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Abstract. In this paper, we study the existence of oscillatory and nonoscillatory solutions
of neutral differential equations of the form

(
x(t)− cx(t − r)

)′ ± (
P (t)x(t − θ)− Q(t)x(t − δ)

)
= 0

where c > 0, r > 0, θ > δ � 0 are constants, and P , Q ∈ C(�+,�+). We obtain
some sufficient and some necessary conditions for the existence of bounded and unbounded
positive solutions, as well as some sufficient conditions for the existence of bounded and
unbounded oscillatory solutions.
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1. Introduction

In this paper, we consider the following neutral differential equations with positive

and negative coefficients

(1.1)
(
x(t)− cx(t − r)

)′
+ P (t)x(t − θ)− Q(t)x(t − δ) = 0

and

(1.2)
(
x(t)− cx(t − r)

)′
= P (t)x(t − θ)− Q(t)x(t − δ),

1Research supported by the Mississippi State University Biological and Physical Sci-
ences Research Institute.

2Research partially supported by NNSF of China.

87



where c > 0, r > 0, θ > δ � 0 are constants, and P , Q ∈ C(�+,�+ ). Equality

(1.1) has been investigated by Ladas and Qian [2, 6], Yu [9], Yu and Wang [8],
and Lalli and Zhang [7]. However, results on the existence of positive solutions and
the existence of oscillatory solutions of (1.1) and (1.2) are relatively scarce in the

literature.
In Section 2, we obtain conditions for the existence of both bounded positive so-

lutions and bounded oscillatory solutions for (1.1) with c = 1, and in Section 3, we
obtain conditions for the existence of unbounded positive solutions for (1.1) with

c = 1. Section 4 contains conditions for the existence of both bounded positive solu-
tions and bounded oscillatory solutions for (1.1) with c ∈ (0, 1), while in Section 5, we
obtain conditions for the existence of both bounded positive solutions and bounded
oscillatory solutions for (1.2). In Section 6, we consider (1.1) and (1.2) in the case

c > 1. Obviously, since the equations under consideration are linear, there are cor-
responding conclusions for negative solutions.

The following hypotheses will often be used in the remainder of this paper:

r > 0 and θ > δ � 0 are constants;(H1)

P, Q ∈ C(�+ ,�+ );(H2)

P (t) = P (t)− Q(t − θ + δ) � 0.(H3)

The following lemma is taken from Zhang and Yu [10].

Lemma 1.1. Suppose that f ∈ C
(
[t0,∞),�+

)
and r > 0. Then

∞∑
j=0

∫ ∞

t0+jr

f(t) dt < ∞

is equivalent to ∫ ∞

t0

tf(t) dt < ∞.

2. Bounded solutions of (1.1) with c = 1

In this section, we consider the equation

(2.1)
(
x(t)− x(t − r)

)′
+ P (t)x(t − θ)− Q(t)x(t − δ) = 0.

Theorem 2.1. In addition to (H1)–(H3), assume that

(H4)
∫ ∞

tP (t) dt < ∞,
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and

(H5)
∫ ∞

Q(t) dt < ∞.

Then (2.1) has a bounded positive solution, and for any continuous periodic oscil-

latory function ω(t) with period r, there is a bounded oscillatory solution x(t) such
that

(2.2) x(t) = ω(t) +R(t)

for t > T, where R(t) is a continuous real function,
∣∣R(t)∣∣ < αM,M= min

{
maxω(t),

max(−ω(t))
}
, α ∈ (0, 1), and T is sufficiently large.

To prove the above theorem, we need to establish the following lemma.

Lemma 2.2. Suppose the hypotheses of Theorem 2.1 hold. Then the equations
(2.3)(
x(t)−x(t−r)

)′
+P (t)

(
x(t−θ)+2M+ω(t−θ)

)−Q(t)
(
x(t−δ)+2M+ω(t−δ)

)
= 0

and

(2.4)
(
x(t) − x(t − r)

)′
+ P (t)

(
x(t − θ) + 2M

) − Q(t)
(
x(t − δ) + 2M

)
= 0

have bounded positive solutions u1(t) and u(t), respectively, such that

∣∣u(t)∣∣ � 1
2αM and

∣∣u1(t)∣∣ � 1
2αM

for t � T , where M = max
∣∣ω(t)∣∣ and T is sufficiently large.

�����. The proof for (2.3) is quite similar to that for (2.4), so we only give the

details of the proof for (2.4).
Choose T sufficiently large such that

(2.5)
∞∑

i=0

∫ ∞

T+ir

P (t) dt+ n

∫ ∞

T−θ

Q(t) dt <
αM

16M
,

where n = [[ θ−δ
r ]] + 2 and [[·]] denotes the greatest integer function. Set

H(t) =




4M
∫ ∞

t

P (s) ds+ 4M
∫ t

t−θ+δ

Q(s) ds, t � T,

(
t − T + r

)
H(T )/r, T − r � t � T,

0, t � T − r.
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Clearly, H ∈ C(�,�+ ). Define

y(t) =
∞∑

i=0

H(t − ir), t � T.

It is obvious that y ∈ C
(
[T,∞),�+)

with y(t) − y(t − r) = H(t) and 0 < y(t) <
1
4αM < M , t � T . Define a set X by

X =
{
x ∈ C

(
[T,∞),�)

: 0 � x(t) � y(t), t � T
}

and an operator S on X by

(Sx)(t) =




x(t − r) +
∫ t

t−θ+δ

Q(s)
(
x(s − δ) + 2M

)
ds

+
∫ ∞

t

P (s)
(
x(s − θ) + 2M

)
ds,

t � T +m,

(Sx)(T +m) ty(t)
(T+m)y(T+m) + y(t)

(
1− t

T+m

)
, t ∈ [T, T +m],

where m = max{θ, r}. It is easy to see that

(Sx)(t) � y(t − r) +H(t) = y(t), t � T +m

and

(Sx)(t) � y(t), T � t � T +m,

for any x ∈ X , i. e., SX ⊂ X . Define a sequence of functions
{
xk(t)

}∞
k=0
as follows:

x0(t) = y(t), t � T,

xk(t) = (Sxk−1)(t), t � T, k = 1, 2, . . .

By induction, we can prove that

0 < xk(t) � xk−1(t) � y(t), t � T, k = 1, 2, . . .

Then there exists a function u ∈ X such that lim
k→∞

xk(t) = u(t) for t � T . Clearly,

u(t) > 0 on [T,∞). By the Lebesgue dominated convergence theorem, we have

u(t) = u(t − r) +
∫ t

t−θ+δ

Q(s)
(
u(s − δ) + 2M

)
ds+

∫ ∞

t

P (s)
(
u(s − θ) + 2M

)
ds

for t � T +m. Moreover,

(
u(t)− u(t − r)

)′
= Q(t)

(
u(t − δ) + 2M

) − P (t)
(
u(t − θ) + 2M

)
,

i. e., u(t) is a bounded positive solution of (2.4) with 0 < u(t) � 1
4αM . This com-

pletes the proof of the lemma. �
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����� of Theorem 2.1. Let

U(t) = 2M + u(t)

and
U1(t) = 2M + ω(t) + u1(t),

where u(t), u1(t) are defined by Lemma 2.2. It is easy to see that U(t) and U1(t) are

both bounded positive solutions of (2.1). Because (2.1) is linear,

x(t) = U1(t)− U(t) = ω(t) +
(
u1(t)− u(t)

)
, t � T

is also a solution of (2.1). It is clear that x(t) is oscillatory and satisfies (2.2), so the

proof of the theorem is complete. �

�����	
 2.3. Consider the neutral differential equation

(2.6)
(
x(t)− x(t − 1))′ + P1(t)x(t − 1)− Q1(t)x(t) = 0, t � 5,

where
P1(t) =

6
t2(t − 1)(t − 2) and Q1(t) =

6t − 2
t(t − 1)4(t+ 1) .

We have P 1(t) ≡ P1(t)− Q1(t − 1) � 0 for t � 5,
∫ ∞

Q1(s) ds < ∞, and
∫ ∞

sP 1(s) ds < ∞.

By Theorem 2.1, (2.6) has a bounded positive solution. In fact,

x(t) = 1− t−2

is such a solution of (2.6).

�����	
 2.4. Consider the neutral differential equation

(2.7)
(
x(t) − x(t − 2�))′ + P2(t)x

(
t − 5

2�
) − Q2(t)x(t − �) = 0, t � 6�,

where

P2(t) =
4�(t − �)

t2(t − 2�)2 ·
(
t − 5

2�
)2

(t − 5
2�)

2 − 1 ,

and

Q2(t) = 4�
3t2 − 6�t+ 4�2
(t(t − 2�))3 · (t − �)2

(t − �)2 − 1 .
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Now P 2(t) ≡ P2(t)− Q2
(
t − 3

2�
)

� 0 for t � 6�,

∫ ∞
Q2(s) ds < ∞ and

∫ ∞
sP 2(s) ds < ∞.

By Theorem 2.1, (2.7) has a bounded oscillatory solution, in fact,

x(t) =
(
1− t−2

)
sin t

is such a solution of (2.7).

�
���� 2.5. According to a result of Jaroš and Kusano [5; Theorem 1], if for

some µ ∈ (0, 1),

(2.8)
∫ ∞

T

µ− s
r

(
P (s) +Q(s)

)
ds < ∞,

then (2.1) has oscillatory solutions. Clearly, their condition is much stronger than

conditions (H4)–(H5) of Theorem 2.1. For example, (2.8) is not satisfied for (2.7).

The following result gives a necessary condition for the existence of bounded pos-

itive solutions of (2.1).

Theorem 2.6. Assume that (H1)–(H3) and (H5) hold. If (2.1) has a bounded
positive solution, then (H4) holds.

�����. Let x(t) be a bounded positive solution of (2.1). Then there exists L > 0
and t0 > 0 such that 0 < x(t) < L on [t0,∞). Setting

y(t) = x(t)− x(t − r) −
∫ t

t−θ+δ

Q(s)x(s − δ) ds,

we have

(2.9) y′(t) = −P (t)x(t − θ) � 0, t � t0.

We claim that y(t) > 0 eventually. Assume, to the contrary, that y(t) < 0 eventu-
ally. Then there exist t1 > t0 and α > 0 such that y(t) � −α on [t1,∞), so

x(t) � −α+ x(t − r) +
∫ t

t−θ+δ

Q(s)x(s − δ) ds
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for t � t1. By induction, we have

x(t1 + kr) � −kα+ x(t1) +
k∑

i=1

∫ t1+ir

t1+ir−θ+δ

Q(s)x(s − δ) ds

� −kα+ x(t1) + nL

∫ ∞

t1−θ

Q(s) ds,

where n = [[ θ−δ
r ]] + 2, k = 1, 2, . . . Then x(t1 + kr) < 0 for sufficiently large k, which

is a contradiction.
Hence, we have

x(t) > x(t − r) +
∫ t

t−θ+δ

Q(s)x(s − δ) ds > x(t − r)

eventually. Thus, there exist J > 0 and t2 > t1 such that x(t) > J on [t2,∞). From
(2.9), we see that

y′(t) � −P (t)J, for t � t3 = t2 + θ.

Integrating, we obtain

y(t) � J

∫ ∞

t

P (s) ds,

and so

x(t) � x(t− r) +
∫ t

t−θ+δ

Q(s)x(s − δ) ds+ J

∫ ∞

t

P (s) ds � x(t − r) + J

∫ ∞

t

P (s) ds

for t � t3. This implies that

(2.10) L � x(t3 + kr) � x(t3) + J

k∑
i=1

∫ ∞

t3+ir

P (s) ds,

for k = 1, 2, . . . Letting k → ∞ in (2.10), we obtain
∞∑

i=1

∫ ∞

t3+ir

P (s) ds < ∞,

which is equivalent to ∫ ∞
sP (s) ds < ∞

by Lemma 1.1. This completes the proof of the theorem. �

The following corollary is immediate.

Corollary 2.7. Assume that (H1)–(H3) and (H5) hold. Then (2.1) has a bounded
positive solution if and only if (H4) holds.
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3. Unbounded solutions for (1.1) with c = 1

Definition 3.1. A solution x(t) of (2.1) is called a positive (negative) A-type

solution if it can be expressed in the form

(3.1) x(t) = αt+ β(t),

where α > 0 (α < 0) is a constant, β : [tx,∞)→ � is a bounded continuous function,
and tx > 0.

Theorem 3.2. Assume that (H1)–(H3) hold,

(H6)
∫ ∞

t2P (t) dt < ∞,

and

(H7)
∫ ∞

tQ(t) dt < ∞.

Then (2.1) has a positive A-type solution.

�����. Choose T sufficiently large such that

∞∑
i=0

∫ ∞

T+ir

P (t)(t+ 1) dt+ n

∫ ∞

T−θ

Q(t)(t+ 1) dt < 1,

where n = [[ θ−δ
r ]] + 2. Set

H(t) =




∫ ∞

t

P (s)(1 + s) ds+
∫ t

t−θ+δ

Q(s)(1 + s) ds, t � T,

(t − T + r)H(T )/r, T − r � t � T,

0, t � T − r,

and observe that H ∈ C(�,�+ ). Define

y(t) =
∞∑

i=0

H(t − ir), t � T.

It is obvious that y ∈ C
(
[T,∞),�+)

with y(t) − y(t − r) = H(t) and 0 < y(t) < 1

for t � T . Define the set X by

X =
{
x ∈ C

(
[T,∞),�)

: 0 � x(t) � y(t), t � T
}
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and an operator S on X by

(Sx)(t) =




x(t − r) +
∫ t

t−θ+δ

Q(s)
(
x(s − δ) + s − δ

)
ds

+
∫ ∞

t

P (s)
(
x(s − θ) + s − θ

)
ds,

t � T +m,

(Sx)(T +m) ty(t)
(T+m)y(T+m) + y(t)

(
1− t

T+m

)
, t ∈ [T, T +m],

where m = max{θ, r}. Clearly, SX ⊂ X .
Define a sequence of functions

{
xk(t)

}∞
k=0
as follows:

x0(t) = y(t), t � T,

xk(t) = (Sxk−1)(t), t � T, k = 1, 2, . . .

By induction, we have

0 < xk(t) � xk−1(t) � y(t), t � T, k = 1, 2, . . .

Then there exists a function u ∈ X such that lim
k→∞

xk(t) = u(t), for t � T . It is

obvious that u(t) > 0 on [T,∞). By the Lebesgue dominated convergence theorem,
we have u = Su. It is easy to see that x(t) = t+ u(t) is a positive A-type solution
of (2.1), and this completes the proof. �

Similar to Theorem 2.6 and Corollary 2.7, we have the following results.

Theorem 3.3. Assume that (H1)–(H3) and (H7) hold. If (2.1) has a positive
A-type solution, then (H6) holds.

Corollary 3.4. Assume that (H1)–(H3) and (H7) hold. Then (2.1) has a positive
A-type solution if and only if (H6) holds.

4. Bounded solutions of (1.1) with c ∈ (0, 1)

In this section, we consider the equation

(4.1)
(
x(t) − cx(t − r)

)′
+ P (t)x(t − θ)− Q(t)x(t − δ) = 0,

where c ∈ (0, 1). Our first result in this section is analogous to Theorem 2.1. Here,
condition (H4) gets replaced by (H8) below.
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Theorem 4.1. Suppose that c ∈ (0, 1), conditions (H1)–(H3) and (H5) hold, and

(H8)
∞∑

j=0

∫ ∞

T+jr

c
s−T−jr

r P (s) ds < ∞ for some T > 0.

Then (4.1) has a bounded positive solution, and for any continuous periodic oscilla-

tory function ω(t) with period r, (4.1) has a bounded oscillatory solution

(4.3) x(t) = c
t
r

(
ω(t) +R(t)

)
,

where
∣∣R(t)∣∣ < αM and α ∈ (0, 1).

The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Under the hypotheses of Theorem 4.1, the equations

(4.4)

(
x(t)− cx(t − r)

)′
+ P (t)

(
x(t − θ) +

(
2M + ω(t − θ)

)
c

t−θ
r

)

− Q(t)
(
x(t − δ) +

(
2M + ω(t − δ)

)
c

t−δ
r

)
= 0

and

(4.5)
(
x(t)− cx(t− r)

)′
+P (t)

(
x(t− θ)+2Mc

t−θ
r

)
−Q(t)

(
x(t− δ)+2Mc

t−δ
r

)
= 0

have bounded positive solutions u1(t) and u(t), respectively, such that∣∣u(t)∣∣ � 1
2αMc

t
r and

∣∣u1(t)∣∣ � 1
2αMc

t
r .

�����. We give only the outline of the proof for the case of (4.5). Consider the

integral equation
(4.6)

x(t) = cx(t−r)+
∫ t−δ

t−θ

Q(s+δ)
(
x(s)+2Mc

s
r

)
ds+

∫ ∞

t

P (s)
(
x(s−θ)+2Mc

s−θ
r

)
ds.

Letting z(t) = x(t)c−
t
r , (4.6) becomes

(4.7)

z(t) = z(t− r)+
∫ t−δ

t−θ

Q(s+ δ)
(
z(s)+ 2Mc

s−t
r

)
ds+

∫ ∞

t

P (s)
(
z(s− θ)+ 2M

)
c

s−t−θ
r ds.

To complete the proof of the lemma, it is sufficient to prove that (4.7) has a bounded

positive solution z(t) such that |z(t)| < α
2M , for t � T , where T is sufficiently large.

If we choose T large enough that
∞∑

j=0

∫ ∞

T+jr

c
s−T−jr

r P (s) ds+ n

∫ ∞

T

Q(s) ds <
αM

16ME
,

where E = c−
θ
r > 1, then the remainder of the proof is similar to the proof of

Lemma 2.2 and will be omitted. �
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In view of Lemma 4.2, we can prove Theorem 4.1 using a technique similar to

that used to prove Theorem 2.1; we omit the details here. Next, we give an explicit
condition to guarantee that (H8) holds.

Corollary 4.3. If, in addition to (H1)–(H3) and (H5), we have

(H9)
∫ ∞

P (s) ds < ∞,

then the conclusion of Theorem 4.1 holds.

�����. It suffices to show that (H9) implies (H8). Set j = [[ t−T
r ]]; then t − r �

T + jr � t and T + jr � t � T + (j + 1)r. Let

I =
∞∑

j=0

∫ ∞

T+jr

c
s−T−jr

r P (s) ds.

Then

I � 1
r

∞∑
j=0

∫ T+(j+1)r

T+jr

dt
∫ ∞

T+jr

c
s−T−jr

r P (s) ds

� 1
cr

∞∑
j=0

∫ T+(j+1)r

T+jr

dt
∫ ∞

t−r

c
s−t+r

r P (s) ds =
1
cr

∫ ∞

T

dt
∫ ∞

t−r

c
s−t+r

r P (s) ds

=
1
cr

∫ ∞

T−r

dt
∫ ∞

t

c
s−t

r P (s) ds =
1
cr

∫ ∞

T−r

P (s) ds
∫ s

T−r

c
s−t

r dt

� 1
cr

∫ ∞

T−r

P (s) ds
∫ ∞

0
c

u
r du = K

∫ ∞

T−r

P (s) ds,

where K =
1
cr

∫ ∞

0
c

u
r du. Therefore, (H9) implies (H8), and the proof is complete.

�

5. Solutions of (1.2) with c ∈ (0, 1]

In this section, we first consider (1.2) with c = 1, namely,

(5.1)
(
x(t)− x(t − r)

)′
= P (t)x(t − θ)− Q(t)x(t − δ).

Analogous to Theorem 2.1, we have the following result.
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Theorem 5.1. Suppose conditions (H1)–(H5) hold. Then (5.1) has a bounded
positive solution, and for any continuous periodic oscillatory function ω(t) with pe-
riod r, there is a bounded oscillatory solution x(t) such that

(5.2) x(t) = ω(t) +R(t)

for t > T, where R(t) is a continuous real function,
∣∣R(t)∣∣ < αM,M= min

{
maxω(t),

max(−ω(t))
}
, α ∈ (0, 1), and T is sufficiently large.

In order to prove the above theorem, we need the following lemma, which is
analogous to Lemma 2.2.

Lemma 5.2. Under the hypotheses of Theorem 5.1, the equations

(5.3)
(
x(t)−x(t−r)

)′
= P (t)

(
x(t−θ)+2M+ω(t−θ)

)−Q(t)
(
x(t−δ)+2M+ω(t−δ)

)

and

(5.4)
(
x(t) − x(t − r)

)′
= P (t)

(
x(t − θ) + 2M

) − Q(t)
(
x(t − δ) + 2M

)

have bounded positive solutions u1(t) and u(t), respectively, such that

∣∣u(t)∣∣ � 1
2αM and

∣∣u1(t)∣∣ � 1
2αM

for t � T , where M = max
∣∣ω(t)∣∣ and T is sufficiently large.

�����. We only give a proof for (5.4). Choose T sufficiently large so that (2.5)

holds. Define a set X by

X =
{
x ∈ C

(
[T,∞),�)

: 0 � x(t) � 1
4αM, t � T

}

and a sequence of functions
{
xk(t)

}∞
k=0
by

x0(t) = 0, t � T,

xk(t) =




xk−1(t+ r) +
∫ t+r

t−θ+δ+r

Q(s)
(
xk−1(s − δ) + 2M

)
ds

+
∫ ∞

t+r

P (s)
(
xk−1(s − θ) + 2M

)
ds,

t � T +m,

xk(T +m), t ∈ [T, T +m],

where m = max
{
0, θ − r

}
, k = 1, 2, . . . Clearly, x1(t) > 0 = x0(t), t � T . By

induction, we have

(5.5) x0(t) < . . . < xk(t) < xk+1(t) < . . . , t � T, k = 1, 2, . . .

98



It is obvious that x0(t) � 1
4αM for t � T . Suppose

xk(t) � 1
4αM, t � T, k = 0, 1, . . . , p − 1;

we will show that

xp(t) � 1
4αM, t � T.

In fact, for t � T +m,

xp(t) = xp−1(t+ r) +
∫ t+r

t−θ+δ+r

Q(s)
(
xp−1(s − δ) + 2M

)
ds

+
∫ ∞

t+r

P (s)
(
xp−1(s − θ) + 2M

)
ds

= x0(t+ pr) +
p∑

j=1

∫ t+jr

t−θ+δ+jr

Q(s)
(
xp−j(s − δ) + 2M

)
ds

+
p∑

j=1

∫ ∞

t+jr

P (s)
(
xp−j(s − θ) + 2M

)
ds

� 4M
( p∑

j=1

∫ t+jr

t−θ+δ+jr

Q(s) ds+
p∑

j=1

∫ ∞

t+jr

P (s) ds

)

� 1
4αM

by condition (2.5), i. e.,
{
xk(t)

}∞
k=0

⊂ X . In view of (5.5), there exists a function u ∈
X such that lim

k→∞
xk(t) = u(t), for t � T . By the Lebesgue dominated convergence

theorem, we have

u(t) =




u(t+ r) +
∫ t+r

t−θ+δ+r

Q(s)
(
u(s − δ) + 2M

)
ds

+
∫ ∞

t+r

P (s)
(
u(s − θ) + 2M

)
ds,

t � T +m,

u(T +m), t ∈ [T, T +m],

i. e., u(t) is a solution of (5.4). This completes the proof of the lemma.

In view of Lemma 5.2, we can prove Theorem 5.1 by using an argument similar to
the one used to prove Theorem 2.1. We will omit the details. �

�����	
 5.3. Consider the equation

(
x(t)− x(t − 2))′ = e− 1 + e−t/2

2(et/2 + e)
x(t − 2)− e−t

2(1 + e−(t−1)/2)
x(t − 1), t � 0.

All the hypotheses of Theorem 5.1 are satisfied, and x(t) = 1 + e−t/2 is a bounded
positive solution.
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Similar to Theorem 2.6, we have the following result for (5.1). The proof is only

slightly different from the proof of Theorem 2.6.

Theorem 5.4. Assume that (H1)–(H3) and (H5) hold. If (5.1) has a bounded
positive solution x(t) such that lim inf

t→∞ x(t) > 0, then (H4) holds.

Corresponding to Theorem 3.2, we have the following result on A-type solutions.

Theorem 5.5. If (H1)–(H3), (H6), and (H7) hold, then (5.1) has a positive A-
type solution.

Next, we consider the equation

(5.6)
(
x(t)− cx(t − r)

)′
= P (t)x(t − θ)− Q(t)x(t − δ).

For the case where c ∈ (0, 1), we have the following counterpart to Corollary 4.3.

Theorem 5.6. Suppose that c ∈ (0, 1) and (H1)–(H3), (H5), and (H9) hold. Then
(5.6) has a bounded positive solution, and for any continuous periodic oscillatory
function ω(t) with period r, (5.6) has a bounded oscillatory solution

x(t) = c
t
r

(
ω(t) +R(t)

)
,

where
∣∣R(t)∣∣ < αM and α ∈ (0, 1).

The proof of Theorem 5.5 is easily modeled after the proofs of Lemma 4.2 and
Theorem 4.1 (taking into account the variation in approach used in Lemma 5.2), and

then applying the proof of Corollary 4.3 to conclude that (H9) implies (H8).

6. The case c > 1

We conclude this paper with results for equations (1.1) and (1.2) in the case c > 1.
In view of our results in Sections 4 and 5, the proof of the following theorem can

easily be constructed.

Theorem 6.1. Suppose that c > 1 and conditions (H1)–(H3), (H5), and (H8)

hold. Then (1.1) and (1.2) each have an unbounded positive solution, and for any
continuous periodic oscillatory function ω(t) with period r, they have unbounded

oscillatory solutions of the form

x(t) = c
t
r

(
ω(t) +R(t)

)
,

where
∣∣R(t)∣∣ < αM and α ∈ (0, 1).
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Our final result gives an explicit condition to guarantee that (H8) holds in the

case c > 1.

Corollary 6.2. Suppose c > 1 and conditions (H1)–(H3) and (H5) hold. If

(H10)
∫ ∞

c
s
r P (s) ds < ∞,

then the conclusion of Theorem 6.1 holds.

�����. It suffices to prove that (H10) implies (H8). Set j = [[ t−T
r ]]. Then

t − r � T + jr � t and T + jr � t � T + (j + 1)r. For

I =
∞∑

j=0

∫ ∞

T+jr

c
s−T−jr

r P (s) ds,

we have

I � 1
r

∞∑
j=0

∫ T+(j+1)r

T+jr

dt
∫ ∞

T+jr

c
s−t+r

r P (s) ds

=
1
r

∫ ∞

T

dt
∫ ∞

t−r

c
s−t+r

r P (s) ds =
1
r

∫ ∞

T−r

dt
∫ ∞

t

c
s−t

r P (s) ds

=
1
r

∫ ∞

T−r

P (s) ds
∫ s

T−r

c
s−t

r dt =
1
r

∫ ∞

T−r

P (s) ds
∫ s−T+r

0
c

u
r du

� 1
ln c

∫ ∞

T−r

c
s−T+r

r P (s) ds,

= K

∫ ∞

T−r

c
s
r P (s) ds,

where K =
(
ln c · cT−r

r

)−1
. Therefore (H10) implies (H8), and the proof is complete.

�
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