AVERAGES OF QUASI-CONTINUOUS FUNCTIONS

Aleksander Maliszewski, Bydgoszcz ${ }^{1}$

(Received May 19, 1997)

Abstract. The goal of this paper is to characterize the family of averages of comparable (Darboux) quasi-continuous functions.

Keywords: cliquishness, quasi-continuity, Darboux property, comparable functions, average of functions

MSC 2000: 26A15, 54C08

Preliminaries

The letters \mathbb{R}, \mathbb{Q} and \mathbb{N} denote the real line, the set of rationals and the set of positive integers, respectively. The word function denotes a mapping from \mathbb{R} into \mathbb{R}. We say that functions φ and ψ are comparable if either $\varphi<\psi$ on \mathbb{R} or $\varphi>\psi$ on \mathbb{R}. For each $A \subset \mathbb{R}$ we use the symbols $\mathrm{cl} A$ and $\operatorname{bd} A$ to denote the closure and the boundary of A, respectively.

Let f be a function. If $A \subset \mathbb{R}$ is nonvoid, then let $\omega(f, A)$ be the oscillation of f on A, i.e., $\omega(f, A)=\sup \{|f(x)-f(t)|: x, t \in A\}$. For each $x \in \mathbb{R}$ let $\omega(f, x)$ be the oscillation of f at x, i.e., $\omega(f, x)=\lim _{\delta \rightarrow 0^{+}} \omega(f,(x-\delta, x+\delta))$. The symbol \mathscr{C}_{f} denotes the set of points of continuity of f.

We say that a function f is quasi-continuous in the sense of Kempisty [4] (cliquish [10]) at a point $x \in \mathbb{R}$ if for each $\varepsilon>0$ and each open set $U \ni x$ there is a nonvoid open set $V \subset U$ such that $\omega(f,\{x\} \cup V)<\varepsilon(\omega(f, V)<\varepsilon$ respectively $)$. We say that f is quasi-continuous (cliquish) if it is quasi-continuous (cliquish) at each point $x \in \mathbb{R}$. Cliquish functions are also known as pointwise discontinuous.

[^0]Let I be an interval and $f: I \rightarrow \mathbb{R}$. We say that f is Darboux if it has the intermediate value property. We say that f is strong Światkowski [6] if whenever $a, b \in I, a<b$, and y is a number between $f(a)$ and $f(b)$, there is an $x \in(a, b) \cap \mathscr{C}_{f}$ with $f(x)=y$. One can easily verify that strong Światkowski functions are both Darboux and quasi-continuous, and that the converse is not true.

For brevity, if f is a cliquish function and $x \in \mathbb{R}$, then we define

$$
\underline{\operatorname{LIM}}(f, x)=\underline{\lim }_{t \rightarrow x, t \in \mathscr{C}_{f}} f(t)
$$

The symbols $\underline{\operatorname{LIM}}\left(f, x^{-}\right)$and $\underline{\operatorname{LIM}}\left(f, x^{+}\right)$are defined analogously.

Introduction

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson characterized the averages of comparable Darboux functions [1, Theorem 2]. In this paper we solve an analogous problem, namely we characterize the averages of comparable quasi-continuous functions.

A similar problem is to determine a necessary and sufficient condition that for a function f there exists a quasi-continuous function ψ such that $\psi>f$ on \mathbb{R}. (The answer to this question for Darboux functions can be easily obtained using the proof of [1, Theorem 2].) In both cases we ask whether there is a positive function g such that both $f+g$ and $-f+g$ are quasi-continuous (the first problem) or such that $f+g$ is quasi-continuous (the second problem). This suggests a similar problem for larger classes of functions. Theorem 4.1 contains a solution of this problem for finite classes of cliquish functions. Recall that by [5, Example 2], we cannot in general allow infinite families in Theorem 4.1. Unlike [7, Theorem 4], we cannot conclude in condition (ii) of Theorem 4.1 that g is a Baire one function; actually, we cannot even conclude that g is Borel measurable (Corollary 4.5).

The Baire class one case makes no difficulty if we require only quasi-continuity of the sums, but it needs a separate argument if we require both the Darboux property and the quasi-continuity. Notice that by Proposition 4.3, the necessary and sufficient condition for Darboux quasi-continuous Baire one functions is essentially stronger.

Auxiliary Lemmas

Lemma 3.1. If f is a cliquish function, then the mapping $x \mapsto \underline{\operatorname{LIM}}(f, x)$ is lower semicontinuous, while the mapping $x \mapsto \underline{\operatorname{LIM}}\left(f, x^{-}\right)$belongs to Baire class two.

Proof. Let $y \in \mathbb{R}$. For every $x \in \mathbb{R}$, if $\underline{\operatorname{LIM}}(f, x)>y$, then there exist an open interval $I_{x} \ni x$ and a rational $q_{x}>y$ such that $f>q_{x}$ on $\mathscr{C}_{f} \cap I_{x}$, whence $\underline{\operatorname{LIM}}(f, t) \geqslant q_{x}>y$ for each $t \in I_{x}$. Thus the set $\{x \in \mathbb{R}: \underline{\operatorname{LIM}}(f, x)>y\}$ is open.

To prove the other assertion put $A_{y}=\left\{x \in \mathbb{R}: \underline{\operatorname{LIM}}\left(f, x^{-}\right)>y\right\}$ for each $y \in \mathbb{R}$. Let $y \in \mathbb{R}$. If $x \in A_{y}$, then proceeding as above we can find a closed interval $I_{x} \subset A_{y}$ with $x \in I_{x}$. So $A_{y} \cap \operatorname{bd} A_{y}$ is at most countable. Hence A_{y} is an F_{σ} set, while $\left\{x \in \mathbb{R}: \underline{\operatorname{LIM}}\left(f, x^{-}\right)<y\right\}=\bigcup\left\{\mathbb{R} \backslash A_{q}: q<y, q \in \mathbb{Q}\right\}$ is the difference of an F_{σ} set and a countable one.

Lemma 3.2. Let $I=[a, b]$ and $n \in \mathbb{N}$. Suppose that functions f_{1}, \ldots, f_{k} are cliquish and $\max \left\{\omega\left(f_{1}, I\right), \ldots, \omega\left(f_{k}, I\right)\right\}<1$. There is a positive Baire one function g such that $g=1$ on $\mathrm{bd} I, \mathscr{C}_{g} \supset \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}$, and for each i the function $\left(f_{i}+g\right) \upharpoonright I$ is strong Świątkowski and

$$
\left(f_{i}+g\right)\left[I \cap \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}\right] \supset\left[\inf f_{i}[I]+1, \max \left\{\inf f_{i}[I]+1, n\right\}\right]
$$

Proof. Put $T=\max \left\{\left|n-\inf f_{i}[I]\right|: i \in\{1, \ldots, k\}\right\}+1$. Construct a nonnegative continuous function φ such that $\varphi[I]=[0, T]$ and $\varphi=0$ outside of I. For each i define $\tilde{f}_{i}(x)=\left(f_{i}+\varphi\right)(x)$ if $x \in I$, and let \tilde{f}_{i} be constant on $(-\infty, a]$ and $[b, \infty)$. By [7, Theorem 4], there is a Baire one function \tilde{g} such that $\tilde{f}_{i}+\tilde{g}$ is strong Świątkowski for each i (see condition (8) in the proof of [7, Theorem 4]), $\mathscr{C}_{\tilde{g}} \supset \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}$, and $|\tilde{g}|<1$ on \mathbb{R}; by its proof, we can conclude that $\tilde{g}=0$ on $\{a, b\}$. Put $g=\varphi+\tilde{g}+1$. Then for each i, since $\tilde{f}_{i}+\tilde{g}$ is strong Świątkowski and $f_{i}+g=\tilde{f}_{i}+\tilde{g}+1$ on I, we have

$$
\begin{aligned}
\left(f_{i}+g\right)\left[I \cap \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}\right] & \supset\left(\inf \left(f_{i}+g\right)[I], \sup \left(f_{i}+g\right)[I]\right) \\
& \supset\left(f_{i}(a), \inf f_{i}[I]+\sup g[I]\right) \\
& \supset\left[\inf f_{i}[I]+1, \max \left\{\inf f_{i}[I]+1, n\right\}\right]
\end{aligned}
$$

The other requirements are evident.

Main Results

Theorem 4.1. Let \mathscr{F} be one of the following classes of functions: all cliquish functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class α $(\alpha \geqslant 1)$, and suppose $f_{1}, \ldots, f_{k} \in \mathscr{F}$. The following are equivalent:
(i) there is a positive function g such that $f_{i}+g$ is quasi-continuous for each i;
(ii) there is a positive function $g \in \mathscr{F}$ such that $\mathscr{C}_{g} \supset \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}$ and $f_{i}+g$ is quasicontinuous for each i;
(iii) for each $x \in \mathbb{R}$ and each i we have $\underline{\operatorname{LIM}}\left(f_{i}, x\right)<\infty$.

Proof. The implication (ii) \Rightarrow (i) is obvious.
(i) \Rightarrow (iii). Let $x \in \mathbb{R}$ and $i \in\{1, \ldots, k\}$. Since $f_{i}+g$ is quasi-continuous, so by [2] (see also [3, Lemma 2]) we obtain

$$
\underline{\operatorname{LIM}}\left(f_{i}, x\right) \leqslant \underline{\operatorname{LIM}}\left(f_{i}+g, x\right) \leqslant\left(f_{i}+g\right)(x)<\infty
$$

(iii) \Rightarrow (ii). Put $A=\bigcup_{i=1}^{k}\left\{x \in \mathbb{R}: \omega\left(f_{i}, x\right) \geqslant 1\right\}$. Then A is closed and nowhere dense. Find a family $\left\{I_{n}: n \in \mathbb{N}\right\}$ consisting of nonoverlapping compact intervals, such that $\bigcup_{n \in \mathbb{N}} I_{n}=\mathbb{R} \backslash A$ and each $x \notin A$ is an interior point of $I_{n} \cup I_{m}$ for some $n, m \in$ \mathbb{N}. Since each I_{n} is compact and $\omega\left(f_{i}, x\right)<1$ for each $x \in I_{n}$ and $i \in\{1, \ldots, k\}$, so we may assume that $\omega\left(f_{i}, I_{n}\right)<1$ for each i and n. For each $n \in \mathbb{N}$ use Lemma 3.2 to construct a positive Baire one function g_{n} such that $g_{n}=1$ on bd $I_{n}, \mathscr{C}_{g_{n}} \supset \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}$, and for each i the function $\left(f_{i}+g_{n}\right) \upharpoonright I_{n}$ is strong Świątkowski and

$$
\left(f_{i}+g_{n}\right)\left[I_{n} \cap \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}\right] \supset\left[\inf f_{i}\left[I_{n}\right]+1, \max \left\{\inf f_{i}\left[I_{n}\right]+1, n\right\}\right]
$$

Define $g(x)=g_{n}(x)$ if $x \in I_{n}$ for some $n \in \mathbb{N}$, and

$$
g(x)=\max \left\{\max \left\{\underline{\operatorname{LIM}}\left(f_{i}, x\right)-f_{i}(x): i \in\{1, \ldots, k\}\right\}, 0\right\}+1
$$

Fix an $i \in\{1, \ldots, k\}$. Clearly $f_{i}+g$ is quasi-continuous outside of A. On the other hand, if $x \in A$, then by (\star), for each $\delta>0$ we have

$$
\left(f_{i}+g\right)\left[(x-\delta, x+\delta) \cap \mathscr{C}_{f_{i}+g}\right] \supset\left(\underline{\operatorname{LIM}}\left(f_{i}, x\right)+1, \infty\right)
$$

Hence $f_{i}+g$ is quasi-continuous.

Theorem 4.2. Let \mathscr{F} be one of the following classes of functions: all cliquish functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class α $(\alpha \geqslant 2)$, and suppose $f_{1}, \ldots, f_{k} \in \mathscr{F}$. The following are equivalent:
(i) there is a positive function g such that $f_{i}+g$ is both Darboux and quasicontinuous for each i;
(ii) there is a positive function $g \in \mathscr{F}$ such that $\mathscr{C}_{g} \supset \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}$ and $f_{i}+g$ is strong Świątkowski for each i;
(iii) for each $x \in \mathbb{R}$ and each i we have $\max \left\{\underline{\operatorname{LIM}}\left(f_{i}, x^{-}\right), \underline{\operatorname{LIM}}\left(f_{i}, x^{+}\right)\right\}<\infty$.

Proof. The proof of the implication (iii) \Rightarrow (ii) is a repetition of the argument used in Theorem 4.1, and the implication (ii) \Rightarrow (i) is obvious.
(i) \Rightarrow (iii). Let $x \in \mathbb{R}$ and $i \in\{1, \ldots, k\}$. Since $f_{i}+g$ is both Darboux and quasi-continuous, so by [9, Lemma 2] we obtain

$$
\underline{\underline{\operatorname{LIM}}}\left(f_{i}, x^{-}\right) \leqslant \underline{\operatorname{LIM}}\left(f_{i}+g, x^{-}\right) \leqslant\left(f_{i}+g\right)(x)<\infty
$$

Similarly $\underline{\operatorname{LIM}}\left(f_{i}, x^{+}\right)<\infty$.
Proposition 4.3. There is a Baire one function f such that $f+g$ is strong Światkowski for some positive function g in Baire class two, but $f+g$ is Darboux for no positive Baire one function g.

Proof. Let F be the Cantor ternary set and let $\mathscr{I}=\left\{\left(a_{n}, b_{n}\right): n \in \mathbb{N}\right\}$ and \mathscr{J} be disjoint families of components of $\mathbb{R} \backslash F$ such that $F=(\mathrm{cl} \bigcup \mathscr{I}) \cap(\mathrm{cl} \bigcup \mathscr{J})$. Define $f(x)=n$ if $x \in\left(a_{n}, b_{n}\right)$ for some $n \in \mathbb{N}$ and $f(x)=0$ otherwise. Clearly f belongs to Baire class one.

Let $x \in \mathbb{R}$. If $x \in\left(a_{n}, b_{n}\right]$ for some $n \in \mathbb{N}$, then $\underline{\operatorname{LIM}}\left(f, x^{-}\right)=n$, otherwise $\underline{\operatorname{LIM}}\left(f, x^{-}\right)=0$. Similarly $\underline{\operatorname{LIM}}\left(f, x^{+}\right)<\infty$. By Theorem 4.2 there is a positive Baire two function g such that $f+g$ is strong Świątkowski.

On the other hand, by [8, Proposition 6.10], $f+g$ is Darboux for no positive Baire one function g.

In Proposition 4.4 the symbol \mathfrak{c} denotes the first ordinal equipollent with \mathbb{R}.
Proposition 4.4. Given a family of positive functions, $\left\{g_{\xi}: \xi<\mathfrak{c}\right\}$, we can find a cliquish function f which fulfils condition (iii) of Theorem 4.2 and such that $f+g_{\xi}$ is not quasi-continuous for each $\xi<\mathfrak{c}$.

Proof. Let F be the Cantor ternary set and let $\left\{x_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of F. Define $f(x)=-g_{\xi}(x)-1$ if $x=x_{\xi}$ for some $\xi<\mathfrak{c}$, and $f(x)=0$ otherwise. Clearly f is cliquish, and for each $x \in \mathbb{R}$ we have $\underline{\operatorname{LIM}}\left(f, x^{-}\right)=\underline{\operatorname{LIM}}\left(f, x^{+}\right)=0$.

Let $\xi<\mathfrak{c}$. Then $\left(f+g_{\xi}\right)\left(x_{\xi}\right)=-1$ and $f+g_{\xi}$ is positive on a dense open set. Thus $f+g_{\xi}$ is not quasi-continuous at x_{ξ}.

Corollary 4.5. There is a cliquish function f which fulfils condition (iii) of Theorem 4.2 and such that $f+g$ is not quasi-continuous for each positive Borel measurable function g.

Theorem 4.6. Let f_{1}, \ldots, f_{k} be Baire one functions. The following are equivalent:
(i) there is a positive Baire one function g such that $f_{i}+g$ is both Darboux and quasi-continuous for each i;
(ii) there is a positive Baire one function g such that $\mathscr{C}_{g} \supset \bigcap_{i=1}^{k} \mathscr{C}_{f_{i}}$ and $f_{i}+g$ is strong Świątkowski for each i;
(iii) there is a Baire one function h such that for each $x \in \mathbb{R}$ and each i we have $\max \left\{\underline{\operatorname{LIM}}\left(f_{i}, x^{-}\right), \underline{\operatorname{LIM}}\left(f_{i}, x^{+}\right)\right\} \leqslant h(x)$.
Proof. The implication (i) \Rightarrow (iii) can be proved similarly as in Theorem 4.2 (we let $h=\max \left\{f_{1}, \ldots, f_{k}\right\}+g$), and the implication (ii) \Rightarrow (i) is obvious.
(iii) \Rightarrow (ii). The proof of this implication is a repetition of the argument used in Theorem 4.1. The only difference is in the definition of the function g on the set A. More precisely, we put

$$
g(x)=\max \left\{\max \left\{h(x)-f_{i}(x): i \in\{1, \ldots, k\}\right\}, 0\right\}+1
$$

if $x \in A$. Then clearly g is a Baire one function.

References

[1] A. M. Bruckner, J. G. Ceder, T. L. Pearson: On Darboux functions. Rev. Roumaine Math. Pures Appl. 19 (1974), 977-988.
[2] Z. Grande: Sur la quasi-continuité et la quasi-continuité approximative. Fund. Math. 129 (1988), 167-172.
[3] Z. Grande, T. Natkaniec: Lattices generated by \mathscr{T}-quasi-continuous functions. Bull. Polish Acad. Sci. Math. 34 (1986), 525-530.
[4] S. Kempisty: Sur les fonctions quasicontinues. Fund. Math. 19 (1932), 184-197.
[5] A. Maliszewski: Sums of bounded Darboux functions. Real Anal. Exchange 20 (1994-95), 673-680.
[6] A. Maliszewski: On the limits of strong Świątkowski functions. Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87-93.
[7] A. Maliszewski: On theorems of Pu \& Pu and Grande. Math. Bohem. 121 (1996), 83-87.
[8] A. Maliszewski: On the averages of Darboux functions. Trans. Amer. Math. Soc. 350 (1998), 2833-2846.
[9] T. Natkaniec: On quasi-continuous functions having Darboux property. Math. Pann. 3 (1992), 81-96.
[10] H. P. Thielman: Types of functions. Amer. Math. Monthly 60 (1953), 156-161.
Author's address: Aleksander Maliszewski, Department of Mathematics, Pedagogical University, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland, e-mail: AMal@wsp.bydgoszcz.pl.

[^0]: ${ }^{1}$ Supported by BW grant, WSP.

