POINT-SET DOMATIC NUMBERS OF GRAPHS

Bohdan Zelinka, Liberec

(Received September 10, 1997)

Abstract

A subset D of the vertex set $V(G)$ of a graph G is called point-set dominating, if for each subset $S \subseteq V(G)-D$ there exists a vertex $v \in D$ such that the subgraph of G induced by $S \cup\{v\}$ is connected. The maximum number of classes of a partition of $V(G)$, all of whose classes are point-set dominating sets, is the point-set domatic number $d_{p}(G)$ of G. Its basic properties are studied in the paper.

Keywords: dominating set, point-set dominating set, point-set domatic number, bipartite graph

MSC 2000: 05C35

The point-set domatic number of a graph is a variant of the domatic number $d(G)$ of a graph, which was introduced by E. J. Cockayne and S. T. Hedetniemi [1], and of the point-set domination number $\gamma_{p}(G)$, which was introduced by E. Sampathkumar and L. Pushpa Latha in [3] and [4]. We will describe its basic properties. All graphs considered are finite undirected graphs without loops and multiple edges.

A subset D of the vertex set $V(G)$ of a graph G is called dominating, if for each vertex $x \in V(G)-D$ there exists a vertex $y \in D$ adjacent to x. It is called point-set dominating (or shortly $p s$-dominating), if for each subset $S \subseteq V(G)-D$ there exists a vertex $v \in D$ such that the set $S \cup\{v\}$ induces a connected subgraph of G. A partition of $V(G)$ is called domatic (or point-set domatic), if all of its classes are dominating (or $p s$-dominating, respectively) sets in G. The maximum number of classes of a domatic (or point-set domatic) partition of $V(G)$ is called the domatic (or point-set domatic, respectively) number of G. The domatic number of G is denoted by $d(G)$, the point-set domatic number of G is denoted by $d_{p}(G)$. Instead of "point-set domatic" we will say shortly " $p s$-domatic".

For every graph G there exists at least one $p s$-domatic partition of $V(G)$, namely $\{V(G)\}$. Therefore $d_{p}(G)$ is well-defined for every graph G.

Evidently each $p s$-dominating set in G is a dominating set in G and thus we have a proposition.

Proposition 1. For every graph G the inequality

$$
d_{p}(G) \leqslant d(G)
$$

holds.
Each vertex of a complete graph K_{n} forms a one-element $p s$-dominating set and therefore the following proposition holds.

Proposition 2. For every complete graph K_{n} its $p s$-domatic number satisfies

$$
d_{p}\left(K_{n}\right)=n
$$

A similar assertion holds for a complete bipartite graph $K_{m, n}$.
Proposition 3. Let $K_{m, n}$ be a complete bipartite graph with $2 \leqslant m \leqslant n$. Then

$$
d_{p}\left(K_{m, n}\right)=m
$$

Proof. Let U, V be the bipartition classes of $K_{m, n}$. Let $u \in U, v \in V$ and consider the set $D=\{u, v\}$. Let $S \subseteq V\left(K_{m, n}\right)-D$. If $S \subseteq U$, then $S \cup\{v\}$ induces a subgraph which is a star and thus it is connected. If $S \subseteq V$, then so is $S \cup\{u\}$. Suppose that $S \cap U \neq \emptyset, S \cap V \neq \emptyset$. The set S itself induces a connected subgraph, namely a complete bipartite graph. The vertex u is adjacent to a vertex of $S \cap V$ and thus also $S \cup\{u\}$ induces a connected subgraph; the set $D=\{u, v\}$ is $p s$-dominating. If $U=\left\{u_{1}, \ldots, u_{m}\right\}, V=\left\{v_{1}, \ldots, v_{n}\right\}$, we take $D_{i}=\left\{u_{i}, v_{i}\right\}$ for $i=1, \ldots, m-1$ and $D_{m}=\left\{u_{m}, v_{m}, \ldots, v_{n}\right\}$. Then $\left\{D_{1}, \ldots, D_{m}\right\}$ is a $p s$-domatic partition of $K_{m, n}$ and $d_{p}\left(K_{m, n}\right) \geqslant m$. On the other hand, $d_{p}\left(K_{m, n}\right) \leqslant d\left(K_{m, n}\right)=m$ and thus $d_{p}\left(K_{m, n}\right)=m$.

Proposition 4. Let n be an even integer, let G be obtained from the complete graph K_{n} by deleting edges of a linear factor. Then

$$
d_{p}(G)=n / 2 .
$$

Proof. Evidently each pair of non-adjacent vertices in G is $p s$-dominating and there exists a partition of $V(G)$ into $n / 2$ such sets. On the other hand, no one-vertex $p s$-dominating set exists. This implies the assertion.

Now we will prove some theorems. By $d_{G}(x, y)$ we denote the distance between vertices x, y in a graph G. By $\operatorname{diam}(G)$ we denote the diameter of G.

Theorem 1. Let G be a graph. If $d_{p}(G) \geqslant 3$, then $\operatorname{diam}(G) \leqslant 2$.
Proof. Let $d_{p}(G)=k \geqslant 3$. Then there exists a $p s$-domatic partition $\left\{D_{1}, \ldots, D_{k}\right\}$ of G. Let x, y be two vertices of G. As $k \geqslant 3$, at least one of the sets D_{1}, \ldots, D_{k} contains neither x nor y. Without loss of generality let it be D_{1}. We have $\{x, y\} \subseteq V(G)-D_{1}$ and therefore there exists a vertex $v \in D_{1}$ such that $\{v, x, y\}$ induces a connected subgraph of G. If x, y are adjacent, then $d_{G}(x, y)=1$. If x, y are not adjacent, then v must be adjacent to both x and y and $d_{G}(x, y)=2$. As x, y were chosen arbitrarily, we have $\operatorname{diam}(G) \leqslant 2$.

Theorem 2. Let G be a graph. If $d_{p}(G)=2$, then $\operatorname{diam}(G) \leqslant 3$.
Proof. Let $d_{p}(G)=2$. There exists a $p s$-domatic partition $\left\{D_{1}, D_{2}\right\}$ of $V(G)$. Let x, y be two vertices of G. If both x, y are in D_{1}, then $\{x, y\} \subseteq V(G)-D_{2}$ and $d_{G}(x, y) \leqslant 2$ analogously as in the proof of Theorem 1 . Similarly in the case when both x, y are in D_{2}. Now let $x \in D_{1}, y \in D_{2}$. As $\{y\} \subseteq V(G)-D_{1}$, there exists $v \in D_{1}$ adjacent to y. As both x, v are in D_{1}, we have $d_{G}(x, v) \leqslant 2, d_{G}(v, y)=1$ and thus $d_{G}(x, y) \leqslant 3$. As x, y were chosen arbitrarily, we have $\operatorname{diam}(G) \leqslant 3$.

Now we shall consider bipartite graphs.

Corollary. Let G be a bipartite graph. If $d_{p}(G) \geqslant 3$, then G is a complete bipartite graph.

This follows from the fact that every non-complete bipartite graph has the diameter at least 3 .

Theorem 3. Let G be a non-complete bipartite graph. Then $d_{p}(G)=2$ if and only if G has a spanning tree T with $\operatorname{diam}(T) \leqslant 3$.

Proof. Let T be a tree with $\operatorname{diam}(T) \leqslant 3$. If D_{1}, D_{2} are the bipartition classes of T, then $\left\{D_{1}, D_{2}\right\}$ is a $p s$-domatic partition of T and $d_{p}(T) \leqslant 2$ and thus $d_{p}(T)=2$. If G is a graph such that T is its spanning tree and G is a non-complete bipartite graph, then obviously also $d_{p}(G)=2$.

Now suppose that $d_{p}(G)=2$ and let $\left\{D_{1}, D_{2}\right\}$ be a $p s$-domatic partition. Let V_{1}, V_{2} be the bipartition classes of G. First suppose that D_{1} is a proper subset of V_{1}. Then $V_{1}-D_{1} \subseteq V(G)-D_{1}$ and for each $v \in D_{1}$ the set $\left(V_{1}-D_{1}\right) \cup\{v\}$ is independent, i.e. it does not induce a connected subgraph of G. Hence this case is impossible and moreover D_{1} cannot be a proper subset of V_{2} and D_{2} cannot be a proper subset of V_{1}
or of V_{2}. Now consider the case $D_{1}=V_{1}$. Then $D_{2}=V_{2}$. We have $V_{2} \subseteq V(G)-D_{1}$ and there exists a vertex $v_{1} \in V_{1}$ adjacent to all vertices of V_{2}. Analogously, there exists a vertex $v_{2} \in V_{2}$ adjacent to all vertices of V_{1}. All edges joining v_{1} with vertices of V_{2} and all edges joining v_{2} with vertices of V_{1} form the spanning tree T; its central edge is $v_{1} v_{2}$ and its diameter is 3 . The case $D_{1}=V_{2}, D_{2}=V_{1}$ is analogous. Now the case remains when $D_{1} \cap V_{1} \neq \emptyset, D_{1} \cap V_{2} \neq \emptyset, D_{2} \cap V_{1} \neq \emptyset, D_{2} \cap V_{2} \neq \emptyset$. Let $V_{1} \in D_{1} \cap V_{1}, x_{2} \in D_{1} \cap V_{2}$. We have $\left\{x_{1}, x_{2}\right\} \subseteq V(G)-D_{2}$ and there exists a vertex $v \in D_{2}$ such that $\left\{v, x_{1}, x_{2}\right\}$ induces a connected subgraph of G. As x_{1}, x_{2} belong to distinct bipartition classes of G, the vertex v cannot be adjacent to both of them and thus x_{1}, x_{2} are adjacent. Therefore D_{2} induces a complete bipartite subgraph on the sets $D_{2} \cap V_{1}, D_{2} \cap V_{2}$ and analogously, D_{1} induces a complete bipartite subgraph on the sets $D_{1} \cap V_{1}, D_{1} \cap V_{2}$. We have $D_{1} \cap V_{1} \subseteq V(G)-D_{2}$ and therefore there exists a vertex $w_{2} \in D_{2}$ adjacent to all vertices of $D_{2} \cap V_{1}$; evidently $w_{2} \in D_{2} \cap V_{2}$. Analogously, there exists a vertex $w_{1} \in D_{1} \cap V_{1}$ adjacent to all vertices of $D_{1} \cap V_{2}$. The vertex w_{1} is adjacent to all vertices of V_{2} and the vertex w_{2} is adjacent to all vertices of V_{1}. Obviously w_{1}, w_{2} are adjacent. There exists a spanning tree T with the central edge $w_{1} w_{2}$ which has the diameter 3 .

Now we turn to circuits. By C_{n} we denote the circuit of the length n.
Theorem 5. For the circuits we have

$$
\begin{aligned}
& d_{p}\left(C_{3}\right)=3, \\
& d_{p}\left(C_{4}\right)=2, \\
& d_{p}\left(C_{5}\right)=2, \\
& d_{p}\left(C_{n}\right)=1 \quad \text { for } \quad n \geqslant 6 .
\end{aligned}
$$

Proof. The circuit C_{3} is the complete graph K_{3} and thus $d_{p}\left(C_{3}\right)=3$. The circuit C_{4} contains a spanning tree which is a path P_{3} of length 3 and therefore $d_{p}\left(C_{4}\right)=2$; note that C_{4} is a bipartite graph. Consider C_{5} and let its vertices be u_{1}, \ldots, u_{5} and edges $u_{i} u_{i+1}$ for $i=1, \ldots, 4$ and $u_{5} u_{1}$. There exists a $p s$-domatic partition $\left\{D_{1}, D_{2}\right\}$, where $D_{1}=\left\{u_{1}, u_{2}, u_{4}\right\}, D_{2}=\left\{u_{3}, u_{5}\right\}$; thus $d_{p}\left(C_{5}\right) \geqslant 2$. As the domatic number $d\left(C_{5}\right)=2$, we have $d_{p}\left(C_{5}\right)=2$ as well. The circuit C_{6} is a bipartite graph and does not contain any spanning tree of diameter 3 , therefore $d_{p}\left(C_{6}\right)=1$. Now consider C_{7}. Suppose that in C_{7} there exists a $p s$-domatic partition $\left\{D_{1}, D_{2}\right\}$ and denote its vertices by u_{1}, \ldots, u_{7} in the usual way. Any two vertices with the distance 3 are in distinct classes of $\left\{D_{1}, D_{2}\right\}$; this follows from the proofs of Theorem 1 and of Theorem 2. If $u_{1} \in D_{1}$ (without loss of generality), then $u_{4} \in D_{2}$, $u_{7} \in D_{1}, u_{3} \in D_{2}, u_{6} \in D_{1}, u_{2} \in D_{2}, u_{5} \in D_{1}, u_{1} \in D_{2}$, which is a contradiction and thus $d_{p}\left(C_{7}\right)=1$. For $n \geqslant 8$ we have $\operatorname{diam}\left(C_{n}\right) \geqslant 4$ and thus $d_{p}\left(C_{n}\right)=1$.

Theorem 6. For the complement \bar{C}_{n} of a circuit C_{n} we have

$$
\begin{aligned}
& d_{p}\left(\bar{C}_{3}\right)=1 \\
& d_{p}\left(\bar{C}_{4}\right)=1 \\
& d_{p}\left(\bar{C}_{n}\right)=\lfloor n / 2\rfloor \quad \text { for } n \geqslant 5 .
\end{aligned}
$$

Proof. The graphs \bar{C}_{3} and \bar{C}_{4} are disconnected and therefore they have the $p s$-domatic number 1 . If $n \geqslant 5$, then any pair of non-adjacent vertices in \bar{C}_{n} is a $p s$ dominating set, which can be easily verified by the reader. There exists a partition of $V\left(\bar{C}_{n}\right)$ into $\lfloor n / 2\rfloor$ sets, each of which is a pair of non-adjacent vertices, except at most one which has three vertices from which only two are adjacent. There exists no one-element $p s$-dominating set, therefore $d_{p}\left(\bar{C}_{n}\right)=\lfloor n / 2\rfloor$.

In the end we will prove an existence theorem.

Theorem 7. Let V be a finite set, let k be an integer, $1 \leqslant k \leqslant|V|$, let $\left\{D_{1}, \ldots, D_{k}\right\}$ be a partition of V. Then there exists a graph G such that $V(G)=V$, $d_{p}(G)=k$ and $\left\{D_{1}, \ldots, D_{k}\right\}$ is a $p s$-domatic partition of G.

Proof. For $i=1, \ldots, k$ choose a vertex $v_{i} \in D_{i}$ and join it by edges with all vertices not belonging to D_{i}. The resulting graph is the graph G. For each subset $S \subseteq V(G)-D_{i}$ there exists a vertex of D_{i} which is adjacent to all vertices of S, namely v_{i}. Therefore $\left\{D_{1}, \ldots, D_{k}\right\}$ is a $p s$-domatic partition of G and $d_{p}(G) \geqslant k$. If $\left|D_{i}\right|=1$ for all i, then G is K_{k} and $d_{p}(G)=k$. If $\left|D_{i}\right| \geqslant 2$ for some i, then a vertex $u \in D_{i}-\left\{v_{i}\right\}$ has the degree $k-1$ and thus the domatic number satisfies $d(G) \leqslant k$ (by [1]) and $d_{p}(G) \leqslant d(G) \leqslant k$. This implies $d_{p}(G)=k$.

In the end we will give a motivation for introducing the point-set domination. The concept of a dominating set is usually motivated by the displacement of certain service stations (medical, police, fire-brigade) which have to provide service for certain places (vertices of a graph). In the case of the point-set dominating set we want that for any chosen region (set of vertices) there might exist a station providing services for the whole region. Note that the point-set domination number is also a variant of the set domination number introduced in [5] and mentioned in [2].
[1] Cockayne E. J., Hedetniemi S. T.: Towards the theory of domination in graphs. Networks 7 (1977), 247-261.
[2] Haynes T. W., Hedetniemi S. T., Slater P. J.: Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, 1998.
[3] Pushpa Latha L.: The global point-set domination number of a graph. Indian J. Pure Appl. Math. 28 (1997), 47-51.
[4] Sampathkumar E., Pushpa Latha L.: Point-set domination number of a graph. Indian J. Pure Appl. Math. 24 (1993), 225-229.
[5] Sampathkumar E., Pushpa Latha L.: Set domination in graphs. J. Graph Theory 18 (1994), 489-495.

Author's address: Bohdan Zelinka, Katedra aplikované matematiky Technické univerzity, Voroněžská 13, 46117 Liberec 1 , Czech Republic.

