AVERAGES OF QUASI-CONTINUOUS FUNCTIONS

ALEKSANDER MALISZEWSKI, Bydgoszcz¹

(Received May 19, 1997)

Abstract. The goal of this paper is to characterize the family of averages of comparable (Darboux) quasi-continuous functions.

Keywords: cliquishness, quasi-continuity, Darboux property, comparable functions, average of functions

MSC 2000: 26A15, 54C08

Preliminaries

The letters \mathbb{R} , \mathbb{Q} and \mathbb{N} denote the real line, the set of rationals and the set of positive integers, respectively. The word *function* denotes a mapping from \mathbb{R} into \mathbb{R} . We say that functions φ and ψ are *comparable* if either $\varphi < \psi$ on \mathbb{R} or $\varphi > \psi$ on \mathbb{R} . For each $A \subset \mathbb{R}$ we use the symbols $\operatorname{cl} A$ and $\operatorname{bd} A$ to denote the closure and the boundary of A, respectively.

Let f be a function. If $A \subset \mathbb{R}$ is nonvoid, then let $\omega(f, A)$ be the oscillation of f on A, i.e., $\omega(f, A) = \sup\{|f(x) - f(t)|: x, t \in A\}$. For each $x \in \mathbb{R}$ let $\omega(f, x)$ be the oscillation of f at x, i.e., $\omega(f, x) = \lim_{\delta \to 0^+} \omega(f, (x - \delta, x + \delta))$. The symbol \mathscr{C}_f denotes the set of points of continuity of f.

We say that a function f is quasi-continuous in the sense of Kempisty [4] (cliquish [10]) at a point $x \in \mathbb{R}$ if for each $\varepsilon > 0$ and each open set $U \ni x$ there is a nonvoid open set $V \subset U$ such that $\omega(f, \{x\} \cup V) < \varepsilon$ ($\omega(f, V) < \varepsilon$ respectively). We say that f is quasi-continuous (cliquish) if it is quasi-continuous (cliquish) at each point $x \in \mathbb{R}$. Cliquish functions are also known as pointwise discontinuous.

¹ Supported by BW grant, WSP.

²⁹

Let I be an interval and $f: I \to \mathbb{R}$. We say that f is *Darboux* if it has the intermediate value property. We say that f is *strong Świątkowski* [6] if whenever $a, b \in I, a < b$, and y is a number between f(a) and f(b), there is an $x \in (a, b) \cap \mathscr{C}_f$ with f(x) = y. One can easily verify that strong Świątkowski functions are both Darboux and quasi-continuous, and that the converse is not true.

For brevity, if f is a cliquish function and $x \in \mathbb{R}$, then we define

$$\underline{\mathrm{LIM}}(f, x) = \lim_{t \to x, t \in \mathscr{C}_f} f(t).$$

The symbols $\underline{\text{LIM}}(f, x^{-})$ and $\underline{\text{LIM}}(f, x^{+})$ are defined analogously.

INTRODUCTION

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson characterized the averages of comparable Darboux functions [1, Theorem 2]. In this paper we solve an analogous problem, namely we characterize the averages of comparable quasi-continuous functions.

A similar problem is to determine a necessary and sufficient condition that for a function f there exists a quasi-continuous function ψ such that $\psi > f$ on \mathbb{R} . (The answer to this question for Darboux functions can be easily obtained using the proof of [1, Theorem 2].) In both cases we ask whether there is a positive function g such that both f + g and -f + g are quasi-continuous (the first problem) or such that f + g is quasi-continuous (the second problem). This suggests a similar problem for larger classes of functions. Theorem 4.1 contains a solution of this problem for finite classes of cliquish functions. Recall that by [5, Example 2], we cannot in general allow infinite families in Theorem 4.1. Unlike [7, Theorem 4], we cannot conclude in condition (ii) of Theorem 4.1 that g is a Baire one function; actually, we cannot even conclude that g is Borel measurable (Corollary 4.5).

The Baire class one case makes no difficulty if we require only quasi-continuity of the sums, but it needs a separate argument if we require both the Darboux property and the quasi-continuity. Notice that by Proposition 4.3, the necessary and sufficient condition for Darboux quasi-continuous Baire one functions is essentially stronger.

AUXILIARY LEMMAS

Lemma 3.1. If f is a cliquish function, then the mapping $x \mapsto \underline{\text{LIM}}(f, x)$ is lower semicontinuous, while the mapping $x \mapsto \underline{\text{LIM}}(f, x^-)$ belongs to Baire class two.

Proof. Let $y \in \mathbb{R}$. For every $x \in \mathbb{R}$, if $\underline{\text{LIM}}(f, x) > y$, then there exist an open interval $I_x \ni x$ and a rational $q_x > y$ such that $f > q_x$ on $\mathscr{C}_f \cap I_x$, whence $\underline{\text{LIM}}(f,t) \ge q_x > y$ for each $t \in I_x$. Thus the set $\{x \in \mathbb{R} : \underline{\text{LIM}}(f,x) > y\}$ is open.

To prove the other assertion put $A_y = \{x \in \mathbb{R} : \underline{\text{LIM}}(f, x^-) > y\}$ for each $y \in \mathbb{R}$. Let $y \in \mathbb{R}$. If $x \in A_y$, then proceeding as above we can find a closed interval $I_x \subset A_y$ with $x \in I_x$. So $A_y \cap \text{bd } A_y$ is at most countable. Hence A_y is an F_σ set, while $\{x \in \mathbb{R} : \underline{\text{LIM}}(f, x^-) < y\} = \bigcup \{\mathbb{R} \setminus A_q : q < y, q \in \mathbb{Q}\}$ is the difference of an F_σ set and a countable one.

Lemma 3.2. Let I = [a, b] and $n \in \mathbb{N}$. Suppose that functions f_1, \ldots, f_k are cliquish and $\max\{\omega(f_1, I), \ldots, \omega(f_k, I)\} < 1$. There is a positive Baire one function g such that g = 1 on $\operatorname{bd} I$, $\mathscr{C}_g \supset \bigcap_{i=1}^k \mathscr{C}_{f_i}$, and for each i the function $(f_i + g) \upharpoonright I$ is strong Świątkowski and

$$(f_i+g)\Big[I\cap\bigcap_{i=1}^k \mathscr{C}_{f_i}\Big]\supset \big[\inf f_i[I]+1, \max\{\inf f_i[I]+1, n\}\big].$$

Proof. Put $T = \max\{|n - \inf f_i[I]|: i \in \{1, \dots, k\}\} + 1$. Construct a nonnegative continuous function φ such that $\varphi[I] = [0, T]$ and $\varphi = 0$ outside of I. For each i define $\tilde{f}_i(x) = (f_i + \varphi)(x)$ if $x \in I$, and let \tilde{f}_i be constant on $(-\infty, a]$ and $[b, \infty)$. By [7, Theorem 4], there is a Baire one function \tilde{g} such that $\tilde{f}_i + \tilde{g}$ is strong Świątkowski for each i (see condition (8) in the proof of [7, Theorem 4]), $\mathscr{C}_{\tilde{g}} \supset \bigcap_{i=1}^k \mathscr{C}_{f_i}$, and $|\tilde{g}| < 1$ on \mathbb{R} ; by its proof, we can conclude that $\tilde{g} = 0$ on $\{a, b\}$. Put $g = \varphi + \tilde{g} + 1$. Then for each i, since $\tilde{f}_i + \tilde{g}$ is strong Świątkowski and $f_i + g = \tilde{f}_i + \tilde{g} + 1$ on I, we have

$$(f_i + g) \Big[I \cap \bigcap_{i=1}^k \mathscr{C}_{f_i} \Big] \supset \big(\inf(f_i + g)[I], \sup(f_i + g)[I] \big) \\ \supset \big(f_i(a), \inf f_i[I] + \sup g[I] \big) \\ \supset \big[\inf f_i[I] + 1, \max\{\inf f_i[I] + 1, n\} \big].$$

The other requirements are evident.

MAIN RESULTS

Theorem 4.1. Let \mathscr{F} be one of the following classes of functions: all cliquish functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class α ($\alpha \ge 1$), and suppose $f_1, \ldots, f_k \in \mathscr{F}$. The following are equivalent:

- (i) there is a positive function g such that $f_i + g$ is quasi-continuous for each i;
- (ii) there is a positive function $g \in \mathscr{F}$ such that $\mathscr{C}_g \supset \bigcap_{i=1}^k \mathscr{C}_{f_i}$ and $f_i + g$ is quasicontinuous for each i;

31

(iii) for each $x \in \mathbb{R}$ and each *i* we have $\underline{\text{LIM}}(f_i, x) < \infty$.

Proof. The implication (ii) \Rightarrow (i) is obvious.

(i) \Rightarrow (iii). Let $x \in \mathbb{R}$ and $i \in \{1, ..., k\}$. Since $f_i + g$ is quasi-continuous, so by [2] (see also [3, Lemma 2]) we obtain

$$\underline{\text{LIM}}(f_i, x) \leq \underline{\text{LIM}}(f_i + g, x) \leq (f_i + g)(x) < \infty$$

(iii) \Rightarrow (ii). Put $A = \bigcup_{i=1}^{k} \{x \in \mathbb{R} : \omega(f_i, x) \ge 1\}$. Then A is closed and nowhere dense. Find a family $\{I_n : n \in \mathbb{N}\}$ consisting of nonoverlapping compact intervals, such that $\bigcup_{n \in \mathbb{N}} I_n = \mathbb{R} \setminus A$ and each $x \notin A$ is an interior point of $I_n \cup I_m$ for some $n, m \in \mathbb{N}$. Since each I_n is compact and $\omega(f_i, x) < 1$ for each $x \in I_n$ and $i \in \{1, \ldots, k\}$, so we may assume that $\omega(f_i, I_n) < 1$ for each i and n. For each $n \in \mathbb{N}$ use Lemma 3.2 to construct a positive Baire one function g_n such that $g_n = 1$ on bd $I_n, \mathscr{C}_{g_n} \supset \bigcap_{i=1}^k \mathscr{C}_{f_i}$, and for each i the function $(f_i + g_n) \upharpoonright I_n$ is strong Świątkowski and

$$(\star) \qquad (f_i + g_n) \left[I_n \cap \bigcap_{i=1}^k \mathscr{C}_{f_i} \right] \supset \left[\inf f_i[I_n] + 1, \max\{ \inf f_i[I_n] + 1, n\} \right].$$

Define $g(x) = g_n(x)$ if $x \in I_n$ for some $n \in \mathbb{N}$, and

$$g(x) = \max\{\max\{\underline{\text{LIM}}(f_i, x) - f_i(x): i \in \{1, \dots, k\}\}, 0\} + 1$$

if $x \in A$. By Lemma 3.1, each mapping $x \mapsto \underline{\text{LIM}}(f_i, x)$ is Baire one, so $g \in \mathscr{F}$.

Fix an $i \in \{1, ..., k\}$. Clearly $f_i + g$ is quasi-continuous outside of A. On the other hand, if $x \in A$, then by (\star) , for each $\delta > 0$ we have

$$(f_i+g)[(x-\delta,x+\delta)\cap \mathscr{C}_{f_i+g}]\supset (\underline{\mathrm{LIM}}(f_i,x)+1,\infty).$$

Hence $f_i + g$ is quasi-continuous.

Theorem 4.2. Let \mathscr{F} be one of the following classes of functions: all cliquish functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class α ($\alpha \ge 2$), and suppose $f_1, \ldots, f_k \in \mathscr{F}$. The following are equivalent:

- (i) there is a positive function g such that $f_i + g$ is both Darboux and quasicontinuous for each i;
- (ii) there is a positive function $g \in \mathscr{F}$ such that $\mathscr{C}_g \supset \bigcap_{i=1}^k \mathscr{C}_{f_i}$ and $f_i + g$ is strong Światkowski for each *i*;
- (iii) for each $x \in \mathbb{R}$ and each *i* we have $\max\{\underline{\text{LIM}}(f_i, x^-), \underline{\text{LIM}}(f_i, x^+)\} < \infty$.

32

Proof. The proof of the implication (iii) \Rightarrow (ii) is a repetition of the argument used in Theorem 4.1, and the implication (ii) \Rightarrow (i) is obvious.

(i) \Rightarrow (iii). Let $x \in \mathbb{R}$ and $i \in \{1, \ldots, k\}$. Since $f_i + g$ is both Darboux and quasi-continuous, so by [9, Lemma 2] we obtain

$$\underline{\text{LIM}}(f_i, x^-) \leq \underline{\text{LIM}}(f_i + g, x^-) \leq (f_i + g)(x) < \infty.$$

Similarly $\underline{\text{LIM}}(f_i, x^+) < \infty$.

Proposition 4.3. There is a Baire one function f such that f + g is strong Świątkowski for some positive function g in Baire class two, but f + g is Darboux for no positive Baire one function g.

Proof. Let F be the Cantor ternary set and let $\mathscr{I} = \{(a_n, b_n): n \in \mathbb{N}\}$ and \mathscr{J} be disjoint families of components of $\mathbb{R} \setminus F$ such that $F = (\operatorname{cl} \bigcup \mathscr{I}) \cap (\operatorname{cl} \bigcup \mathscr{I})$. Define f(x) = n if $x \in (a_n, b_n)$ for some $n \in \mathbb{N}$ and f(x) = 0 otherwise. Clearly f belongs to Baire class one.

Let $x \in \mathbb{R}$. If $x \in (a_n, b_n]$ for some $n \in \mathbb{N}$, then $\underline{\text{LIM}}(f, x^-) = n$, otherwise $\underline{\text{LIM}}(f, x^-) = 0$. Similarly $\underline{\text{LIM}}(f, x^+) < \infty$. By Theorem 4.2 there is a positive Baire two function g such that f + g is strong Świątkowski.

On the other hand, by [8, Proposition 6.10], f + g is Darboux for no positive Baire one function g.

In Proposition 4.4 the symbol \mathfrak{c} denotes the first ordinal equipollent with \mathbb{R} .

Proposition 4.4. Given a family of positive functions, $\{g_{\xi}: \xi < \mathfrak{c}\}$, we can find a cliquish function f which fulfils condition (iii) of Theorem 4.2 and such that $f + g_{\xi}$ is not quasi-continuous for each $\xi < \mathfrak{c}$.

Proof. Let F be the Cantor ternary set and let $\{x_{\xi}: \xi < \mathfrak{c}\}$ be an enumeration of F. Define $f(x) = -g_{\xi}(x) - 1$ if $x = x_{\xi}$ for some $\xi < \mathfrak{c}$, and f(x) = 0 otherwise. Clearly f is cliquish, and for each $x \in \mathbb{R}$ we have $\underline{\text{LIM}}(f, x^{-}) = \underline{\text{LIM}}(f, x^{+}) = 0$.

Let $\xi < \mathfrak{c}$. Then $(f + g_{\xi})(x_{\xi}) = -1$ and $f + g_{\xi}$ is positive on a dense open set. Thus $f + g_{\xi}$ is not quasi-continuous at x_{ξ} .

Corollary 4.5. There is a cliquish function f which fulfils condition (iii) of Theorem 4.2 and such that f + g is not quasi-continuous for each positive Borel measurable function g.

Theorem 4.6. Let f_1, \ldots, f_k be Baire one functions. The following are equivalent:

(i) there is a positive Baire one function g such that $f_i + g$ is both Darboux and quasi-continuous for each i;

33

- (ii) there is a positive Baire one function g such that $\mathscr{C}_g \supset \bigcap_{i=1}^k \mathscr{C}_{f_i}$ and $f_i + g$ is
 - strong Świątkowski for each i;
- (iii) there is a Baire one function h such that for each $x \in \mathbb{R}$ and each i we have $\max\{\underline{\text{LIM}}(f_i, x^-), \underline{\text{LIM}}(f_i, x^+)\} \leq h(x).$

Proof. The implication (i) \Rightarrow (iii) can be proved similarly as in Theorem 4.2 (we let $h = \max\{f_1, \ldots, f_k\} + g$), and the implication (ii) \Rightarrow (i) is obvious.

(iii) \Rightarrow (ii). The proof of this implication is a repetition of the argument used in Theorem 4.1. The only difference is in the definition of the function g on the set A. More precisely, we put

$$g(x) = \max\{\max\{h(x) - f_i(x): i \in \{1, \dots, k\}\}, 0\} + 1$$

if $x \in A$. Then clearly g is a Baire one function.

References

- A. M. Bruckner, J. G. Ceder, T. L. Pearson: On Darboux functions. Rev. Roumaine Math. Pures Appl. 19 (1974), 977–988.
- [2] Z. Grande: Sur la quasi-continuité et la quasi-continuité approximative. Fund. Math. 129 (1988), 167–172.
- [3] Z. Grande, T. Natkaniec: Lattices generated by *I*-quasi-continuous functions. Bull. Polish Acad. Sci. Math. 34 (1986), 525–530.
- [4] S. Kempisty: Sur les fonctions quasicontinues. Fund. Math. 19 (1932), 184-197.
- [5] A. Maliszewski: Sums of bounded Darboux functions. Real Anal. Exchange 20 (1994–95), 673–680.
- [6] A. Maliszewski: On the limits of strong Świątkowski functions. Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87–93.
- [7] A. Maliszewski: On theorems of Pu & Pu and Grande. Math. Bohem. 121 (1996), 83-87.
- [8] A. Maliszewski: On the averages of Darboux functions. Trans. Amer. Math. Soc. 350 (1998), 2833–2846.
- [9] T. Natkaniec: On quasi-continuous functions having Darboux property. Math. Pann. 3 (1992), 81–96.
- [10] H. P. Thielman: Types of functions. Amer. Math. Monthly 60 (1953), 156-161.

Author's address: Aleksander Maliszewski, Department of Mathematics, Pedagogical University, pl. Weyssenhoffa 11, 85–072 Bydgoszcz, Poland, e-mail: AMal@wsp.bydgoszcz.pl.