 1 + SQR((G - 1) ^ 2 + 4 * (1 + S) * G ^ 2)) / (2 * G)
Z = (1 - Y) / 2

RETURN
END IF
IF N > 1 THEN

Q1 = Q / (8 * (N - 1)): Q2 = Q / (8 * (N + 1))
END IF
IF N = 2 AND ICS = 1 THEN

Q4 = 2 * Q1: Q3 = 0
ELSEIF N = 2 AND ICS = 0 THEN

G = Q / 24: X = 0
Y = (SQR(1 + 4 * (1 + S) * G ^ 2) - 1) / (2 * G): Z = -Y / 2
RETURN

END IF
IF N > 2 THEN Q4 = Q1
IF N = 3 AND ICS = 1 THEN

Q3 = Q1
ELSEIF N = 3 AND ICS = 0 THEN

Q3 = -Q1
ELSEIF N > 3 THEN

Q3 = 0
END IF
GOSUB T11
RETURN
T2: ’Calculation of F(1,K),E(1,L), K>1,L>1
FOR K = 2 TO K0

F(1, K) = G(K) * F(1, K - 1) / (1 - 2 * H(1) * G(K))
NEXT K
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IF N = 4 AND ICS = 1 THEN
E(1, 2) = -Q * E(1, 1) / (16 + H(1) * Q)

ELSEIF N = 4 AND ICS = 0 THEN
E(1, 2) = 0

END IF
IF N = 5 THEN

IF ICS = 1 THEN E1 = 1 ELSE E1 = -1
E(1, 2) = -Q * E(1, 1) / (48 + Q * (2 * H(1) + E1))

END IF
IF N > 5 THEN

L00 = L0 - 1
FOR J = 2 TO L00

E(1, J) = M(J) * E(1, J - 1) / (1 - 2 * H(1) * M(J))
NEXT J
J = L0
IF N MOD 2 = 0 THEN
IF ICS = 1 THEN

E(1, J) = 2 * M(J) * E(1, J - 1) / (1 - 2 * H(1) * M(J))
ELSE

E(1, J) = 0
END IF

ELSE
IF ICS = 1 THEN E1 = 1 ELSE E1 = -1
E(1, J) = M(J) * E(1, J - 1) / (1 - M(J) * (2 * H(1) + E1))

END IF
END IF
RETURN
T11: ’Calculation of X,Y,Z for F1,E1,H
C0 = Q1 * Q2
C1 = (Q2 * (1 + Q3) - Q1) / 2
C2 = (-1 - Q3 - Q2 * Q4 * (1 + R) - Q1 * Q2 * (1 + S)) / 4
C3 = (Q4 * (1 + R) - Q2 * (1 + Q3) * (1 + S)) / 8
B1 = C1 ^ 2 / (3 * C0 ^ 2) - C2 / C0
B2 = -C1 * C2 / (3 * C0 ^ 2) + (2 * C1 ^ 3) / (27 * C0 ^ 3) + C3 / C0
D00 = B1 ^ 3 / 27 - B2 ^ 2 / 4
N1 = 2 * N
IF Q < N1 GOTO 500
D0 = -SQR(D00) * 2 / B2
D1 = ATN(D0)
IF B2 < 0 THEN

D = D1 / 3
ELSE

D = (D1 + 4 * ATN(1)) / 3
END IF
Z0 = SQR(B1 / 3) * (-COS(D) + SQR(3) * SIN(D)) - C1 / (3 * C0)
X1 = -Q4 * (1 + R) / (1 + Q3 + 2 * Q1 * Z0)
Y1 = Q2 * (1 + S) / (1 - 2 * Q2 * Z0)
JT = 1: J1 = 150
GOTO 600
500 :

25



IF IR = 1 THEN
X1 = -Q4: Y1 = Q2

ELSE
X1 = E(1, 1): Y1 = F(1, 1)

END IF
JT = 1: J1 = 150
600 :
F1 = X1 * (1 + Q3) - Q1 * (X1 + Y1) * X1 + Q4 * (1 + R)
F2 = Y1 + Q2 * (X1 + Y1) * Y1 - Q2 * (1 + S)
DF1 = (1 + Q3) * (1 + Q2 * (X1 + 2 * Y1))
DF = DF1 - Q1 * (2 * X1 + Y1) - 2 * Q1 * Q2 * (X1 + Y1) ^ 2
DF2 = (1 + Q2 * (X1 + 2 * Y1)) * F1 + Q1 * X1 * F2
DF3 = (1 + Q3 - Q1 * (2 * X1 + Y1)) * F2 - Q2 * Y1 * F1
X2 = X1 - (DF2 / DF): Y2 = Y1 - (DF3 / DF)
IF ABS(X2 - X1) > ALPH OR ABS(Y2 - Y1) > ALPH GOTO 700
X = X2: Y = Y2: Z = -(X + Y) / 2
RETURN
700 :
IF JT > J1 GOTO 800
X1 = X2: Y1 = Y2
JT = JT + 1
GOTO 600
800 :
PRINT "No convergence of T11 for IR="; IR
PRINT "Press any key"
AA$ = "": WHILE AA$ = "": AA$ = INKEY$: WEND
GOTO 400
T3: ’Calculation of F(2,K),E(2,L),K=2 to K1,L=2 to L1
FOR K = 2 TO K0
F(2, K) = G(K) * (F(2, K - 1) + F(1, K + 1)) / (1 - 2 * H(2) * G(K))
IF ABS(F(2, K)) < ALPH THEN EXIT FOR
NEXT K
K1 = K - 1
IF N = 4 AND ICS = 1 THEN

E(2, 2) = -Q * E(2, 1) / (16 + H(2) * Q)
ELSEIF N = 4 AND ICS = 0 THEN

E(2, 2) = 0
END IF
IF N = 5 THEN

IF ICS = 1 THEN E1 = 1 ELSE E1 = -1
E(2, 2) = -Q * E(2, 1) / (48 + Q * (2 * H(2) + E1))

END IF
IF N > 5 THEN

L00 = L0 - 1
FOR J = 2 TO L00
E(2, J) = M(J) * (E(2, J - 1) + E(1, J + 1)) / (1 - 2 * H(2) * M(J))

NEXT J
J = L0
IF N MOD 2 = 0 THEN

IF ICS = 1 THEN
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E(2, J) = 2 * M(J) * E(2, J - 1) / (1 - 2 * M(J) * H(2))
ELSE
E(2, J) = 0

END IF
ELSE

IF ICS = 1 THEN E1 = 1 ELSE E1 = -1
E(2, J) = M(J) * E(2, J - 1) / (1 - M(J) * (2 * H(2) + E1))

END IF
END IF
FOR J = 1 TO L0

I = L0 + 1 - J
IF ABS(E(2, I)) > ALPH THEN EXIT FOR

NEXT J
L1 = L0 + 1 - J
RETURN
STOP

���������� �	
����. The above presented Quick-BASIC program realizes

the described algorithm with double precision. The program runs as an ordinary
Quick-BASIC program. The realization of the algorithm begins after introducing

from keyboard (as the answer to inquiry) of the order N , of the indicator ICS = 1
or ICS = 0 for the functions ceN(t), seN(t), respectively, and the numerical value

of parameter q. If the iterational process converges, then the following data are
displayed and printed:

1) given values of N , ICS, q;
2) number IR of steps providing required accuracy eps = 10−8 of coefficients FK ,

EL;
3) numbers K1, L1 of coefficients FK , EL exceeding the modulus α = 10−10;
4) residual errors U1, V 1 obtained after substituting the final values of F1, F2,

E1, E2, h into relations (24)–(25);

5) values of h, of coefficients FK , EL, 1 � K � K1, 1 � L � L1 (with double
precision), differences W0, U(K), V (K) between two last approximations for h, FK ,

EL, respectively, and also the quantity D00 being proportional to the discriminant
of the cubic equation (26).

If K > 17, then the first 17 coefficients FK are displayed and printed and after
pressing any key the next 17 etc. The output mode of coefficients EL is the same.

Maximal order N of Mathieu functions provided by the program is equal to 100.

Note that the users of this program can change such parameters of the program

as K0, Imax, α, eps, and also DIMENSION for calculated coefficients FK , EL and
quantities GK , ML, U(K), V (L).

The calculations realized with this program show very large convergence range of
the proposed algorithm in the cases of ce0(t), ce1(t), se1(t), se2(t). The iterations
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converge, at least, for 0 < q < 7000. In the cases of other Mathieu functions the

convergence range is much smaller, but nevertheless sufficiently large and besides,
this range widens for Mathieu functions of large order N.

The values of q near to the upper bound of the practical convergence range (cor-

responding values of IR are near to 200) in the cases of different functions ceN (t),
seN (t) are presented in the following table:

ceN ce2 ce3 ce4 ce5 ce6 ce7 ce8 ce9 ce10 ce20 ce30 ce40 ce50 ce100
q∗ 40,5 160 33 59 48 65 67 80 88 182 273 365 458 915
seN se3 se4 se5 se6 se7 se8 se9 se10 se20 se30 se40 se50 se100
q∗ 30,3 70 40 60 58 72 78 88 182 270 360 458 915

The example of printout (in the case of ce2(t), q = 32):

N= 2 ICS= 1 Q= 32
IR= 36 K1= 11 L1= 1
U1=-6.795683E-09 V1= 4.56666E-16 D00= .2469067098022291
H= 1.160101914937828D-02 W0=-1.631753E-10 A= 4.371233
F( 1 )= 7.297387560717799 U( 1 )= 9.071099E-09
F( 2 )= 4.303726409970468 U( 2 )= 5.096762E-09
F( 3 )= 1.210210035599587 U( 3 )= 1.367956E-09
F( 4 )= .2064818841575251 U( 4 )= 2.250614E-10
F( 5 )= 2.389046878665688D-02 U( 5 )= 2.531559E-11
F( 6 )= 2.00541015603754D-03 U( 6 )= 2.078218E-12
F( 7 )= 1.27923482678711D-04 U( 7 )= 1.302111E-13
F( 8 )= 6.416610614172347D-06 U( 8 )= 6.435982E-15
F( 9 )= 2.598511597751983D-07 U( 9 )= 2.5746E-16
F( 10 )= 8.67651371123749D-09 U( 10 )= 8.508039E-18
F( 11 )= 2.429387587345403D-10 U( 11 )= 2.359225E-19
press F5
E( 1 )=-7.320589599016555 V( 1 )=-8.744748E-09
If you want to repeat calculations with others or with the same
parameters N,ICS,Q, then enter 1 else 0
W=?
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