ON A HIGHER-ORDER HARDY INEQUALITY

David E. Edmunds, Sussex, Jiří Rákosník, Praha

(Received September 9, 1998)

Dedicated to Professor A. Kufner on the occasion of his 65th birthday

Abstract. The Hardy inequality $\int_{\Omega}|u(x)|^{p} d(x)^{-p} \mathrm{~d} x \leqslant c \int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x$ with $d(x)=$ $\operatorname{dist}(x, \partial \Omega)$ holds for $u \in C_{0}^{\infty}(\Omega)$ if $\Omega \subset \mathbb{R}^{n}$ is an open set with a sufficiently smooth boundary and if $1<p<\infty$. P. Hajłasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$.

Keywords: Hardy inequality, capacity, p-thick set, maximal function, Sobolev space
MSC 2000: 31C15, 46E35, 42B25

1. Introduction

Let Ω be a proper subdomain of \mathbb{R}^{n} and let $d(x)=\operatorname{dist}(x, \partial \Omega), x \in \Omega$, be the corresponding distance function.

It is well known that the Hardy inequality

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{p} d(x)^{-p} \mathrm{~d} x \leqslant c \int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x, \tag{1.1}
\end{equation*}
$$

holds for $u \in C_{0}^{\infty}(\Omega)$ if $1<p<\infty$ and the boundary of Ω satisfies the Lipschitz condition or similar regularity conditions. For these results and further references we refer to [8], [10], [12].

The research was supported by the NATO Grant no. OUTR. CRG. 970071.
The second author was partly supported by the Grant no. 201/97/0744 of the Grant Agency of the Czech Republic.

Different authors introduced the notions of capacity and of thick sets in various ways (see, e.g. [1], [4]-[9], etc.) in order to find weaker sufficient conditions for inequalities of Hardy, Poincaré and other types. We shall concentrate mainly on [4] and [6].

Let K be a compact subset of Ω and let $1 \leqslant p<\infty$. The variational ($1, p$)-capacity $C_{1, p}(K, \Omega)$ of the condenser (K, Ω) is defined to be

$$
C_{1, p}(K, \Omega)=\inf \left\{\int_{\Omega}|\nabla u(x)|^{p} \mathrm{~d} x: u \in C_{0}^{\infty}(\Omega), u(x) \geqslant 1 \text { for } x \in K\right\}
$$

By $B(x, r)$ we denote the open ball in \mathbb{R}^{n} of radius $r, 0<r<\infty$, centered at $x \in \mathbb{R}^{n}$.

Definition 1. A closed set $K \subset \mathbb{R}^{n}$ is locally uniformly $(1, p)$-thick, if there exist numbers $b>0$ and $r_{0}, 0<r_{0} \leqslant \infty$ such that

$$
\begin{equation*}
C_{1, p}(\bar{B}(x, r) \cap K, B(x, 2 r)) \geqslant b C_{1, p}(\bar{B}(x, r), B(x, 2 r)) \tag{1.2}
\end{equation*}
$$

for all $x \in K$ and $0<r<r_{0}$. If $r_{0}=\infty$, then the set K is called uniformly $(1, p)$-thick.

Note that a scaling argument yields

$$
\begin{equation*}
C_{1, p}(\bar{B}(x, r), B(x, 2 r))=c(n, p) r^{n-p} \tag{1.3}
\end{equation*}
$$

P. Hajłasz [4] used the Hardy-Littlewood maximal operator M and showed that for a domain Ω with a locally uniformly $(1, p)$-thick complement there exists $q \in(1, p)$ such that every function $u \in C_{0}^{\infty}(\Omega)$ satisfies the pointwise analogue of the Hardy inequality, which in a slightly simplified formulation reads

$$
|u(x)| \leqslant c d(x)\left[M\left(|\nabla u|^{q}\right)(x)\right]^{1 / q}
$$

As a corollary he obtained the integral Hardy inequality

$$
\int_{\Omega}|u(x)|^{p} d(x)^{a-p} \mathrm{~d} x \leqslant c \int_{\Omega}|\nabla u(x)|^{p} d(x)^{a} \mathrm{~d} x
$$

for small positive numbers a. Similar results were obtained also by J. Kinnunen and O. Martio [6].

Our aim is to extend these results for derivatives of higher order.

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an n-tuple of non-negative integers, $|\alpha|=\sum_{i=1}^{n} \alpha_{i}, \alpha!=$ $\alpha_{1}!\ldots \alpha_{n}!$, and for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we set $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$. The corresponding partial derivative operators will be denoted by

$$
D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}}
$$

and the gradient of a real-valued function of order $k, k \in \mathbb{N}$, will be the vector $\nabla^{k} u=\left\{D^{\alpha} u\right\}_{|\alpha|=k}$. For $k=1, \nabla^{1} u=\nabla u$ is the usual gradient.

Given a measurable set $E \subset \mathbb{R}^{n}$, we denote its Lebesgue n-measure by $|E|$ and the characteristic function of E by χ_{E}. Constants c in estimates may vary during calculations but they always remain independent of all non-fixed entities.

2. The pointwise Hardy inequality

The fractional maximal function $M_{\gamma, R} u, 0 \leqslant \gamma \leqslant n, 0<R \leqslant \infty$, is defined for every $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ by

$$
M_{\gamma, R} u(x)=\sup _{0<r<R}|B(x, r)|^{\gamma / n-1} \int_{B(x, r)}|u(y)| \mathrm{d} y, \quad x \in \mathbb{R}^{n}
$$

Note that $M_{0, \infty} u=M u$ is the classical Hardy-Littlewood maximal function.
Theorem 1. Let $1 \leqslant p<\infty$, let k be a positive integer and $0 \leqslant \gamma<k$. Let Ω be an open subset of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash \Omega$ is locally uniformly $(1, p)$-thick and let b be the constant from Definition 1. Then there exists a constant $c=c(k, p, n, b)>0$ such that every function $u \in C_{0}^{\infty}(\Omega)$ satisfies the inequality

$$
\begin{equation*}
|u(x)| \leqslant c d(x)^{k-\gamma / p}\left[M_{\gamma, 4 d(x)}\left(\left|\nabla^{k} u\right|^{p} \chi_{B(\bar{x}, 2 d(x))}\right)(x)\right]^{1 / p} \tag{2.1}
\end{equation*}
$$

where $x \in \Omega, d(x)<r_{0}$, and $\bar{x} \in \partial \Omega$ is such that $|x-\bar{x}|=d(x)$.
This is the main result of this section which extends Theorem 2 of [4]. To prove it we shall need several auxiliary assertions. The first one is a generalization of [3, Lemma 7.16].

Lemma 1. Let k be a natural number. There exists a constant $c=c(k, n)>0$ such that for every ball $B \subset \mathbb{R}^{n}$ and for every function $u \in C^{k}(B)$ the inequality

$$
\left|u(x)-|B|^{-1} \int_{B} P(x, y) \mathrm{d} y\right| \leqslant c \int_{B} \frac{\left|\nabla^{k} u(y)\right|}{|x-y|^{n-k}} \mathrm{~d} y, \quad x \in B
$$

holds, where P is the polynomial of order $\leqslant k-1$ given by

$$
\begin{equation*}
P(x, y)=\sum_{|\alpha| \leqslant k-1} \frac{(-1)^{|\alpha|}}{\alpha!} D^{\alpha} u(y)(y-x)^{\alpha}, \quad x, y \in B \tag{2.2}
\end{equation*}
$$

Lemma 1 can be proved in a way similar to the proof of Lemma 7.16 in [3] using the Taylor expansion of the function $v(r)=u(x+r \theta)$, where $r=|x-y|, \theta=(y-x) / r$, $x, y \in \Omega$. Note that assertions of this type can be found for instance in $[1, \S 8.1]$ and [8, §1.1.10].

The next assertion is a variation of a well-known result of L.I. Hedberg.

Lemma 2. Let $0 \leqslant \gamma<\kappa$ and let $B \subset \mathbb{R}^{n}$ be a ball of radius R. Then there exists a constant $c=c(n, \gamma, \kappa)>0$ such that every function $g \in L_{\mathrm{loc}}^{1}(B)$ satisfies the inequality

$$
\int_{B} \frac{|g(y)| \mathrm{d} y}{|x-y|^{n-\kappa}} \leqslant c R^{\kappa-\gamma} M_{\gamma, 2 R}(g)(x), \quad x \in B
$$

Proof. Fix $x \in B$ and for $i \in \mathbb{N}$ set $A_{i}=\left(B\left(x, 2^{1-i} R\right) \backslash B\left(x, 2^{-i} R\right)\right) \cap B$. Then

$$
\begin{aligned}
\int_{B} \frac{|g(y)|}{|x-y|^{n-\kappa}} \mathrm{d} y & =\sum_{i=0}^{\infty} \int_{A_{i}} \frac{|g(y)|}{|x-y|^{n-\kappa}} \mathrm{d} y \\
& \leqslant \max \left(1,2^{\kappa-n}\right) \sum_{i=0}^{\infty}\left(2^{-i} R\right)^{\kappa-n} \int_{B\left(x, 2^{1-i} R\right)}|g(y)| \mathrm{d} y \\
& \leqslant|B(0,1)|^{-1} \max \left(1,2^{\kappa-n}\right) 2^{n-\gamma} R^{\kappa-\gamma} \sum_{i=0}^{\infty} 2^{-i(\kappa-\gamma)} M_{\gamma, 2 R}(g)(x)
\end{aligned}
$$

We shall also need the following inequality of Poincaré type which follows from the considerations in [8, Sections 9.3 and 10.1.2].

Lemma 3. Let $1 \leqslant p<\infty$. Let $B=B(x, R)$ be a ball in \mathbb{R}^{n} and let K be a closed subset of \bar{B}. Then every function $u \in C^{\infty}(\bar{B})$ such that $\operatorname{dist}(\operatorname{supp} u, K)>0$ satisfies the inequality

$$
\int_{\bar{B}}|u(x)|^{p} \mathrm{~d} x \leqslant c \frac{R^{n}}{C_{1, p}(K, B(x, 2 R))} \int_{\bar{B}}|\nabla u(x)|^{p} \mathrm{~d} x,
$$

where c is a positive constant independent of B, K and u.

Proof of Theorem 1. Let $x \in \Omega$ be such that $d(x)<r_{0}$, where r_{0} is the number from Definition 1. Let $\bar{x} \in \partial \Omega$ satisfy $|x-\bar{x}|=d(x)=R$ and let $u \in C_{0}^{\infty}(\Omega)$. Set $B=B(\bar{x}, 2 R)$. Then $x \in B$ and

$$
\begin{equation*}
|u(x)| \leqslant\left|u(x)-P_{B}(x)\right|+\left|P_{B}(x)\right| \tag{2.3}
\end{equation*}
$$

where $P_{B}(x)=|B|^{-1} \int_{B} P(x, y) \mathrm{d} y$ and P is the polynomial from Lemma 1. Using Lemma 1, Lemma 2 and the Hölder inequality we obtain

$$
\begin{align*}
\left|u(x)-P_{B}(x)\right| & \leqslant c \int_{B} \frac{\left|\nabla^{k} u(y)\right|}{|x-y|^{n-k}} \mathrm{~d} y \leqslant c R^{k-\gamma} M_{\gamma, 4 R}\left(\left|\nabla^{k} u\right| \chi_{B}\right)(x) \tag{2.4}\\
& \leqslant c R^{k-\gamma / p}\left[M_{\gamma, 4 R}\left(\left|\nabla^{k} u\right|^{p} \chi_{B}\right)(x)\right]^{1 / p}
\end{align*}
$$

From (2.2) we have

$$
\begin{aligned}
\left|P_{B}(x)\right| & \leqslant|B|^{-1} \int_{B}|P(x, y)| \mathrm{d} y \leqslant c \sum_{i=0}^{k-1} R^{i}|B|^{-1} \int_{B}\left|\nabla^{i} u(y)\right| \mathrm{d} y \\
& \leqslant c \sum_{i=0}^{k-1} R^{i}\left(|B|^{-1} \int_{B}\left|\nabla^{i} u(y)\right|^{p} \mathrm{~d} y\right)^{1 / p}
\end{aligned}
$$

Repeated application of Lemma 3 and of (1.2) and (1.3) yields

$$
\begin{aligned}
\int_{B}\left|\nabla^{i} u(x)\right|^{p} \mathrm{~d} x & \leqslant c \frac{R^{n}}{C_{1, p}\left(\left(\mathbb{R}^{n} \backslash \Omega\right) \cap \bar{B}, B(\bar{x}, 4 R)\right)} \int_{B}\left|\nabla^{i+1} u(x)\right|^{p} \mathrm{~d} x \\
& \leqslant c R^{p} \int_{B}\left|\nabla^{i+1} u(x)\right|^{p} \mathrm{~d} x \\
& \leqslant c R^{(k-i) p} \int_{B}\left|\nabla^{k} u(x)\right|^{p} \mathrm{~d} x, \quad i=0, \ldots, k-1
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left|P_{B}(x)\right| & \leqslant c R^{k}\left(|B|^{-1} \int_{B}\left|\nabla^{k} u(x)\right|^{p} \mathrm{~d} x\right)^{1 / p} \tag{2.5}\\
& \leqslant c R^{k-\gamma / p}\left[M_{\gamma, 4 R}\left(\left|\nabla^{k} u\right|^{p} \chi_{B}\right)(x)\right]^{1 / p}
\end{align*}
$$

The inequality (2.1) follows from (2.3)-(2.5).

3. InTEGRAL INEQUALITIES

In this section we shall use Theorem 1 to obtain higher-order analogues of the classical Hardy inequality. As in [4] and [6], in further considerations we shall essentially use the openness of the $(1, p)$-thickness with respect to p. This deep property was originally proved by J. L. Lewis [7, Theorem 1] and later on in another way by P. Mikkonen [9, Theorem 8.2]. The following lemma can be obtained as a particular case of Lewis' and Mikkonen's results. It is not important for our purpose that Lewis dealt with another type of capacity.

Lemma 4. Let $1<p<\infty$ and let $K \subset \mathbb{R}^{n}$ be a closed locally uniformly (k, p)thick set. Then there exists $q, 1<q<p$, depending only on n, k, p and b, such that K is locally uniformly (k, q)-thick with the same value of r_{0} as for p.

For $r>0$ we set

$$
\Omega_{r}=\{x \in \Omega: d(x)<r\} .
$$

Theorem 2. Let $1<p<\infty$ and let k be a positive integer. Let Ω be an open subset of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash \Omega$ is locally uniformly $(1, p)$-thick. Then there exists a positive constant $c=c(k, p, n, b)$ such that the inequality

$$
\begin{equation*}
\int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)^{k}}\right)^{p} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} \mathrm{~d} x \tag{2.6}
\end{equation*}
$$

holds for every function $u \in C_{0}^{\infty}(\Omega)$ and for every $r \in\left(0, r_{0}\right)$, where r_{0} is the parameter given in Definition 1.

Proof. Let $p>1$ and let $q \in(1, p)$ be from Lemma 4, and suppose that $r \in\left(0, r_{0}\right)$. It follows from (2.1) that for all $u \in C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
|u(x)| d(x)^{-k} \leqslant c\left[M\left(\left|\nabla^{k} u\right|^{q} \chi_{\Omega_{r}}\right)(x)\right]^{1 / q}, \quad x \in \Omega_{r} \tag{2.7}
\end{equation*}
$$

We use the boundedness of $M: L^{p / q} \rightarrow L^{p / q}$ and the Hölder inequality to obtain

$$
\begin{equation*}
\int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)^{k}}\right)^{p} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}\left[M\left(\left|\nabla^{k} u\right|^{q} \chi_{\Omega_{r}}\right)(x)\right]^{p / q} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} \mathrm{~d} x \tag{2.8}
\end{equation*}
$$

Note that the norm of the maximal operator M and, consequently, also the constant c depend on the value of p / q.

If $p=1$, we cannot use Lemma 4. Instead we use the fact that for Ω with $|\Omega|<\infty$ the maximal operator M is a bounded mapping of $L \log L(\Omega)$ in $L^{1}(\Omega)$ (see [2], p. 74). Recall that $L \log L(\Omega)$ is the Zygmund space which consists of all measurable functions u with $\int_{\Omega}|u(x)| \log _{+}|u(x)| \mathrm{d} x<\infty$, endowed with the norm

$$
\|u\|_{L \log L(\Omega)}=\int_{0}^{|\Omega|} u^{*}(t) \log \frac{|\Omega|}{t} \mathrm{~d} t
$$

where u^{*} is the non-increasing rearrangement of u.
Theorem 3. Let $p=1$ and let k be a positive integer. Let Ω be a bounded open subset of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash \Omega$ is locally uniformly (1,1)-thick. Then there exists a positive constant $c=c(k, n, b)$ such that the inequality

$$
\begin{equation*}
\int_{\Omega_{r}} \frac{|u(x)|}{d(x)^{k}} \mathrm{~d} x \leqslant c\left\|\nabla^{k} u\right\|_{L \log L\left(\Omega_{r}\right)} \tag{2.9}
\end{equation*}
$$

holds for every function $u \in C_{0}^{\infty}(\Omega)$ and for every $r \in\left(0, r_{0}\right)$, where r_{0} is the parameter given in Definition 1.

Proof. From the estimate (2.1) we have

$$
|u(x)| d(x)^{-k} \leqslant c M\left(\left|\nabla^{k} u\right| \chi_{\Omega_{r}}\right)(x), \quad x \in \Omega_{r}
$$

Integrating both sides of the inequality over Ω_{r} and using the boundedness of $M: L \log L(\Omega) \rightarrow L^{1}(\Omega)$ we arrive at the inequality (2.9).

Corollary 1. Let $1<p<\infty$ and let k be a positive integer. Let Ω be an open subset of \mathbb{R}^{n} such that $\mathbb{R}^{n} \backslash \Omega$ is locally uniformly $(1, p)$-thick. Then there exists a number $\varepsilon_{0}>0$ such that the inequality

$$
\begin{equation*}
\int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)^{k}}\right)^{p} d(x)^{\varepsilon p} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} d(x)^{\varepsilon p} \mathrm{~d} x \tag{2.10}
\end{equation*}
$$

holds for all $u \in C_{0}^{\infty}(\Omega), r \in\left(0, r_{0}\right)$ and $0 \leqslant \varepsilon<\varepsilon_{0}$. The constant $c>0$ depends on n, p, k, b and on the number q from Lemma 4.

Proof. Fix $\varepsilon>0$ and let $u \in C_{0}^{\infty}(\Omega)$ be such that the integral on the right hand side of (2.10) is finite.

If $k=1$, we set $v(x)=|u(x)| d(x)^{\varepsilon}$. Then

$$
\begin{equation*}
|\nabla v(x)| \leqslant|\nabla u(x)| d(x)^{\varepsilon}+\varepsilon|u(x)| d(x)^{\varepsilon-1} \quad \text { for a.e. } x \in \Omega \tag{2.11}
\end{equation*}
$$

and (2.10) implies that v belongs to the Sobolev space $W_{0}^{1, p}(\Omega)$. Applying Theorem 2 to functions from $C_{0}^{\infty}(\Omega)$ which approximate v in $W_{0}^{1, p}(\Omega)$ and passing to the limit we obtain

$$
\int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)}\right)^{p} d(x)^{\varepsilon p} \mathrm{~d} x=\int_{\Omega_{r}}\left(\frac{|v(x)|}{d(x)}\right)^{p} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}|\nabla v(x)|^{p} \mathrm{~d} x
$$

for $0 \leqslant \varepsilon<\varepsilon_{0}$. By (2.11), we have

$$
\begin{aligned}
& \int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)}\right)^{p} d(x)^{\varepsilon p} \mathrm{~d} x \\
& \leqslant c\left(\int_{\Omega_{r}}|\nabla u(x)|^{p} d(x)^{\varepsilon p} \mathrm{~d} x+\varepsilon^{p} \int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)}\right)^{p} d(x)^{\varepsilon p} \mathrm{~d} x\right)
\end{aligned}
$$

Thus, the inequality (2.10) holds for $0 \leqslant \varepsilon<\varepsilon_{0}=c^{-1 / p}$.
Let $k>1$ and suppose that the inequality (2.10) holds for $j=1,2, \ldots, k-1$ and $0 \leqslant \varepsilon<\varepsilon_{0}$. Let ϱ be the regularized distance function equivalent to d and satisfying the estimate

$$
\left|\nabla^{j} \varrho(x)\right| \leqslant c_{j} d(x)^{1-j}, \quad x \in \Omega, \quad j=1,2, \ldots
$$

(see, e.g., [11, p. 171]). Set $v(x)=|u(x)| \varrho(x)^{\varepsilon}$. Then

$$
\left|\nabla^{k} v(x)\right| \leqslant\left|\nabla^{k} u(x)\right| \varrho(x)^{\varepsilon}+\varepsilon \sum_{j=1}^{k} Q_{j}(\varepsilon)\left|\nabla^{k-j} u(x)\right| \varrho(x)^{\varepsilon-j}
$$

where Q_{j} are polynomials of degree j. Thus, we have

$$
\begin{aligned}
\int_{\Omega_{r}} & \left(\frac{|u(x)|}{d(x)^{k}}\right)^{p} d(x)^{\varepsilon p} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}\left(\frac{|v(x)|}{\varrho(x)^{k}}\right)^{p} \mathrm{~d} x \\
& \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} \varrho(x)^{\varepsilon p} \mathrm{~d} x+c \varepsilon^{p} \sum_{j=1}^{k}\left|Q_{j}(\varepsilon)\right|^{p} \int_{\Omega_{r}}\left(\frac{|u(x)|}{\varrho(x)^{k-j}}\right)^{p} \varrho(x)^{\varepsilon p} \mathrm{~d} x \\
& \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} \varrho(x)^{\varepsilon p} \mathrm{~d} x+c \varepsilon^{p} \int_{\Omega_{r}}\left(\frac{|u(x)|}{\varrho(x)^{k}}\right)^{p} \varrho(x)^{\varepsilon-p} \mathrm{~d} x \\
& \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} d(x)^{\varepsilon p} \mathrm{~d} x+c \varepsilon^{p} \int_{\Omega_{r}}\left(\frac{|u(x)|}{d(x)^{k}}\right)^{p} d(x)^{\varepsilon-p} \mathrm{~d} x
\end{aligned}
$$

and the inequality (2.10) holds for $0 \leqslant \varepsilon<c^{-1 / p}$.
Corollary 2. Let Ω be such that $\mathbb{R}^{n} \backslash \Omega$ is locally uniformly ($1, p$)-thick with $r_{0}>\frac{1}{2} \operatorname{diam}(\Omega)$. Then the inequality (2.1) holds for every $x \in \Omega$ and the assertions of Theorem 2, Theorem 3 and Corollary 1 hold with Ω in place of Ω_{r} and for all functions u from the corresponding Sobolev spaces $W_{0}^{k, p}$ on Ω.

Proof. It suffices to observe that $\Omega_{r}=\Omega$ for $r>\frac{1}{2} \operatorname{diam}(\Omega)$ and that the constant c does not depend on the parameter r_{0}.

Note that the assumption of Corollary 2 holds, in particular, if $\mathbb{R}^{n} \backslash \Omega$ is uniformly $(1, p)$-thick (i.e., $r_{0}=\infty$).

An open problem. Additional weights could be introduced into the inequality (2.6) by applying a weighted inequality for the maximal function. Following the proof of Theorem 2 we can multiply both sides of inequality (2.7) (or, more precisely, of inequality (2.1)) by $d(x)^{\varepsilon}$ and integrate over Ω_{r}. However, to make the final step in (2.8) we have to know that the maximal function satisfies the weighted inequality

$$
\int_{\Omega_{r}}\left[M\left(\left|\nabla^{k} u\right|^{q} \chi_{\Omega_{r}}\right)(x)\right]^{p / q} d(x)^{\varepsilon p} \mathrm{~d} x \leqslant c \int_{\Omega_{r}}\left|\nabla^{k} u(x)\right|^{p} d(x)^{\varepsilon p} \mathrm{~d} x .
$$

Note that we are dealing with the global maximal function (the balls in the construction of $M_{\gamma, 4 d(x)}$ from inequality (2.1) cross the complement of Ω) and so to use the known weighted inequalities for M we would have to consider $d(x)$ extended properly outside Ω. The question is, if the sufficient conditions for such weighted estimate would not override the condition of $(1, p)$-thickness of $\mathbb{R}^{n} \backslash \Omega$.

References

[1] D. R. Adams, L. I. Hedberg: Function spaces and potential theory. Springer, Berlin, 1996.
[2] D. E. Edmunds, H. Triebel: Function spaces, entropy numbers and differential operators. Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996.
[3] D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order. (2nd ed.), Springer, Berlin, 1983.
[4] P. Hajtasz: Pointwise Hardy inequalities. Proc. Amer. Math. Soc. 127 (1999), 417-423.
[5] J. Heinonen, T. Kilpelä̈nen, O. Martio: Nonlinear potential theory of degenerate elliptic equations. Oxford Science Publications, Clarendon Press, Oxford, 1993.
[6] J. Kinnunen, O. Martio: Hardy's inequalities for Sobolev functions. Math. Res. Lett. 4 (1997), no. 4, 489-500.
[7] J. L. Lewis: Uniformly fat sets. Trans. Amer. Math. Soc. 308 (1988), no. 1, 177-196.
[8] V. G. Maz'ya: Sobolev spaces. Springer, Berlin, 1985.
[9] P. Mikkonen: On the Wolff potential and quasilinear elliptic equations involving measures. Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 104 (1996), 1-71.
[10] B. Opic, A. Kufner: Hardy-type inequalities. Pitman Research Notes in Math. Series 219, Longman Sci.\&Tech., Harlow, 1990.
[11] E. M. Stein: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N.J., 1970.
[12] A. Wannebo: Hardy inequalities. Proc. Amer. Math. Soc. 109 (1990), no. 1, 85-95.
Authors' addresses: D. E. Edmunds, Centre for Mathematical Analysis and Its Applications, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, United Kingdom, e-mail: D.E.Edmunds@sussex.ac.uk; J. Rákosnik, Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha 1, Czech Republic, e-mail: rakosnik@math.cas.cz.

