TWO SEPARATION CRITERIA FOR SECOND ORDER ORDINARY OR PARTIAL DIFFERENTIAL OPERATORS

R. C. Brown, Tuscaloosa, D. B. Hinton, Knoxville

(Received November 30, 1998)

Dedicated to Professor Alois Kufner on the occasion of his 65th birthday

Abstract. We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in \mathbb{R}^{n}. Also, for symmetric second-order ordinary differential operators we show that $\limsup _{t \rightarrow c}\left(p q^{\prime}\right)^{\prime} / q^{2}=$ $\theta<2$ where c is a singular point guarantees separation of $-\left(p y^{\prime}\right)^{\prime}+q y$ on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that $-\Delta y+q y$ is separated on its minimal domain if q is superharmonic. For $n=1$ the criterion is used to give examples of a separation inequality holding on the domain of the minimal operator in the limit-circle case.

Keywords: separation, ordinary or partial differential operator, limit-point, essentially self-adjoint

MSC 2000: 34L05, 35P05, 47F05, 34L40, 26D10

1. Introduction

In this paper we investigate separation properties of unbounded operators determined by the ordinary or partial differential expressions

$$
\begin{align*}
M_{w}[y] & :=w^{-1}\left[-\left(p y^{\prime}\right)^{\prime}+q y\right], \tag{1.1}\\
M_{w, n}[y] & :=w^{-1}[-\operatorname{div}(P \nabla y)+q y] . \tag{1.2}
\end{align*}
$$

For (1.1) we assume that p, q, and w satisfy the so-called minimal conditions of Naimark [24]; that is, they are real valued functions defined on an interval $I=$ $(a, b),-\infty \leqslant a<b \leqslant \infty$ such that $w>0$ a.e. and p^{-1}, q, and $w>0$ are locally
integrable functions. In (1.2) ∇y denotes the gradient of y where the differentiation is understood in the sense of distributions. w, q are real-valued functions defined on a domain (open set) $\Omega \subseteq \mathbb{R}^{n} ; w$ remains positive, but w, q are $C^{2}(\Omega)$ and P is a $n \times n$ real matrix valued function such that P is positive semi-definite (and hence symmetric) in the sense that $[P(x) v, v]_{n} \geqslant 0$ for $x \in \Omega$ where $[\cdot, \cdot]_{n}$ denotes the euclidean inner product on C^{n} and the components $\left\{p_{i j}\right\}$ are $C^{2}(\Omega)$.

Suppose \mathcal{D}_{0} and \mathcal{D} denote the domains of the minimal and maximal operators L_{0} and L determined by (1.1) or (1.2) on I or Ω. (Precise definitions of these concepts will be given below.) Then M_{w} or $M_{w, n}$ is said to be separated on \mathcal{D}_{0} or \mathcal{D} if for $J=I$ or Ω

$$
\begin{equation*}
y \in \mathcal{D}_{0} \text { or } \mathcal{D} \Longrightarrow w^{-1} q y \in L^{2}(w ; J) \tag{1.3}
\end{equation*}
$$

where $L^{2}(w ; J)$ signifies the usual Hilbert space of equivalence classes of all complex Lebesgue square integrable functions f with norm $\|f\|_{w, J}$ and inner product $[f, g]_{w, J}$ given by

$$
\begin{aligned}
\|f\|_{w, J} & =\left(\int_{J} w|f|^{2} \mathrm{~d} x\right)^{1 / 2} \\
{[f, g]_{w, J} } & =\int_{J} w f g \mathrm{~d} x
\end{aligned}
$$

A property equivalent to separation is the following.
Definition 1. L or L_{0} satisfies a separation inequality on \mathcal{D} or \mathcal{D}_{0} if whenever $y \in \mathcal{D}$ or $y \in \mathcal{D}_{0}$ then there are constants $A, C, K>0, B \geqslant 0$, and a constant L, all independent of y, such that

$$
\begin{gather*}
A\left\|w^{-1}\left(p y^{\prime}\right)^{\prime}\right\|_{w, I}^{2}+B\left\|w^{-1} \sqrt{p q} y^{\prime}\right\|_{w, I}^{2}+C\left\|w^{-1} q y\right\|_{w, I}^{2} \\
\leqslant K\left\|M_{w}[y]\right\|_{w, I}^{2}+L\|y\|_{w, I}^{2} \tag{1.4}
\end{gather*}
$$

or

$$
\begin{gather*}
A\left\|w^{-1} \operatorname{div}(P \nabla y)\right\|_{w, \Omega}^{2}+B\left\|w^{-1}\left(q[P \nabla y, \nabla y]_{n}\right)^{1 / 2}\right\|_{w, \Omega}^{2}+C\left\|w^{-1} q y\right\|_{w, \Omega}^{2} \tag{1.5}\\
\leqslant K\left\|M_{w, n}[y]\right\|_{w, \Omega}^{2}+L\|y\|_{w, \Omega}^{2}
\end{gather*}
$$

hold.
Clearly (1.4), or (1.5) implies (1.3). But if (1.3) holds then a closed graph theorem argument shows that L_{0} or L satisfies either (1.4) or (1.5) with $A=C=1, B=0$, and $K=L$. See [3, Proposition 1] for a proof in the ordinary case. The proof in \mathbb{R}^{n}, $n>1$, is similar.

If $w=1$ several criteria for separation in the ordinary case have been given by Everitt and Giertz in a series of pioneering papers [12-16], also see Everitt, Giertz, and Weidmann [17], and Atkinson [1]. More recent results (that include weighted cases) may be found in Brown and Hinton [3]. Some extensions of these criteria to the partial differential case may be found in Everitt and Giertz [16] and Evans and Zettl [9]

One of the principal results of this paper for the ordinary case is that under various conditions on p, q, and w, then the condition

$$
\begin{equation*}
-\infty \leqslant \limsup w\left(p\left(w^{-1} q\right)^{\prime}\right)^{\prime} / q^{2}=\theta<2 \tag{1}
\end{equation*}
$$

where c is a singular endpoint of I implies separation at least on \mathcal{D}_{0}. We will show that the same is true for the partial differential expression (1.2) under the basic conditions assumed above on w, q and P if $\left(\mathrm{S}_{1}\right)$ is replaced by

$$
\begin{equation*}
\sup _{t \in \Omega} w \operatorname{div}\left(P \nabla\left(w^{-1} q\right)\right) / q^{2}=\theta<2 \tag{n}
\end{equation*}
$$

One easy consequence of $\left(\mathrm{S}_{1}\right)$ and standard theory is that M_{w} will be separated even on \mathcal{D} if $w=p=1$ and q is bounded below, increasing, and concave downward. Similarly we can prove that $M_{w, n}$ is separated at least on \mathcal{D}_{0} (and if essentially self-adjoint on \mathcal{D} also) if $w^{-1} q$ is superharmonic on Ω.

A second sufficient condition for separation on \mathcal{D}_{0} for $n>1$ involves the condition

$$
\begin{equation*}
\left[P(x) \nabla\left(w^{-1} q\right), \nabla\left(w^{-1} q\right)\right]_{n}^{1 / 2} \leqslant \theta w^{-1}|q(x)|^{3 / 2}, \quad 0<\theta<2 . \tag{n}
\end{equation*}
$$

This result generalizes a separation result in [3] as well as theorems given by Everitt and Giertz in the unweighted case when $P=I$. It is also closely related in form to a result of Evans and Zettl [9] but our proof appears to be simpler and applies to a larger class of potentials q.

The precise statement of these and other results will be given in Sections 3 and 4. The background needed to state and prove them is given immediately below.

2. Preliminaries

Since our results are more comprehensive when $n=1$ we choose to treat this theory separately from the multidimensional case, even though (1.1) is formally a special case of (1.2). Under the minimal conditions ${ }^{1}$ stated above M_{w} naturally

[^0]determines minimal and maximal operators L_{0} and L in the following way. L_{0} is the closure of the "preminimal operator" L_{0}^{\prime} which is the restriction of M_{w} to the compact support functions $\mathcal{D}_{0}^{\prime} \subset \mathcal{D}$ where
$$
\mathcal{D}:=\left\{y \in L^{2}(w ; I) \cap A C_{\mathrm{loc}}(I): p y^{\prime} \in A C_{\mathrm{loc}}(I) ; M_{w}[y] \in L^{2}(w, I)\right\}
$$

Here $A C_{\text {loc }}(I)$ denotes the locally ${ }^{2}$ absolutely continuous functions on I.
The maximal operator L is then given by M_{w} acting on \mathcal{D}. With these definitions it can be shown that:
(i) $L_{0} \subset L$,
(ii) $L_{0}^{\prime *}=L_{0}^{*}=L$,
(iii) $L^{*}=L_{0}=\overline{L_{0}^{\prime}}$.

Thus L_{0}^{\prime}, L_{0}, and L are densely defined; L_{0}^{\prime}, L_{0} are symmetric, and L_{0}, L are respectively the "smallest" and "largest" closed operators in $L^{2}(w ; I)$ naturally generated by M_{w}. The density of the domains $\mathcal{D}_{0}^{\prime}, \mathcal{D}_{0}$, and \mathcal{D} is easy to verify if the coefficients q, p are smooth enough that $C_{0}^{\infty} \subseteq \mathcal{D}_{0}^{\prime}$; otherwise this is not obvious and is a consequence of the adjoint relationships (ii) and (iii).

If p^{-1}, q are locally integrable on $[a, c)$ or $(c, b]$ for $a<c<\infty$ we say that a or b are regular; otherwise they are singular. In our setting a or b may be either regular or singular and we signal the regular case at either or both end-points by writing I as a semi-closed or closed interval $[a, b),(a, b]$, or $[a, b]$. We regard an infinite end-point as singular.
M_{w} is said to be limit-point or LP at the singular end-point a or b if there is at most one solution of $M_{w}[y]=0$ which is in $L^{2}(a, c)$ or $L^{2}(c, b)$ for $a<c<b . M_{w}$ is limit-circle or LC at an end-point if both solutions are in $L^{2}(w ; J)$ for a neighborhood J containing the point. If one end-point is regular and the other singular the LP case can be shown equivalent to the property that \mathcal{D} is exactly a two dimensional extension of \mathcal{D}_{0}; while if M_{w} is limit-circle, then \mathcal{D} is a four dimensional extension of \mathcal{D}_{0}. Still another characterization of the LP property at a singular point (say b) which is sometimes taken as the definition is the vanishing of the Lagrange bilinear form $\{y, z\}$ at the point. We define this form by the identity (proven by two integration by parts)

$$
\int_{s}^{t} w M_{w}[y] \bar{z}-\int_{t}^{s} w y \overline{M_{w}[z]}=\{y, z\}(t)-\{y, z\}(s)
$$

where $t, s \in I$ and $\{y, z\}(t):=\left(y p \bar{z}^{\prime}-p y^{\prime} \bar{z}\right)(t)$. That M_{w} is limit-point at b is equivalent to the property

$$
\lim _{t \rightarrow b}\{y, z\}(t):=0
$$

${ }^{2}$ Any local property will be labeled with the subscript "loc"; thus $L_{\text {loc }}^{2}(\Omega)$ will denote the the locally square integrable functions on Ω.
for all $y, z \in \mathcal{D}$. A more restrictive condition at b which implies LP is the "strong limit-point" (SLP) property which means that

$$
\lim _{t \rightarrow b}\left(y p \bar{z}^{\prime}\right)(t)=0
$$

for all $y, z \in \mathcal{D}$. That in our setting M_{w} must be either limit-point or limit-circle is called the Weyl alternative after the inventor of these concepts. ${ }^{3}$ The SLP property has been extensively studied by Everitt; see e.g. [10-11] and [17]. For LP criteria see Read [26] and Kauffman, Read, and Zettl [22].

If M_{w} is limit-point at the singular end-points one can show that separation on \mathcal{D}_{0} implies separation on \mathcal{D}. Further if L is separated then M_{w} is SLP at the singular endpoints. Proofs of these statements may be found in [3, Proposition 2].

A version of minimal conditions that applies to the expression $-\operatorname{div}(P \nabla y)+q y$ has been given by E. B. Davies using quadratic form methods in the book [5]. But most results of interest to us have been proven using some variant of the basic conditions give above. In particular appropriate smoothness ${ }^{4}$ is required for P and it is assumed that $q \in L_{\mathrm{loc}}^{2}(\Omega)$. Under such hypotheses $\mathcal{D}_{0}^{\prime} \supseteq C_{0}^{\infty}(\Omega), L_{0}^{\prime *}=L$, and $L^{*}=L_{0}=\overline{L_{0}^{\prime}}$, where L as in the ordinary case is defined by $M_{w, n}$ on

$$
\mathcal{D}:=\left\{u \in L^{2}(w ; \Omega): M_{w, n}[y] \in L^{2}(w ; \Omega)\right\}
$$

where the differentiation in $M_{w, n}$ is interpreted in the distributional sense. For the details of this development see [5] or [7]. We remark however that for consistency in the discussion of operators determined by M_{w} and $M_{w, n}$ we shall call L_{0} the "minimal operator", while most other writers use this term to denote L_{0}^{\prime} in the partial case. When $\Omega=\mathbb{R}^{n}$ or $\mathbb{R}_{+}^{n}:=\mathbb{R}^{n} \backslash\{0\}, n \geqslant 2$, the idea which replaces the LP condition is the concept that L_{0}^{\prime} is "essentially self-adjoint". This means that $L_{0} \equiv \overline{L_{0}^{\prime}}=L$. Thus since $L^{*}=L_{0}, L$ is self-adjoint. Equivalently L_{0} has a unique self-adjoint extension; for if T is any self-adjoint extension of L_{0}, then

$$
T=T^{*} \subseteq L_{0}^{*}=L=L_{0} \subseteq T
$$

Many sufficient conditions have been given for essential self-adjointness. For instance, Simon [27] showed that the basic Schrödinger operator $-\Delta y+q y$ is essentially selfadjoint if $q=q_{1}+q_{2}$, where $0 \leqslant q_{1} \in L^{2}\left(\mathbb{R}^{n}\right)$ and $q_{2} \in L^{\infty}$. Successively more

[^1]powerful extensions of this result were given by Kato [21], Eastham, Evans, and McLeod [7], and Evans [8]. Since these results are rather complicated and are peripheral to our main interest we will not state them here. Some of these papers allow considerable oscillation of q at ∞, but not potentials which are strongly singular at 0 . This gap was covered by Kalf [19] and Kalf et al. [20] who showed that $-\Delta y+q y$ is essentially self-adjoint on \mathbb{R}_{+}^{n} if q satisfies a local Stummel condition and
$$
q \geqslant\left(1-[(n-2) / 2]^{2}\right)|x|^{-2}-\gamma|x|^{2},
$$
with $\gamma \geqslant 0$. Essential self-adjointness criteria for L_{0}^{\prime} on a subdomain $\Omega \subset \mathbb{R}^{n}$ can be found in Jörgens [18].

Our purpose in this paper is to improve the following two separation results obtained in [3] in the ordinary setting.

Theorem A. Suppose $p^{-1} \in L_{\mathrm{loc}}(I), w$ is a positive function in $L_{\mathrm{loc}}(I), p q \geqslant 0$, and $q \in A C_{\mathrm{loc}}(I)$, where $I=[a, b),-\infty<a<b \leqslant \infty$. Then the separation inequality (1.4) holds for all $y \in \mathcal{D}_{0}$ with certain constants $A, C<1, B<2, K=1$ and $L=0$ under the condition

$$
\begin{equation*}
\limsup _{t \rightarrow b}\left|w p^{1 / 2}\left(w^{-1} q\right)^{\prime} / q^{3 / 2}\right|=\theta<2 \tag{1}
\end{equation*}
$$

Theorem B. Suppose p and w satisfy the minimal conditions stated above on $I=[a, \infty)$ and additionally that $p q \geqslant 0$, and q, p are differentiable on I, Then the separation inequality (1.4) holds on \mathcal{D}_{0} with certain constants $A, C<1, B<2$, $K=1$, and $L=0$ if

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left|w\left(p\left(w^{-1} q\right)^{\prime}\right)^{\prime} / q^{2}\right|=\theta \tag{1}
\end{equation*}
$$

for some $0 \leqslant \theta<2$.
Our proof of Theorem A closely followed an argument due to Everitt and Giertz who considered the case $w=p=1$. Theorem B on the other hand appears to be new. It was motivated by a claim of Dunford and Schwartz who in [6, Chapter XIII, $9 . B 5$, p. 1541] state without giving a proof or reference that M_{w} is separated on \mathcal{D} when $I=[0, \infty)$ if

$$
\limsup _{t \rightarrow \infty}\left|\left(p q^{\prime}\right)^{\prime}\right| q^{2}<1
$$

As noted by Everitt and Giertz in 1974 [14] this condition may be a misprint since $p(x)=1$ and $q(x)=-x$ for $x \in[0, \infty)$ satisfies the condition and yet as is shown
by them in [12] separation does not occur. Our version is in a weighted setting and proves (but on \mathcal{D}_{0} only) a result that may have been intended.

Our extensions of the above theorems are given in Sections 3 and 4. In Theorem 1 of Section 3 we prove a version of Theorem B in the ordinary case which replaces $\left(\left|S_{1}\right|\right)$ by the condition $\left(\mathrm{S}_{1}\right)$ which differs from the previous condition in omitting the absolute value sign. This allows more freedom in the choice of p, q and w. Such a result parallels a version of Theorem A proven by Atkinson in [1] which allows some negativity in $\left|\mathbf{S}_{1}^{*}\right|$. Here it was shown that if $w=p=1$ then separation occurs on \mathcal{D} if

$$
-4 / \sqrt{15}<q^{\prime} / q^{3 / 2}<4 / \sqrt{15}
$$

Further we allow a and/or b to be singular or finite and (with some additional tightening of the assumptions on p, q and $w) p q$ to be nonpositive. Examples of Theorem 1 will include limit-circle cases satisfying a separation inequality on \mathcal{D}_{0} but not on \mathcal{D} and which additionally do not satisfy the Everitt and Giertz-type criterion of Theorem A. In Section 4 we turn to the multidimensional case and prove separation theorems for weighted Schrödinger-type operators. The first result (Theorem 2) extends Theorem A to this setting. The argument is similar to that given by Everitt and Giertz [16], but the class of operators we consider is wider. Our separation criterion is also of the same general type as that given by Evans and Zettl [9] but because we work on \mathcal{D}_{0} we do not require essential self-adjointness at the outset and so our assumptions are less complicated and we permit strongly singular potentials such as those considered in [19-20]. Theorem 3 is an \mathbb{R}^{n} extension of the the simplest part of Theorem 1. A Corollary will imply that the minimal operator corresponding to $-\Delta y+q y$ is separated if $\Delta q \leqslant 0$, in other words if q is superharmonic (i.e., $-\Delta q \geqslant 0$, where Δ signifies the Laplacean). The paper ends with an example showing that in Theorems $1-3$ the conditions $\theta \leqslant 2$ or $\theta<2$ are necessary for separation on \mathcal{D} in all dimensions.

3. A SEPARATION RESULT FOR SECOND ORDER SYMMETRIC ORDINARY DIFFERENTIAL OPERATORS

Let λ denote a real parameter. We call λ admissible if $\lambda \geqslant 1$ and for some $\delta \in$ $(-\infty, 1), 2 \delta-\delta^{2} / \lambda>\theta$, where θ is defined by $\left(\mathrm{S}_{1}\right)$. Also set $Q_{\lambda}:=2 \lambda p q w-p\left(p^{\prime} w^{-1}\right)^{\prime}$, and define

$$
\left\{Q_{\lambda}\right\}_{-}(x)= \begin{cases}\left|Q_{\lambda}(x)\right|, & \text { if } Q_{\lambda}(x)<0 \tag{3.1}\\ 0, & \text { otherwise }\end{cases}
$$

We consider the following conditions on p, q and w which may hold for an admissible λ on $I_{s}=[s, b)$ or $I_{s}=(a, s]$ for s sufficiently close to a singular point $c=a$ or b.
(C0) $\quad p q \geqslant 0$.
(C1) $\quad Q_{\lambda} \geqslant 0$.
(C2) $\sup _{t \in I_{s}}\left(\int_{t}^{s}\left\{Q_{\lambda}\right\}_{-} \mathrm{d} x\right)\left(\int_{a}^{t} w p^{-2} \mathrm{~d} x\right) \leqslant \frac{1}{4}$ or
$\sup _{t \in I_{s}}\left(\int_{s}^{t}\left\{Q_{\lambda}\right\}_{-} \mathrm{d} x\right)\left(\int_{t}^{b} w p^{-2} \mathrm{~d} x\right) \leqslant \frac{1}{4}$.
(C3)

$$
\begin{aligned}
& \sup _{t \in I_{s}}\left(\int_{a}^{t}\left\{Q_{\lambda}\right\}_{-} \mathrm{d} x\right)\left(\int_{t}^{s} w p^{-2} \mathrm{~d} x\right) \leqslant \frac{1}{4} \text { or } \\
& \sup _{t \in I_{s}}\left(\int_{t}^{b}\left\{Q_{\lambda}\right\}_{-} \mathrm{d} x\right)\left(\int_{s}^{t} w p^{-2} \mathrm{~d} x\right) \leqslant \frac{1}{4}
\end{aligned}
$$

(C4) There exists a positive continuous function f such that for $\varepsilon>0$

$$
\begin{aligned}
& \sup _{t \in I_{s}} f(t)^{2}\left([\varepsilon f(t)]^{-1} \int_{t}^{t+\varepsilon f(t)}\left\{Q_{\lambda}\right\}_{-} \mathrm{d} x\right)\left([\varepsilon f(t)]^{-1} \int_{t}^{t+\varepsilon f(t)} w p^{-2} \mathrm{~d} x\right)<\infty \\
& \limsup _{t \rightarrow c} f(t)^{-2}\left([\varepsilon f(t)]^{-1} \int_{t}^{t+\varepsilon f(t)}\left\{Q_{\lambda}\right\}_{-} \mathrm{d} x\right)\left([\varepsilon f(t)]^{-1} \int_{t}^{t+\varepsilon f(t)} w q^{-2} \mathrm{~d} x\right)=0 .
\end{aligned}
$$

(C5) $q \geqslant 0$ and $-Q_{\lambda} \leqslant E(\lambda) p<\infty$, where $E(\lambda)$ is a positive constant depending on λ.
Given these conditions we can state:

Theorem 1. Suppose p, q and w are twice differentiable on I. Then $M_{w}[y]$ on \mathcal{D}_{0} is separated and satisfies an inequality of the form (1.4) with $A=C>0$, and $B=0$ under one of $(\mathrm{C} 0)-(\mathrm{C} 5)$ provided also that $\left(\mathrm{S}_{1}\right)$ holds.

Proof. We begin by choosing s large enough as needed so that the conditions $(\mathrm{C} 0)-(\mathrm{C} 5)$ hold, and so that in $\left(\mathrm{S}_{1}\right)$

$$
\begin{align*}
\frac{w\left(p\left(w^{-1} q\right)^{\prime}\right)^{\prime}(t)}{q(t)^{2}} & \leqslant \frac{\lambda^{2}-(\lambda-\delta)^{2}}{\lambda} \tag{3.2}\\
& \leqslant 2 \delta-\frac{\delta^{2}}{\lambda}<2-\frac{\delta^{2}}{\lambda}
\end{align*}
$$

for a convenient admissible λ.
Let $M_{w, \lambda}[y]$ be given by the expression $w^{-1}\left[-\left(p y^{\prime}\right)^{\prime}+\lambda q y\right]$. We define the maximal and minimal operators L and L_{0} corresponding to $M_{w, \lambda}$ as above, but on I_{s}. Let $C_{0}^{\infty}\left(I_{s}\right)$ denote the infinitely differentiable functions with compact support on I_{s}. Then $C_{0}^{\infty}\left(I_{s}\right) \subset \mathcal{D}_{0}^{\prime}$ relative to I_{s}. Suppose $y \in C_{0}^{\infty}\left(I_{s}\right)$ and and $\lambda>1$. Repeated
integrations by parts and evaluation of $M_{w, \lambda}^{2}$ show that

$$
\begin{align*}
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2}= & \int_{I_{s}} w M_{w, \lambda}^{2}[y] y \mathrm{~d} x \tag{3.3}\\
= & \left\|w^{-1}\left(p y^{\prime}\right)^{\prime}\right\|_{w, I_{s}}^{2}+\int_{I_{s}}\left[2 \lambda p q w^{-1}\left|y^{\prime}\right|^{2}\right. \\
& \left.+(\lambda q)^{2} w^{-1}\left(1-\frac{w\left(p\left(w^{-1} q^{\prime}\right)^{\prime}\right.}{\lambda q^{2}}\right)|y|^{2}\right] \mathrm{d} x .
\end{align*}
$$

Alternatively,

$$
\begin{align*}
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2}= & \int_{I_{s}}\left\{\left(w^{-1} p^{2} y^{\prime \prime}\right)^{\prime \prime}-\left(2 \lambda p q w^{-1}-p\left(p^{\prime} w^{-1}\right)^{\prime}\right) y^{\prime}\right. \tag{3.4}\\
& \left.+\left((\lambda q)^{2} w^{-1}-\lambda\left(p\left(w^{-1} q\right)^{\prime}\right)^{\prime}\right) y\right\} \bar{y} \mathrm{~d} x \\
= & \int_{I_{s}}\left\{w^{-1} p^{2}\left|y^{\prime \prime}\right|^{2}+\left(2 \lambda p q w^{-1}-p\left(p^{\prime} w^{-1}\right)^{\prime}\right)\left|y^{\prime}\right|^{2}\right. \\
& \left.\quad+\left((\lambda q)^{2} w^{-1}-\left(\lambda p\left(w^{-1} q\right)^{\prime}\right)^{\prime}\right)|y|^{2}\right\} \mathrm{d} x \\
\geqslant & \int_{I_{s}}\left\{\left(2 \lambda p q w^{-1}-p\left(p^{\prime} w^{-1}\right)^{\prime}\right)\left|y^{\prime}\right|^{2}\right. \\
& \left.\quad+(\lambda q)^{2} w^{-1}\left(1-\frac{w\left(p\left(w^{-1} q^{\prime}\right)^{\prime}\right.}{\lambda q^{2}}\right)|y|^{2}\right\} \mathrm{d} x
\end{align*}
$$

It then follows from (3.2) together with (3.3) and (C0) or (3.1), (3.4), and (C1) that

$$
\begin{equation*}
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2} \geqslant(\lambda-\delta)^{2}\left\|w^{-1} q y\right\| \|_{w, I_{s}}^{2} . \tag{3.5}
\end{equation*}
$$

However, it is also true that

$$
\begin{equation*}
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}} \leqslant \| M_{w}\left[y\left\|_{w, I}+(\lambda-1)\right\| w^{-1} q y \|_{w, I_{s}} .\right. \tag{3.6}
\end{equation*}
$$

And therefore

$$
\left\|M_{w}[y]\right\|_{w, I_{s}} \geqslant(1-\delta)\left\|w^{-1} q y\right\|_{w, I_{s}}
$$

If the conditions (C2) or (C3) are satisfied instead of (C1), it follows from [25, Theorems 1.14 and 6.2] that there is the Hardy-type inequality

$$
\int_{I_{s}}\left\{Q_{\lambda}\right\}_{-}\left|y^{\prime}\right|^{2} \mathrm{~d} x \leqslant C \int_{I_{s}} w^{-1} p^{2}\left|y^{\prime \prime}\right|^{2} \mathrm{~d} x
$$

where $C<1$. This together with (3.4) yields that

$$
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2} \geqslant(1-C) \int_{I_{s}}\left\{w^{-1} p^{2}\left|y^{\prime \prime}\right|^{2}+\left[\left(\lambda^{2}\right) w^{-1} q^{2}-\left(\lambda p\left(w^{-1} q\right)^{\prime}\right)^{\prime}\right]|y|^{2}\right\} \mathrm{d} x
$$

and the proof is completed as before.

If (C4) is satisfied, it follows from [2, Theorem 2.1] that there is a sum inequality of the form

$$
\left\|\sqrt{\left\{Q_{\lambda}\right\}_{-}} y^{\prime}\right\|_{I_{s}}^{2} \leqslant \varepsilon\left\{\left\|w^{-1} q y\right\|_{w, I_{s}}^{2}+\left\|w^{-1} p y^{\prime \prime}\right\|_{w, I_{s}}^{2}\right\}
$$

Again, using (3.4) gives the inequality

$$
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2} \geqslant(1-\varepsilon) \int_{I_{s}}\left\{w^{-1} p^{2}\left|y^{\prime \prime}\right|^{2}+\left[\left(\lambda^{2}-\varepsilon\right) w^{-1} q^{2}-\left(\lambda p\left(w^{-1} q\right)^{\prime}\right)^{\prime}\right]|y|^{2}\right\} \mathrm{d} x
$$

With large enough λ and small enough ε we obtain that

$$
\begin{aligned}
\left\|M_{w, \lambda}[y]\right\|_{w, I} & \geqslant\left[\sqrt{(\lambda-\delta)^{2}-\varepsilon}\right]\left\|w^{-1} q y\right\|_{w, I_{s}} \\
& >[(\lambda-\delta)-\sqrt{\varepsilon}]\left\|w^{-1} q y\right\|_{w, I_{s}}
\end{aligned}
$$

which combined with (3.6) gives that

$$
\left\|M_{w}[y]\right\|_{w, I_{s}} \geqslant[(1-\delta)-\sqrt{\varepsilon}]\left\|w^{-1} q y\right\|_{w, I_{s}}
$$

with $[(1-\delta)-\sqrt{\varepsilon}]>0$.
Finally, under (C5) we rearrange (3.4) so that

$$
\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2}+E(\lambda) \int_{I_{s}} p\left|y^{\prime}\right|^{2} \mathrm{~d} x \geqslant \int_{I_{s}}(\lambda q)^{2} w^{-1}\left(1-\frac{w\left(p\left(w^{-1} q^{\prime}\right)^{\prime}\right.}{\lambda q^{2}}\right)|y|^{2} \mathrm{~d} x
$$

Combining this with the inequalities

$$
\int_{I_{s}} p\left|y^{\prime}\right|^{2} \mathrm{~d} x \leqslant\left[M_{w, \lambda}[y], y\right]_{w, I_{s}} \leqslant\left(\frac{1}{2} \varepsilon\right)\left\|M_{w, \lambda}[y]\right\|_{I_{s}}^{2}+\left(\frac{1}{2 \varepsilon}\right)\|y\|_{w, I_{s}}^{2}
$$

(the last of which being a consequence of Cauchy-Schwartz and the arithmeticgeometric mean inequality) gives that

$$
\begin{aligned}
&\left(1+\frac{1}{2} E(\lambda) \varepsilon\right)\left\|M_{w, \lambda}[y]\right\|_{w, I_{s}}^{2}+\frac{E(\lambda)}{2 \varepsilon}\|y\|_{w, I_{s}} \\
& \geqslant \int_{I_{s}}(\lambda q)^{2} w^{-1}\left(1-\frac{w\left(p\left(w^{-1} q^{\prime}\right)^{\prime}\right.}{\lambda q^{2}}\right)|y|^{2} \mathrm{~d} x
\end{aligned}
$$

and the proof is repeated as before.
Thus under any of these assumptions we have obtained a separation inequality for C_{0}^{∞} functions on I_{s}. Now let $L_{0}^{\prime \prime}$ denote the restriction of L_{0}^{\prime} to $C_{0}^{\infty}\left(I_{s}\right)$. We sketch a standard argument showing that that $\overline{L_{0}^{\prime \prime}}=L_{0}$. It is clear that $L \subseteq L_{0}^{\prime \prime *}$. If we can show that $L_{0}^{\prime \prime *} \subseteq L$, it will follow that $L^{*}=\overline{L_{0}^{\prime \prime *}}=L_{0}$. Suppose (α, β) belongs to
the graph of $L_{0}^{\prime \prime *}$ so that $\left[L_{0}^{\prime \prime} y, \alpha\right]_{w, I_{s}}=[y, \beta]_{w, I_{s}}$. Making use of the differentiability of p we write $-\left(p y^{\prime}\right)^{\prime}=-p^{\prime} y^{\prime}-p y^{\prime \prime}$. Integration by parts then gives $\left[y^{\prime \prime}, z\right]_{w, I_{s}}=0$, where

$$
z=\int_{a}^{t} p^{\prime} \alpha \mathrm{d} s+\int_{a}^{t}(t-s)(q \alpha-\beta) \mathrm{d} s-p \alpha
$$

The Fundamental Lemma of the calculus of variations implies that z is a linear function. Since z^{\prime} is absolutely continuous, two differentiations show that $\alpha \in \mathcal{D}$ and $\beta=L(\alpha)$. Thus $L_{0}^{\prime \prime *}=L$. Since $L^{*}=\overline{L_{0}^{\prime \prime *}}=L_{0}$, we can approximate $y \in \mathcal{D}_{0}$ and $M_{w, \lambda}[y]$ by sequences $\left\{y_{n}\right\}, M_{w, \lambda}\left[y_{n}\right]$, where the $y_{n} \in C_{0}^{\infty}\left(I_{s}\right)$. From this it will follow (cf. [9, p. 313] or [3, Lemma 1]) that the inequality is true on \mathcal{D}_{0} defined relative to I_{s}.

Next we want to extend these results to I. To this end, define a pair of smooth compact support functions φ_{1}, φ_{2} on $[s, b)$ or $(a, s]$ such that $\varphi_{1}(s)=1, \varphi_{1}^{\prime}(s)=0$ and $\varphi_{2}(s)=0, \varphi_{2}^{\prime}(s)=1$. Then for a given y in $\mathcal{D}_{0}($ on $I)$, the function $\tilde{y}=y \chi_{I_{s}}-\psi$, where $\psi=y(s) \varphi_{1}+y^{\prime}(s) \varphi_{2}$ is in \mathcal{D}_{0} on I_{s}. By the previous reasoning there is an inequality of the form

$$
\left\|w^{-1} q \tilde{y}\right\|_{w, I_{s}} \leqslant K\left\|M_{w}[\tilde{y}]\right\|_{w, I_{s}} .
$$

However this together with the triangle inequality implies that

$$
\left\|w^{-1} q y\right\|_{w, I_{s}} \leqslant K\left\{\left\|M_{w}[y]\right\|_{w, I_{s}}+\left\|M_{w}[\psi]\right\|_{w, I_{s}}\right\}+\left\|w^{-1} q \psi\right\|_{w, I_{s}} .
$$

Since ψ has compact support the last two norms are finite, so that $\left\|w^{-1} q y\right\|_{w, I_{s}}<\infty$. As we pointed out above this fact and a closed graph argument gives the inequality for $\mathcal{D}_{0}\left(\right.$ on $\left.I_{s}\right)$

$$
\begin{align*}
\left\|w^{-1} q y\right\|_{w, I_{s}} & \leqslant K\left\{\left\|M_{w}[y]\right\|_{w, I_{s}}+\|y\|_{w, I_{s}}\right\} \tag{3.7}\\
& \leqslant K\left\{\left\|M_{w}[y]\right\|_{w, I}+\|y\|_{w, I}\right\}
\end{align*}
$$

However, since the Green's function $G(t, s)$ of M_{w} is evidently bounded on $[a, s] \times[a, s]$ if a is regular or on $[s, b] \times[s, b]$ if b is regular we can obtain an inequality of the form

$$
\|y\|_{w,[a, s]} \leqslant K_{1}\left\|M_{w}[y]\right\|_{w,[a, s]} \quad \text { or } \quad\|y\|_{w,[s, b]} \leqslant K_{1}\left\|M_{w}[y]\right\|_{w,[s, b]}
$$

for all $y \in \mathcal{D}$ such that $y(a)=y^{\prime}(a)=0$ or $y(b)=y^{\prime}(b)=0$. Since q, w^{-1} are also bounded on $[a, s]$ it follows that

$$
\begin{equation*}
\left\|w^{-1} q y\right\|_{w,[a, s]} \leqslant K_{1} K_{2}\left\|M_{w}[y]\right\|_{w,[a, s]} \leqslant K_{1} K_{2}\left\|M_{w}[y]\right\|_{w, I} \tag{3.8}
\end{equation*}
$$

where K_{2} is a bound on $w^{-1} q$. (3.7), (3.8) together followed by application of the triangle inequality gives that

$$
\left\|w^{-1}\left(p y^{\prime}\right)^{\prime}\right\|_{w, I} \leqslant\left(K_{1} K_{2}+K\right)\left\|M_{w}[y]\right\|_{w, I}+K\|y\|_{w, I}
$$

Remark 1. The hypotheses (C1)-(C4) of Theorem 1 can viewed as examples of conditions which guarantee either that the spectrum of a certain minimal operator is nonnegative or that a certain quadratic form is nonnegative. Let $\widetilde{M}_{w, \lambda}[y]:=$ $w^{-1}\left[-\left(P y^{\prime}\right)^{\prime}+Q_{\lambda} y\right]$, where $P=w^{-1} p^{2}$. Assume that P and Q_{λ} satisfy minimal conditions and let $\widetilde{L}_{0, \lambda, s}$ signify the minimal operator determined by \widetilde{M} on I_{s}. We also define the quadratic form $\Phi_{\lambda, s}$ by

$$
\Phi_{\lambda, s}(z)=\int_{I_{s}}\left[P\left|z^{\prime}\right|^{2}+Q_{\lambda}|z|^{2}\right] \mathrm{d} x
$$

We then consider the conditions
(C6) For sufficiently large $\lambda, s \widetilde{L}_{0, \lambda, s}$ has nonnegative continuous spectrum.
(C7) If $z=y^{\prime}$, where $y \in C_{0}^{\infty}\left(I_{s}\right)$ then $\Phi_{\lambda, s}(z) \geqslant 0$.
It is well known that $(\mathrm{C} 6) \Longrightarrow(\mathrm{C} 7)$.

Corollary 1. Let p, q, and w satisfy the hypotheses of Theorem 1. Then M_{w} is separated and the inequality of Theorem 1 holds under (C 6) or $(\mathrm{C} 7)$ provided $\left(\mathrm{S}_{1}\right)$ is satisfied. In (C6) P and Q_{λ} need not satisfy minimal conditions.

Proof. We repeat the proof of Theorem 1 noting that (C6) and (C7) can replace (C1)-(C4) in that they guarantee that

$$
\int_{I_{s}}\left[w^{-1} p^{2}\left|y^{\prime \prime}\right|^{2}+\left(2 \lambda p q w^{-1}-p\left(p^{\prime} w^{-1}\right)^{\prime}\right)\left|y^{\prime}\right|^{2}\right] \mathrm{d} x \geqslant 0
$$

if $y^{\prime} \in C_{0}^{\infty}\left(I_{s}\right)$.
Corollary 2. If $I=[a, \infty), w=1$, and $p q \geqslant 0$ then M is separated on \mathcal{D}_{0} if $\left(p q^{\prime}\right)^{\prime} \leqslant 0$. If $p>0$ and q is bounded below then M is also separated on \mathcal{D}.

Proof. That M is separated on \mathcal{D}_{0} is immediate from Theorem 1 using (C 0$)$. That M is limit-point if $p>0$ and q is bounded below is well known (see e.g. [6, XIII.6.14, p. 1405]; consequently M is separated on \mathcal{D}.

Examples. In all the cases that follow $w^{-1} q$ is unbounded since otherwise separation holds trivially.

1. Let $p(t)=t^{\alpha}, w(t)=t^{\delta}, q(t)=C t^{\beta}$, and $I=[a, \infty), a>0$, where C is a positive constant. Then (C0) is satisfied for all $\lambda>0$ and $\left(\mathrm{S}_{1}\right)$ holds if $(\alpha-\delta+\beta-1)(\beta-\delta) \leqslant 0$, $\beta>\alpha-2$, or $\beta=\alpha-2$ and $(2 \alpha-\delta-3)(\alpha-2-\delta)<2 C$. Thus if $p(t)=t^{\alpha}$ and $\alpha \leqslant 2$ we can let $q(t)=t^{\beta}$ for $\beta>0$. In both cases the operator is limit-point at ∞ so that separation will also hold on \mathcal{D}.
2. Let $I, p(t), w$, and C be as above, but take $q(t)=-C t^{\beta}$. (C1) holds if $\alpha(\alpha-\delta-$ $1)<0$ and $\beta<\alpha-2$. ($\left.\mathrm{S}_{1}\right)$ holds if $(\alpha-\delta+\beta-1)(\beta-\delta) \geqslant 0$. We note that in the unweighted case we cannot obtain from (C1) any nontrivial example of separation. For $\delta=0$ implies that $\alpha \in(0,1)$ and therefore $\beta<-1$ so that q is bounded.
3. Let $I=[0, \infty), p(t)=\mathrm{e}^{\alpha t}, w(t)=\mathrm{e}^{\delta t}$, and $q(t)=C \mathrm{e}^{\beta t}$, where $C>0$. (C 0) of Theorem 1 holds and $\left(\mathrm{S}_{1}\right)$ is satisfied if $(\beta-\delta)(\beta+\alpha-\delta)>0$ and $\beta>\alpha$, or $(\beta-\delta)(\beta+\alpha-\delta) \leqslant 0$, or $0<(\alpha-\delta)(2 \alpha-\delta)<2$ if $\beta=\alpha$.
4. Let everything be as in Example 3 but take $q(t)=-C \mathrm{e}^{\beta t}$. For (C1) to be satisfied we need that $0<\alpha<\delta$ and $\beta<\alpha$. (2.1) implies that $(\beta-\delta)(\beta+\alpha-\delta)<0$ and $\beta>\alpha$, or $(\beta-\delta)(\beta+\alpha-\delta) \geqslant 0$, or $0>(\alpha-\delta)(2 \alpha-\delta)>-2$ if $\beta=\alpha$.
5. If $w=1, p=\left(q^{\prime}\right)^{-1}, q^{\prime}, q \geqslant 0$, and $I=[a, \infty)$ separation on \mathcal{D}_{0} is a consequence of Theorem A. Under the same assumptions on w and q, if $p=\left(q^{\prime}\right)^{-r}$ for $r>1$, and $q^{\prime \prime}>0$ then $(\mathrm{C} 0)$ and $\left(\mathrm{S}_{1}\right)$ hold so there is separation at least on \mathcal{D}_{0}.
6. If $w=p=1, q=-t^{-2} / 8$, and $I=(0, \infty)$ we find that

$$
\frac{q^{\prime \prime}}{q^{2}}=-48
$$

Consequently $\lambda=1$ is admissible if $\delta>-6$. A calculation shows that the second condition of (C3) applies with $s=0$. Equivalently, the classical Hardy inequality yields that

$$
2 \int_{I}\{q\}_{-}\left|y^{\prime}\right|^{2} \mathrm{~d} x \leqslant \int_{I}\left|y^{\prime \prime}\right|^{2} \mathrm{~d} x
$$

so that (C7) holds. We conclude that separation occurs on \mathcal{D}_{0} and by (3.5)-(3.6) there is the inequality

$$
\int_{I} t^{-2}|y|^{2} \mathrm{~d} x \leqslant \frac{64}{49} \int_{I}\left|y^{\prime \prime}+\left(\frac{1}{8} t^{-2}\right) y\right|^{2} \mathrm{~d} x
$$

The solutions of $M[y]=0$ are of the form $y=t^{\alpha}$, where $\alpha=1 / 2 \pm \sqrt{2} / 4$. Both solutions are square integrable near 0 so that M is limit-circle at 0 . Therefore we have an example of separation holding on \mathcal{D}_{0} but not on \mathcal{D}. Note also that since

$$
\left|\frac{q^{\prime}}{q^{3 / 2}}\right|=4 \sqrt{2}
$$

Theorem A does not apply.
7. Let $I=(0,1], p=-c t^{1 / 2}, w=1, q=\frac{1}{8} c t^{-3 / 2}-\frac{1}{2}$, where $c>0$ is a constant. A calculation with $\lambda=1$ shows that (C5) is satisfied and that (S_{1}) holds because
$\left(p q^{\prime}\right)^{\prime}=-\frac{3}{8} c^{2} t^{-3}<0$. This example does not satisfy a version of $\left|\mathrm{S}_{1}^{*}\right|$ formulated for the singular point 0 since θ is found to be $8^{3 / 2}\left(\frac{3}{16}\right)^{2 / 3} \approx 7.413$. Moreover M is limit-circle at 0 since it is a perturbation of an Euler operator with two L^{2} integrable solutions at 0 .

4. Partial differential operators

We write

$$
T(y):=\sum_{i, j=1}^{n} D_{i}\left(p_{i j}(x) D_{j} y\right) \equiv \operatorname{div}(P \nabla y)
$$

so that $M_{w, n}[y]=w^{-1}[-T(y)+q y]$. Our goal will be to prove separation inequalities on $\mathcal{D}_{0}^{\prime} \equiv C_{0}^{\infty}(\Omega)$ of the form (1.5) by generalizing Theorem A and Theorem 1. Since $L^{*}=L_{0} \equiv \overline{L_{0}^{\prime}}$ a closure argument like that given in [16, Lemma 2] will show that the inequality holds on \mathcal{D}_{0}. Finally, if L_{0}^{\prime} is essentially self-adjoint (so that $L_{0}=L=L^{*}$) the inequality will hold on \mathcal{D}. We note, however, that separation is a stronger property than essential self-adjointness. Let $T_{w, 0}$ and T_{w} respectively denote the minimal and maximal operators on a domain Ω determined by $w^{-1} T$.

Lemma 1. Suppose $T_{w, 0}^{\prime}$ is essentially self-adjoint and that L is separated. Then L_{0} is essentially self-adjoint.

Proof. We need show only that L is self-adjoint. Let $(u, v) \in \operatorname{Graph}\left(L^{*}\right)=$ $\operatorname{Graph}\left(L_{0}\right)$. Then $[L y, u]_{w, \Omega}=[y, v]_{w, \Omega}$. Since L is separated, the Cauchy-Schwartz inequality implies that $\left[w^{-1} T(y), u\right]_{w, \Omega}$ and $\left[w^{-1} q y, u\right]_{w, \Omega}$ are finite. Hence by the essential self-adjointness of $T_{w, 0}^{\prime}$ and self-adjointness of multiplication operators

$$
\left[w^{-1} T(y), u\right]_{w, \Omega}=\left[y, w^{-1} T(u)\right]_{w, \Omega} \quad \text { and } \quad\left[w^{-1} q y, u\right]_{w, \Omega}=\left[y, w^{-1} q u\right]_{w, \Omega} .
$$

It follows that

$$
[L y, u]_{w, \Omega}=[y, L u]_{w, \Omega}=[y, v]_{w, \Omega},
$$

and so since \mathcal{D} is dense $v=L u$.

Theorem 2. Under condition $\left(\left|S_{n}^{*}\right|\right) M_{w, n}$ satisfies the separation inequality (1.5) on \mathcal{D}_{0} with certain coefficients $A>1, C<1, B<2$, and $L=0$.

Proof. Without loss of generality we can as in [16] and by the remarks at the beginning of this section give the proof only for real functions in $C_{0}^{\infty}(\Omega)$. Let
$y \in C_{0}^{\infty}(\Omega)$. We begin with the identity

$$
\begin{align*}
& \int_{\Omega}\left\{w M_{n, w}^{2}[y]+\gamma\left(w M_{n, w}[y]\right)\left(w^{-1} T[y]\right)\right\} \mathrm{d} x= \\
& \quad \int_{\Omega}\left\{w^{-1}(1-\gamma) T[y]^{2}+w^{-1}(\gamma-2) T[y] q y+w^{-1} q^{2} y^{2}\right\} \mathrm{d} x \tag{4.1}
\end{align*}
$$

where $\gamma \in(0,1)$. Application of the arithmetic-geometric mean inequality to the the term $\gamma\left(w M_{n, w}\right)\left(w^{-1} T[y]\right)$ in (4.1) gives for $\delta>0$ the estimate

$$
\begin{equation*}
\left|\int_{\Omega}\left(w M_{n, w}[y]\right)\left(w^{-1} T[y]\right) \mathrm{d} x\right| \leqslant \frac{1}{2}\left\{\delta\left\|M_{n, w}[y]\right\|_{w, \Omega}^{2}+\delta^{-1}\left\|w^{-1} T[y]\right\|_{w, \Omega}^{2}\right\} \tag{4.2}
\end{equation*}
$$

Next integration by parts, the condition $\left(\left|S_{n}^{*}\right|\right)$, and the arithmetic-geometric mean inequality applied to $w^{-1} T[y] q y$ yields successively that

$$
\begin{aligned}
& \int_{\Omega} w^{-1} T[y] q y \mathrm{~d} x= \int_{\Omega} \sum_{i, j=1}^{n} D_{i}\left(p_{i j}(x) D_{j} y\right)\left(w^{-1} q\right) y \mathrm{~d} x \\
&=-\int_{\Omega}\left[P(x) \nabla y, \nabla\left(w^{-1} q\right)\right]_{n} y \mathrm{~d} x-\int_{\Omega} w^{-1}[P(x) \nabla y, \nabla y]_{n} q \mathrm{~d} x \\
& \leqslant \int_{\Omega}\left|\left[P(x) \nabla y, \nabla\left(w^{-1} q\right)\right]_{n}\right||y| \mathrm{d} x-\int_{\Omega} w^{-1}\left|[P(x) \nabla y, \nabla y]_{n} q\right| \mathrm{d} x \\
& \leqslant \int_{\Omega}\left\|P(x)^{1 / 2} \nabla y\right\|_{n}\left\|P(x)^{1 / 2} \nabla\left(w^{-1} q\right)\right\|_{n}|y| \mathrm{d} x \\
&-\int_{\Omega} w^{-1}\left|[P(x) \nabla y, \nabla y]_{n} q\right| \mathrm{d} x \\
& \leqslant \theta \int_{\Omega}\left\|P(x)^{1 / 2} \nabla y\right\|_{n} w(x)^{-1} q(x)^{3 / 2}|y| \mathrm{d} x \\
&-\int_{\Omega} w^{-1}\left|[P(x) \nabla y, \nabla y]_{n} q\right| \mathrm{d} x \\
&(4.3) \quad\left(\mathrm{by}\left(\left|\mathrm{~S}_{n}^{*}\right|\right)\right) \\
& \leqslant \theta\left(\int_{\Omega}\left\|P(x)^{1 / 2} \nabla y\right\|_{n} w(x)^{-1} q(x) \mathrm{d} x\right)^{1 / 2}\left(\int_{\Omega} w^{-1} q(x)^{2} y^{2} \mathrm{~d} x\right)^{1 / 2} \\
&-\int_{\Omega} w^{-1}\left|[P(x) \nabla y, \nabla y]_{n} q\right| \mathrm{d} x \\
& \leqslant \frac{1}{2} \theta\left[\int_{\Omega}\left\|P(x)^{1 / 2} \nabla y\right\|_{n} w(x)^{-1} q(x) \mathrm{d} x+\int_{\Omega} w^{-1} q(x)^{2} y^{2} \mathrm{~d} x\right]
\end{aligned}
$$

We now substitute (4.2) and (4.3) into (4.1) to obtain

$$
\begin{aligned}
&(1+\gamma \delta / 2)\left\|M_{n, w}[y]\right\|_{w, \Omega}^{2} \geqslant\left(1-\gamma-\frac{\gamma}{2 \delta}\right)\left\|w^{-1} T[y]\right\|_{w, \Omega}^{2} \\
&+(2-\gamma)\left\{\left\|w^{-1}\left([P \nabla y, \nabla y]_{n} q\right)^{1 / 2}\right\|_{w, \Omega}^{2}\right. \\
&\left.-\theta\left\|w^{-1}\left([P \nabla y, \nabla y]_{n} q\right)^{1 / 2}\right\|_{w, \Omega}\left\|w^{-1} q y\right\|_{w, \Omega}\right\} \\
&+\left\|w^{-1} q y\right\|_{w, \Omega}^{2} \\
& \geqslant\left(1-\gamma-\frac{\gamma}{2 \delta}\right)\left\|w^{-1} T[y]\right\|_{w, \Omega}^{2} \\
&+(2-\gamma)\left(1-\frac{1}{2} \theta\right)\left\|w^{-1}[P \nabla y, \nabla y]_{n}^{1 / 2} q\right\|_{w, \Omega}^{2} \\
&+\left[\left(1-(2-\gamma)\left(\frac{1}{2} \theta\right)\right]\left\|w^{-1} q y\right\|_{w, \Omega}^{2}\right.
\end{aligned}
$$

This is the inequality (1.5) if we choose $\gamma<1$ such that

$$
(2-\gamma)\left(\frac{1}{2} \theta\right)<1 \Leftrightarrow \gamma>2-\frac{2}{\theta}
$$

and δ large enough that $\left(1-\gamma-\frac{\gamma}{2 \delta}\right)>0$.
Theorem 3. Under condition $\left(\mathrm{S}_{n}\right)$ and if $q \geqslant 0$, then $M_{w, n}$ satisfies the separation inequality (1.5) on \mathcal{D}_{0} with $A=C=K=1$ and $B, L=0$.

Proof. Let $y \in C_{0}^{\infty}(\Omega)$ and set $M_{w, n, \lambda}:=w^{-1}[-T(y)+\lambda q y]$. By a direct computation

$$
\begin{aligned}
{\left[M_{w, n, \lambda}^{2}[y], y\right]_{w, \Omega}=} & \int_{\Omega}\left\{-T\left(w^{-1}[-T(y)+\lambda q y]\right)+\lambda q w^{-1}[-T(y)+\lambda q y]\right\} \bar{y} \mathrm{~d} x \\
= & \left\|w^{-1} T(y)\right\|_{w, \Omega}^{2}-\int_{\Omega}\left\{T\left(w^{-1} \lambda q y\right) \bar{y}+w^{-1} \lambda q T(y) \bar{y}\right\} \mathrm{d} x \\
& +\int_{\Omega} w^{-1}(\lambda q)^{2}|y|^{2} \mathrm{~d} x \\
\geqslant & -2 \operatorname{Re}\left(\int_{\Omega} \operatorname{div}\left(P \nabla y w^{-1} \lambda q\right) \bar{y} \mathrm{~d} x\right)+\int_{\Omega} w^{-1}(\lambda q)^{2}|y|^{2} \mathrm{~d} x \\
= & 2 \operatorname{Re}\left(\int_{\Omega} P \nabla y \cdot \nabla\left(w^{-1} \lambda q \bar{y}\right) \mathrm{d} x\right)+\int_{\Omega} w^{-1}(\lambda q)^{2}|y|^{2} \mathrm{~d} x \\
= & 2 \operatorname{Re}\left(\int_{\Omega}\left\{[P \nabla y, \nabla y]_{n} w^{-1} \lambda q+\left[P \nabla y, \nabla\left(w^{-1} \lambda q\right)\right]_{n} \bar{y}\right\} \mathrm{d} x\right) \\
& +\int_{\Omega} w^{-1}(\lambda q)^{2}|y|^{2} \mathrm{~d} x \\
= & 2 \operatorname{Re}\left(\int_{\Omega}[P \nabla y, \nabla y]_{n} w^{-1} \lambda q \mathrm{~d} x\right) \\
& +2 \operatorname{Re}\left(\int_{\Omega}\left[P \nabla y, \nabla\left(w^{-1} \lambda q\right)\right]_{n} \bar{y} \mathrm{~d} x\right)+\int_{\Omega} w^{-1}(\lambda q)^{2}|y|^{2} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
= & 2 \lambda \int_{\Omega}\left\{[P \nabla y, \nabla y]_{n} w^{-1} q \mathrm{~d} x+\lambda \int_{\Omega} P \nabla\left(w^{-1} q\right) \cdot \nabla\left(|y|^{2}\right) \mathrm{d} x\right. \\
& \quad+\int_{\Omega} w^{-1}(\lambda q)^{2}|y|^{2} \mathrm{~d} x \\
\geqslant & \int_{\Omega}\left[w^{-1}(\lambda q)^{2}-\lambda \operatorname{div}\left(P \nabla\left(w^{-1} q\right)\right]|y|^{2} \mathrm{~d} x .\right.
\end{aligned}
$$

The proof is then completed as in the (C0) case of Theorem 1. (Note that the basic assumptions on the matrix P and the nonnegativity of q guarantee that $\int_{\Omega}[P \nabla y, \nabla y]_{n} w^{-1} q \mathrm{~d} x \geqslant 0$.

The next result parallels Corollary 2 for $n>1$.
Corollary 3. If $w=1$ and $P=I_{n}$ then there is a separation inequality of form (1.5) if $\Delta q \leqslant 0$.

Remark 2. We can show that $\theta \leqslant 2$ in Theorem 2 and $\theta<2$ in Theorems 1 and 3 is a necessary condition for separation on \mathcal{D} for all dimensions n. To see this, let Ω be $\mathbb{R}^{n} \backslash \overline{B(0,1)}(B(0,1)$ is the unit ball centered at the origin), and set

$$
\begin{aligned}
y=|x|^{\mu}, & w=|x|^{\delta} \\
q=K_{0}|x|^{\beta}, & P=|x|^{\alpha} I_{n}
\end{aligned}
$$

where I_{n} is the identity matrix. Then a calculation shows that

$$
\begin{equation*}
y \in L^{2}(w ; \Omega) \Leftrightarrow \int_{\Omega}|r|^{\delta+2 \mu} r^{n-1} \mathrm{~d} r \mathrm{~d} \sigma<\infty \Leftrightarrow 2 \mu+\delta+n-1<-1 \tag{4.4}
\end{equation*}
$$

where σ represents the angular measure in polar coordinates. Also

$$
\begin{equation*}
\int_{\Omega} w\left|w^{-1} q y\right|^{2} \mathrm{~d} x=\infty \Leftrightarrow 2 \mu \geqslant \delta-2 \beta-n . \tag{4.5}
\end{equation*}
$$

In Theorem 2 the condition $\left(\left|S_{n}^{*}\right|\right)$ gives

$$
\begin{equation*}
\sup _{x \in \Omega}\left|K_{0}\right|^{-1 / 2}|\beta-\delta \| x|^{(\alpha-\beta) / 2-1}=\theta \tag{4.6}
\end{equation*}
$$

Suppose in (4.6) that $\theta=2+\varepsilon$. We will show that we can choose α, β, δ, and μ such that (4.4) and (4.5) are satisfied. First we suppose that $L y=0$. This implies that $K_{0}=\mu(\alpha+\mu-2+n)$. Next take $\alpha=2-n$ so that $K_{0}=\mu^{2}$. Now (4.4) $\Leftrightarrow-2 \mu>\delta+n$ and (4.5) $\Leftrightarrow 2 \mu \geqslant \delta+n$. In other words, assuming that $\delta<-n$, $y \in \mathcal{D}$ and $\left\|w^{-1} q y\right\|_{w, \Omega}=\infty$ if and only if

$$
\frac{1}{2}(\delta+n) \leqslant \mu<-\frac{1}{2}(\delta+n)
$$

Next if $\beta=\alpha-2=-n$, then (4.6) is equivalent to

$$
\frac{|-n-\delta|}{|\mu|} \equiv \frac{|n+\delta|}{|\mu|}=\theta \equiv 2+\varepsilon .
$$

This will hold if

$$
\frac{1}{2}(\delta+n)<(\delta+n)(2+\varepsilon)^{-1}<\mu=-(\delta+n)(2+\varepsilon)^{-1}<-\frac{1}{2}(\delta+n)
$$

For $n=1$ (Theorem A) our example bears on question that is implicit in the paper [15] of Everitt and Giertz. They showed [15, Theorem 3] that $M[y]=-y^{\prime \prime}+q y$ was separated on \mathcal{D} if in $\left(\left|\mathrm{S}_{1}^{*}\right|\right) \theta<2$ while separation need not happen on \mathcal{D} if $\theta>4 / \sqrt{3}$. But the situation when $\theta \in[2,4 / \sqrt{3})$ was left open. This problem seems still to be open; however our example shows that if nontrivial p, w are allowed θ cannot exceed 2 in Theorem A if separation is to occur on \mathcal{D}.

A slightly modified analysis works for Theorems 1 and 3. Here

$$
w \operatorname{div}\left(P \nabla\left(w^{-1} q\right)\right)=K_{0}(\beta-\delta)(\beta-\delta+\alpha)|x|^{\beta+\alpha-2}
$$

and thus $\left(\mathrm{S}_{n}\right)$ becomes

$$
\begin{equation*}
\sup _{|x \in \Omega|} K_{0}^{-1}(\beta-\delta)(\beta-\delta+\alpha)|x|^{\alpha-\beta-2}=\theta \tag{4.7}
\end{equation*}
$$

Suppose $\theta \geqslant 2$. The choice $\beta=-n, \alpha=2-n$, and μ such that $L y=0$ gives in (4.7)

$$
\theta=\mu^{-2}(n+\delta)(2 n+\delta-2)
$$

Therefore we can take

$$
\mu=-\sqrt{\frac{1}{\theta}(n+\delta)(2 n+\delta-2)}
$$

If $\delta<-n$ then (4.4) will hold. Moreover

$$
2 \leqslant \theta \Leftrightarrow 2 \theta^{-1}(n+\delta) \geqslant(n+\delta)
$$

and

$$
2 \theta^{-1}(n+\delta)<-2 \sqrt{\frac{1}{\theta}(n+\delta)[(n+\delta)+(n-2)]}=2 \mu
$$

so that $2 \mu>n+\delta$ and (4.5) also is satisfied.

References

[1] Atkinson, F. V.: On some results of Everitt and Giertz. Proc. Royal Soc. Edinburg 71 A (1972/3), 151-58.
[2] Brown, R. C.; Hinton, D. B.: Sufficient conditions for weighted inequalities of sum form. J. Math. Anal. Appl. 112 (1985), 563-578.
[3] Brown, R. C.; Hinton, D. B.; Shaw, M. F.: Some separation criteria and inequalities associated with linear second order differential operators. Preprint.
[4] Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, New York, 1955.
[5] Davies, E. B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, U.K., 1989.
[6] Dunford, N.; Schwartz, J. T.: Linear operators. Part II: Spectral theory. Interscience, New York, 1963.
[7] Eastham, M. S. P.; Evans, W. D.; McLeod, J. B.: The essential self-adjointness of Schrö-dinger-type operators. Arch. Rational Mech. Anal. 60 (1976), 185-204.
[8] Evans, W. D.: On the essential self-adjointness of powers of Schrödinger-type operators. Proc. Royal Soc. Edinburgh 79A (1977), 61-77.
[9] Evans, W.D.; Zettl, A.: Dirichlet and separation results for Schrödinger-type operators. Proc. Royal Soc. Edinburgh $80 A$ (1978), 151-162.
[10] Everitt, W. N.: On the strong limit-point condition of second-order differential expressions. International Conference of Differential Equations. (H. A. Antosiewicz, ed.), Proceedings of an international conference held at the University of Southern California, September 3-7, 1974, Academic Press, New York, 1974, pp. 287-306.
[11] Everitt, W. N.: A note on the Dirichlet conditions for second order differential expressions. Can. J. Math. 28(2) (1976), 312-320.
[12] Everitt, W. N.; Giertz, M.: Some properties of the domains of certain differential operators. Proc. London Math. Soc. (3) 23 (1971), 301-24.
[13] Everitt, W. N.; Giertz, M.: Some inequalities associated with the domains of ordinary differential operators. Math. Z. 126 (1972), 308-328.
[14] Everitt, W. N.; Giertz, M.: On limit-point and separation criteria for linear differential expressions. Proceedings of the 1972 Equadiff Conference. Brno, 1972, pp. 31-41.
[15] Everitt, W. N.; Giertz, M.: Inequalities and separation for certain ordinary differential operators. Proc. London Math. Soc 28(3) (1974), 352-372.
[16] Everitt, W. N.; Giertz, M.: Inequalities and separation for Schrödinger type operators in $L_{2} R^{n}$. Proc. Royal Soc. Edinburgh 79A (1977), 257-265.
[17] Everitt, W. N.; Giertz, M.; Weidmann, J.: Some remarks on a separation and limit-point criterion of second order ordinary differential expressions. Math. Ann. 200 (1973), 335-346.
[18] Jörgens, K. T.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_{0}^{\infty}(G)$. Math. Scand 15 (1964), 5-17.
[19] Kalf, H.: Self-adjointness for strongly singular potentials with $a-|x|^{2}$ fall-off at infinity. Math. Z. 133 (1973), 249-255.
[20] Kalf, H.; Schmincke, U. W.; Walter, J.; Wüst R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. Proceedings of the 1974 Dundee Symposium. Lecture Notes in Mathematics. vol. 448, Springer-Verlag, Berlin, 1975, pp. 182-226.
[21] Kato, T.: Schrödinger operators with singular potentials. Israel J. Math., 135-148.
[22] Kato, T.; Read, T.; Zettl, A.: The deficiency index problem for powers of differential operators. Lecture Notes in Mathematics, vol. 621, Springer-Verlag, New York, 1977.
[23] Knowles, I.: On essential self-adjointness for Schrödinger operators with wildly oscillationg potentials. J. Math. Anal. Appl. 66 (1978), 574-585.
[24] Naimark, M. A.: Linear Differential Operators. Part II. Frederick Ungar, New York, 1968.
[25] Opic, B.; Kufner, A.: Hardy-type inequalities. Longman Scientific and Technical, Harlow, Essex, UK, 1990.
[26] Read, T. T.: A limit-point criterion for expressions with intermittently positive coefficients. J. London Math. Soc. (2) 15, 271-276.
[27] Simon, B.: Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann. 201 (1973), 211-220.

Authors' addresses: R. C. Brown, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U.S.A., e-mail: dbrown@gp.as.ua.edu; D. B. Hinton, Department of Mathematics, University of Tennessee, Knoxville, TN 37996, U.S.A., e-mail: hinton@novell.math.utk.edu.

[^0]: ${ }^{1}$ Naimark only considers the case $w=1$; however the extension to general weights is routine.

[^1]: ${ }^{3}$ Likewise the nomenclature "limit-point" or "limit-circle" is due to Weyl and results from his technique which associates these cases with nested families of circles in the complex plane which converge respectively either to a point or a circle. See e.g. Coddington and Levinson [4, Chapter 9] for an account of Weyl's method.
 ${ }^{4}$ One can usually get by with $P \in C^{1+\alpha}(\Omega)$ for some $\alpha>0$ rather than our assumption that $P \in C^{2}(\Omega)$.

