POINT-SET DOMATIC NUMBERS OF GRAPHS

BOHDAN ZELINKA, Liberec

(Received September 10, 1997)

Abstract. A subset D of the vertex set V(G) of a graph G is called point-set dominating, if for each subset $S \subseteq V(G) - D$ there exists a vertex $v \in D$ such that the subgraph of Ginduced by $S \cup \{v\}$ is connected. The maximum number of classes of a partition of V(G), all of whose classes are point-set dominating sets, is the point-set domatic number $d_p(G)$ of G. Its basic properties are studied in the paper.

 $\mathit{Keywords}:$ dominating set, point-set dominating set, point-set domatic number, bipartite graph

MSC 2000: 05C35

The point-set domatic number of a graph is a variant of the domatic number d(G) of a graph, which was introduced by E. J. Cockayne and S. T. Hedetniemi [1], and of the point-set domination number $\gamma_p(G)$, which was introduced by E. Sampathkumar and L. Pushpa Latha in [3] and [4]. We will describe its basic properties. All graphs considered are finite undirected graphs without loops and multiple edges.

A subset D of the vertex set V(G) of a graph G is called dominating, if for each vertex $x \in V(G) - D$ there exists a vertex $y \in D$ adjacent to x. It is called point-set dominating (or shortly *ps*-dominating), if for each subset $S \subseteq V(G) - D$ there exists a vertex $v \in D$ such that the set $S \cup \{v\}$ induces a connected subgraph of G. A partition of V(G) is called domatic (or point-set domatic), if all of its classes are dominating (or *ps*-dominating, respectively) sets in G. The maximum number of classes of a domatic (or point-set domatic) partition of V(G) is called the domatic (or point-set domatic, respectively) number of G. The domatic number of G is denoted by d(G), the point-set domatic number of G is denoted by $d_p(G)$. Instead of "point-set domatic" we will say shortly "*ps*-domatic".

For every graph G there exists at least one ps-domatic partition of V(G), namely $\{V(G)\}$. Therefore $d_p(G)$ is well-defined for every graph G.

Evidently each ps-dominating set in G is a dominating set in G and thus we have a proposition.

Proposition 1. For every graph G the inequality

$$d_p(G) \leqslant d(G)$$

holds.

Each vertex of a complete graph K_n forms a one-element *ps*-dominating set and therefore the following proposition holds.

Proposition 2. For every complete graph K_n its ps-domatic number satisfies

$$d_p(K_n) = n.$$

A similar assertion holds for a complete bipartite graph $K_{m,n}$.

Proposition 3. Let $K_{m,n}$ be a complete bipartite graph with $2 \leq m \leq n$. Then

$$d_p(K_{m,n}) = m.$$

Proof. Let U, V be the bipartition classes of $K_{m,n}$. Let $u \in U, v \in V$ and consider the set $D = \{u, v\}$. Let $S \subseteq V(K_{m,n}) - D$. If $S \subseteq U$, then $S \cup \{v\}$ induces a subgraph which is a star and thus it is connected. If $S \subseteq V$, then so is $S \cup \{u\}$. Suppose that $S \cap U \neq \emptyset$, $S \cap V \neq \emptyset$. The set S itself induces a connected subgraph, namely a complete bipartite graph. The vertex u is adjacent to a vertex of $S \cap V$ and thus also $S \cup \{u\}$ induces a connected subgraph; the set $D = \{u, v\}$ is *ps*-dominating. If $U = \{u_1, \ldots, u_m\}$, $V = \{v_1, \ldots, v_n\}$, we take $D_i = \{u_i, v_i\}$ for $i = 1, \ldots, m-1$ and $D_m = \{u_m, v_m, \ldots, v_n\}$. Then $\{D_1, \ldots, D_m\}$ is a *ps*-domatic partition of $K_{m,n}$ and $d_p(K_{m,n}) \ge m$. On the other hand, $d_p(K_{m,n}) \le d(K_{m,n}) = m$ and thus $d_p(K_{m,n}) = m$.

Proposition 4. Let n be an even integer, let G be obtained from the complete graph K_n by deleting edges of a linear factor. Then

$$d_p(G) = n/2.$$

Proof. Evidently each pair of non-adjacent vertices in G is *ps*-dominating and there exists a partition of V(G) into n/2 such sets. On the other hand, no one-vertex *ps*-dominating set exists. This implies the assertion.

Now we will prove some theorems. By $d_G(x, y)$ we denote the distance between vertices x, y in a graph G. By diam(G) we denote the diameter of G.

Theorem 1. Let G be a graph. If $d_p(G) \ge 3$, then diam $(G) \le 2$.

Proof. Let $d_p(G) = k \ge 3$. Then there exists a *ps*-domatic partition $\{D_1, \ldots, D_k\}$ of G. Let x, y be two vertices of G. As $k \ge 3$, at least one of the sets D_1, \ldots, D_k contains neither x nor y. Without loss of generality let it be D_1 . We have $\{x, y\} \subseteq V(G) - D_1$ and therefore there exists a vertex $v \in D_1$ such that $\{v, x, y\}$ induces a connected subgraph of G. If x, y are adjacent, then $d_G(x, y) = 1$. If x, y are not adjacent, then v must be adjacent to both x and y and $d_G(x, y) = 2$. As x, y were chosen arbitrarily, we have diam $(G) \le 2$.

Theorem 2. Let G be a graph. If $d_p(G) = 2$, then diam $(G) \leq 3$.

Proof. Let $d_p(G) = 2$. There exists a *ps*-domatic partition $\{D_1, D_2\}$ of V(G). Let x, y be two vertices of G. If both x, y are in D_1 , then $\{x, y\} \subseteq V(G) - D_2$ and $d_G(x, y) \leq 2$ analogously as in the proof of Theorem 1. Similarly in the case when both x, y are in D_2 . Now let $x \in D_1, y \in D_2$. As $\{y\} \subseteq V(G) - D_1$, there exists $v \in D_1$ adjacent to y. As both x, v are in D_1 , we have $d_G(x, v) \leq 2$, $d_G(v, y) = 1$ and thus $d_G(x, y) \leq 3$. As x, y were chosen arbitrarily, we have diam $(G) \leq 3$.

Now we shall consider bipartite graphs.

Corollary. Let G be a bipartite graph. If $d_p(G) \ge 3$, then G is a complete bipartite graph.

This follows from the fact that every non-complete bipartite graph has the diameter at least 3.

Theorem 3. Let G be a non-complete bipartite graph. Then $d_p(G) = 2$ if and only if G has a spanning tree T with diam $(T) \leq 3$.

Proof. Let T be a tree with diam $(T) \leq 3$. If D_1, D_2 are the bipartition classes of T, then $\{D_1, D_2\}$ is a ps-domatic partition of T and $d_p(T) \leq 2$ and thus $d_p(T) = 2$. If G is a graph such that T is its spanning tree and G is a non-complete bipartite graph, then obviously also $d_p(G) = 2$.

Now suppose that $d_p(G) = 2$ and let $\{D_1, D_2\}$ be a *ps*-domatic partition. Let V_1, V_2 be the bipartition classes of G. First suppose that D_1 is a proper subset of V_1 . Then $V_1 - D_1 \subseteq V(G) - D_1$ and for each $v \in D_1$ the set $(V_1 - D_1) \cup \{v\}$ is independent, i.e. it does not induce a connected subgraph of G. Hence this case is impossible and moreover D_1 cannot be a proper subset of V_2 and D_2 cannot be a proper subset of V_1 .

or of V_2 . Now consider the case $D_1 = V_1$. Then $D_2 = V_2$. We have $V_2 \subseteq V(G) - D_1$ and there exists a vertex $v_1 \in V_1$ adjacent to all vertices of V_2 . Analogously, there exists a vertex $v_2 \in V_2$ adjacent to all vertices of V_1 . All edges joining v_1 with vertices of V_2 and all edges joining v_2 with vertices of V_1 form the spanning tree T; its central edge is v_1v_2 and its diameter is 3. The case $D_1 = V_2$, $D_2 = V_1$ is analogous. Now the case remains when $D_1 \cap V_1 \neq \emptyset$, $D_1 \cap V_2 \neq \emptyset$, $D_2 \cap V_1 \neq \emptyset$, $D_2 \cap V_2 \neq \emptyset$. Let $V_1 \in D_1 \cap V_1, x_2 \in D_1 \cap V_2$. We have $\{x_1, x_2\} \subseteq V(G) - D_2$ and there exists a vertex $v \in D_2$ such that $\{v, x_1, x_2\}$ induces a connected subgraph of G. As x_1, x_2 belong to distinct bipartition classes of G, the vertex v cannot be adjacent to both of them and thus x_1, x_2 are adjacent. Therefore D_2 induces a complete bipartite subgraph on the sets $D_2 \cap V_1$, $D_2 \cap V_2$ and analogously, D_1 induces a complete bipartite subgraph on the sets $D_1 \cap V_1$, $D_1 \cap V_2$. We have $D_1 \cap V_1 \subseteq V(G) - D_2$ and therefore there exists a vertex $w_2 \in D_2$ adjacent to all vertices of $D_2 \cap V_1$; evidently $w_2 \in D_2 \cap V_2$. Analogously, there exists a vertex $w_1 \in D_1 \cap V_1$ adjacent to all vertices of $D_1 \cap V_2$. The vertex w_1 is adjacent to all vertices of V_2 and the vertex w_2 is adjacent to all vertices of V_1 . Obviously w_1, w_2 are adjacent. There exists a spanning tree T with the central edge $w_1 w_2$ which has the diameter 3.

Now we turn to circuits. By C_n we denote the circuit of the length n.

Theorem 5. For the circuits we have

$$\begin{split} &d_p(C_3)=3,\\ &d_p(C_4)=2,\\ &d_p(C_5)=2,\\ &d_p(C_n)=1 \qquad \text{for} \quad n \geqslant 6. \end{split}$$

Proof. The circuit C_3 is the complete graph K_3 and thus $d_p(C_3) = 3$. The circuit C_4 contains a spanning tree which is a path P_3 of length 3 and therefore $d_p(C_4) = 2$; note that C_4 is a bipartite graph. Consider C_5 and let its vertices be u_1, \ldots, u_5 and edges $u_i u_{i+1}$ for $i = 1, \ldots, 4$ and $u_5 u_1$. There exists a *ps*-domatic partition $\{D_1, D_2\}$, where $D_1 = \{u_1, u_2, u_4\}$, $D_2 = \{u_3, u_5\}$; thus $d_p(C_5) \ge 2$. As the domatic number $d(C_5) = 2$, we have $d_p(C_5) = 2$ as well. The circuit C_6 is a bipartite graph and does not contain any spanning tree of diameter 3, therefore $d_p(C_6) = 1$. Now consider C_7 . Suppose that in C_7 there exists a *ps*-domatic partition $\{D_1, D_2\}$ and denote its vertices by u_1, \ldots, u_7 in the usual way. Any two vertices with the distance 3 are in distinct classes of $\{D_1, D_2\}$; this follows from the proofs of Theorem 1 and of Theorem 2. If $u_1 \in D_1$ (without loss of generality), then $u_4 \in D_2$, $u_7 \in D_1$, $u_3 \in D_2$, $u_6 \in D_1$, $u_2 \in D_2$, $u_5 \in D_1$, $u_1 \in D_2$, which is a contradiction and thus $d_p(C_7) = 1$. For $n \ge 8$ we have diam $(C_n) \ge 4$ and thus $d_p(C_n) = 1$.

Theorem 6. For the complement \overline{C}_n of a circuit C_n we have

$$\begin{split} &d_p(\overline{C}_3)=1,\\ &d_p(\overline{C}_4)=1,\\ &d_p(\overline{C}_n)=\lfloor n/2\rfloor \quad \text{for }n\geqslant 5. \end{split}$$

Proof. The graphs \overline{C}_3 and \overline{C}_4 are disconnected and therefore they have the *ps*-domatic number 1. If $n \ge 5$, then any pair of non-adjacent vertices in \overline{C}_n is a *ps*-dominating set, which can be easily verified by the reader. There exists a partition of $V(\overline{C}_n)$ into $\lfloor n/2 \rfloor$ sets, each of which is a pair of non-adjacent vertices, except at most one which has three vertices from which only two are adjacent. There exists no one-element *ps*-dominating set, therefore $d_p(\overline{C}_n) = \lfloor n/2 \rfloor$.

In the end we will prove an existence theorem.

Theorem 7. Let V be a finite set, let k be an integer, $1 \leq k \leq |V|$, let $\{D_1, \ldots, D_k\}$ be a partition of V. Then there exists a graph G such that V(G) = V, $d_p(G) = k$ and $\{D_1, \ldots, D_k\}$ is a ps-domatic partition of G.

Proof. For i = 1, ..., k choose a vertex $v_i \in D_i$ and join it by edges with all vertices not belonging to D_i . The resulting graph is the graph G. For each subset $S \subseteq V(G) - D_i$ there exists a vertex of D_i which is adjacent to all vertices of S, namely v_i . Therefore $\{D_1, \ldots, D_k\}$ is a *ps*-domatic partition of G and $d_p(G) \ge k$. If $|D_i| = 1$ for all i, then G is K_k and $d_p(G) = k$. If $|D_i| \ge 2$ for some i, then a vertex $u \in D_i - \{v_i\}$ has the degree k - 1 and thus the domatic number satisfies $d(G) \le k$ (by [1]) and $d_p(G) \le d(G) \le k$. This implies $d_p(G) = k$.

In the end we will give a motivation for introducing the point-set domination. The concept of a dominating set is usually motivated by the displacement of certain service stations (medical, police, fire-brigade) which have to provide service for certain places (vertices of a graph). In the case of the point-set dominating set we want that for any chosen region (set of vertices) there might exist a station providing services for the whole region. Note that the point-set domination number is also a variant of the set domination number introduced in [5] and mentioned in [2].

References

- [1] Cockayne E. J., Hedetniemi S. T.: Towards the theory of domination in graphs. Networks γ (1977), 247–261.
- [2] Haynes T. W., Hedetniemi S. T., Slater P. J.: Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, 1998.
- [3] Pushpa Latha L.: The global point-set domination number of a graph. Indian J. Pure Appl. Math. 28 (1997), 47–51.
- [4] Sampathkumar E., Pushpa Latha L.: Point-set domination number of a graph. Indian J. Pure Appl. Math. 24 (1993), 225–229.
- [5] Sampathkumar E., Pushpa Latha L.: Set domination in graphs. J. Graph Theory 18 (1994), 489–495.

Author's address: Bohdan Zelinka, Katedra aplikované matematiky Technické univerzity, Voroněžská 13, 461 17 Liberec 1, Czech Republic.