WEIGHTED MULTIDIMENSIONAL INEQUALITIES FOR MONOTONE FUNCTIONS

Sorina Barza, Lars-Erik Persson, Luleå

(Received January 18, 1999)

Dedicated to Professor Alois Kufner on the occasion of his 65th birthday
Abstract. We discuss the characterization of the inequality

$$
\left(\int_{\mathbb{R}_{+}^{N}} f^{q} u\right)^{1 / q} \leqslant C\left(\int_{\mathbb{R}_{+}^{N}} f^{p} v\right)^{1 / p}, \quad 0<q, p<\infty,
$$

for monotone functions $f \geqslant 0$ and nonnegative weights u and v and $N \geqslant 1$. We prove a new multidimensional integral modular inequality for monotone functions. This inequality generalizes and unifies some recent results in one and several dimensions.

Keywords: integral inequalities, monotone functions, several variables, weighted L^{p} spaces, modular functions, convex functions, weakly convex functions

MSC 2000: 26D15, 26B99

1. Introduction

Let $\mathbb{R}_{+}^{N}:=\left\{\left(x_{1}, \ldots, x_{N}\right) ; x_{i} \geqslant 0, i=1,2, \ldots, N\right\}$ and $\mathbb{R}_{+}:=\mathbb{R}_{+}^{1}$. Assume that $f: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$is monotone which means that it is monotone with respect to each variable. We denote $f \downarrow$, when f is decreasing (= nonincreasing) and $f \uparrow$ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on $\mathbb{R}_{+}^{N}, N \geqslant 1$.

A function P on $[0, \infty)$ is called a modular function if it is strictly increasing, with the values 0 at 0 and ∞ at ∞. For the definition of an N-function we refer to [7]. We say that a modular function P is weakly convex if $2 P(t) \leqslant P(M t)$, for all $t>0$ and some constant $M>1$. All convex modular functions are obviously weakly convex. The function $P_{1}(t)=t^{p}, 0<p<1$ and the function $P_{2}(t)=\exp (\sqrt{t})-1$ are weakly convex, but not convex. See also [6].

In order to motivate this investigation and put it into a frame we use Section 2 to present the characterization of the inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}_{+}^{N}} f^{q} u\right)^{1 / q} \leqslant C\left(\int_{\mathbb{R}_{+}^{N}} f^{p} v\right)^{1 / p}, \quad 0<p, q<\infty \tag{1}
\end{equation*}
$$

for all $f \downarrow$ or $f \uparrow$.
In Section 3 we will characterize the weights ω, u and v such that

$$
\begin{equation*}
Q^{-1}\left(\int_{\mathbb{R}_{+}^{N}} Q(\omega(x) f(x)) u(x) \mathrm{d} x\right) \leqslant P^{-1}\left(\int_{\mathbb{R}_{+}^{N}} P(C f(x)) v(x) \mathrm{d} x\right) \tag{2}
\end{equation*}
$$

holds for modular functions P and Q, where P is weakly convex and $0 \leqslant f \downarrow$. Here and in the sequel $C>0$ denotes a constant independent of f.

Conventions and notation. Products and quotients of the form $0 \cdot \infty, \frac{\infty}{\infty}, \frac{0}{0}$ are taken to be $0 . \mathbb{Z}$ stands for the set of all integers and χ_{E} denotes the characteristic function of a set E.

2. Weighted L^{p} inequalities for monotone functions

In the one-dimensional case the inequality (1) was characterized in [8, Proposition 1] for both alternative cases $0<p \leqslant q<\infty$ and $0<q<p<\infty$ as follows:
(a) If $N=1,0<p \leqslant q<\infty$, then (1) is valid for all $f \downarrow$ if and only if

$$
A_{0}:=\sup _{t>0}\left(\int_{0}^{t} u\right)^{1 / q}\left(\int_{0}^{t} v\right)^{-1 / p}<\infty
$$

and the constant $C=A_{0}$ is sharp.
(b) If $N=1,0<q<p<\infty, 1 / r=1 / q-1 / p$, then (1) is true for all $f \downarrow$ if and only if

$$
B_{0}:=\left(\int_{0}^{\infty}\left(\int_{0}^{t} u\right)^{r / p}\left(\int_{0}^{t} v\right)^{-r / p} u(t) \mathrm{d} t\right)^{1 / r}<\infty
$$

Moreover,

$$
\left(\frac{q^{2}}{p r}\right)^{1 / p} B_{0} \leqslant C \leqslant\left(\frac{r}{q}\right)^{1 / r} B_{0}
$$

and

$$
B_{0}^{r}=\frac{q}{r} \frac{\left(\int_{0}^{\infty} u\right)^{r / q}}{\left(\int_{0}^{\infty} v\right)^{r / p}}+\frac{q}{p} \int_{0}^{\infty}\left(\int_{0}^{t} u\right)^{r / q}\left(\int_{0}^{t} v\right)^{-r / q} v(t) \mathrm{d} t
$$

(c) Similar characterizations are valid when $f \uparrow$, with the only change that the integrals over $[0, t]$ are replaced by integrals over $[t, \infty]$.

Since the one-dimensional inequality (1) expresses the embedding of classical Lorentz spaces, further generalizations and references in this directions can be found in [3].

The multidimensional case was recently treated in [1, Theorem 2.2], for the case $0<p \leqslant q<\infty$ and in [2, Theorem 4.1], for the case $0<q<p<\infty$ as follows:
(a) If $0<p \leqslant q<\infty$, then (1) is valid for all $f \downarrow$ if and only if

$$
A_{N}:=\sup _{D \in \mathcal{D}_{d}} \frac{\left(\int_{D} u\right)^{1 / q}}{\left(\int_{D} v\right)^{1 / p}}<\infty
$$

and the constant $C=A_{N}$ is sharp. Here the supremum is taken over the set \mathcal{D}_{d} of all "decreasing" domains, i.e., for which the characteristic function is a decreasing function in each variable.
(b) If $0<q<p<\infty$, then (1) is valid for all $f \downarrow$ if and only if

$$
B_{N}^{r}:=\sup _{0 \leqslant h \downarrow} \int_{0}^{\infty}\left(\int_{D_{h, t}} v\right)^{-r / p} \mathrm{~d}\left(-\left(\int_{D_{h, t}} u\right)^{r / q}\right)<\infty
$$

where

$$
D_{h, t}=\left\{x \in \mathbb{R}_{+}^{N} ; h(x)>t\right\} .
$$

Moreover,

$$
\frac{1}{2^{1 / q}\left(2^{r / q}+2^{r / p}\right)^{1 / r}} B_{N} \leqslant C \leqslant 4^{1 / q} B_{N}
$$

If $N=1, P$ and Q are N -functions and $Q \circ P^{-1}$ is convex, then some weight characterizations of the inequality (2) have been obtained in [4] and [5].

For $N>1, P$ and Q N-functions and $Q \circ P^{-1}$ convex, (2) holds for all $0 \leqslant f \downarrow$ if and only if there exists a constant $A=A\left(\Phi_{1}, \Phi_{2}, u, v, \omega\right)$ such that, for all $\varepsilon>0$ and $D \in \mathcal{D}_{d}$,

$$
Q^{-1}\left(\int_{D} Q(\varepsilon \omega(x)) u(x) \mathrm{d} x\right) \leqslant P^{-1}\left(P(A \varepsilon) \int_{D} v(x) \mathrm{d} x\right)
$$

This characterization can be found in [2, Theorem 2.1].
However, if Q and P are not N -functions (hence not convex) and $Q \circ P^{-1}$ is not convex, then the problem of characterizing weights for which (2) holds seems to be to a large extent open. For $N=1$ the first characterization of this type was given in [6].

In the next section we characterize the weights for which (2) holds when P is weakly convex. This result generalizes both the corresponding one-dimensional result obtained in [6] and the multidimensional case obtained in [2]. Some particular cases of (2) will also be pointed out.
3. A multidimensional modular inequality

Let $0 \leqslant h(x) \downarrow$ and $t>0$. Denote

$$
D_{h, t}:=\left\{x \in \mathbb{R}_{+}^{N} ; h(x)>t\right\},
$$

and

$$
\mathcal{D}_{d}:=\bigcup_{0 \leqslant h \downarrow t>0} \bigcup_{h, t} D_{h} .
$$

The set \mathcal{D}_{d} consists of all "decreasing" domains $D_{h, t}$. In particular, $\chi_{D_{h, t}}$ is decreasing in each variable. For a strictly decreasing, positive sequence $\left\{t_{k}\right\}$, such that $t_{k} \rightarrow 0$ as $k \rightarrow \infty$ we put

$$
D_{k}=D_{h, t_{k}}:=\left\{x \in \mathbb{R}_{+}^{N} ; h(x)>t_{k}\right\}, k \in \mathbb{Z} .
$$

Obviously, $D_{k+1} \supset D_{k}$ and we define

$$
\Delta_{k}=\Delta_{h, t_{k}}:=D_{k+1} \backslash D_{k} .
$$

Hence, $\Delta_{k} \bigcap \Delta_{n}=\emptyset, k \neq n$ and $\mathbb{R}_{+}^{N}=\bigcup_{k} \Delta_{k}$. For simplicity we also assume in the sequel that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{N}} v(x) \mathrm{d} x=\infty . \tag{3}
\end{equation*}
$$

Theorem 3.1. Let Q and P be modular functions and P weakly convex. Then (2) holds for all $0 \leqslant f \downarrow$ if and only if there exists a constant $B>0$ such that

$$
\begin{equation*}
Q^{-1}\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k}} Q\left(\frac{\varepsilon_{k}}{B} \omega(x)\right) u(x) \mathrm{d} x\right) \leqslant P^{-1}\left(\sum_{k \in \mathbb{Z}} P\left(\varepsilon_{k}\right) \int_{\Delta_{k}} v(x) \mathrm{d} x\right) \tag{4}
\end{equation*}
$$

is satisfied for all positive decreasing sequences $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{Z}}$ and all increasing sequences of decreasing sets $\left\{D_{k}\right\}_{k \in \mathbb{Z}}$ such that $\int_{D_{k}} v(x) \mathrm{d} x=2^{k}$.

Proof. The necessity follows, if we replace f in (2) by the decreasing function $f=\sum_{k \in \mathbb{Z}} \varepsilon_{k} \chi_{\Delta_{k}},\left\{\varepsilon_{k}\right\}_{k}$ being a decreasing sequence.

Next we consider the sufficiency. Fix $f \downarrow$ and set $\varepsilon_{k}=B t_{k}, D_{k}=D_{f, t_{k}}$ and $\Delta_{k}=\Delta_{f, t_{k}}$. Because $\mathbb{R}_{+}^{N}=\bigcup_{k} \Delta_{k}$ we obtain, using also (4) and the facts that Q, P,
Q^{-1}, P^{-1} are increasing and f is decreasing,

$$
\begin{aligned}
Q^{-1}\left(\int_{\mathbb{R}_{+}^{N}} Q(\omega(x) f(x)) u(x) \mathrm{d} x\right) & =Q^{-1}\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k}} Q(\omega(x) f(x)) u(x) \mathrm{d} x\right) \\
& \leqslant Q^{-1}\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k}} Q\left(\omega(x) t_{k}\right) u(x) \mathrm{d} x\right) \\
& \leqslant P^{-1}\left(\sum_{k \in \mathbb{Z}} P\left(B t_{k}\right) \int_{\Delta_{k}} v(x) \mathrm{d} x\right) \\
& =P^{-1}\left(\sum_{k \in \mathbb{Z}} 2 P\left(B t_{k}\right) \int_{\Delta_{k-1}} v(x) \mathrm{d} x\right) \\
& \leqslant P^{-1}\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k-1}} 2 P(B f(x)) v(x) \mathrm{d} x\right) .
\end{aligned}
$$

Therefore, by using the assumption that P is weakly convex, we find that

$$
\begin{aligned}
Q^{-1}\left(\int_{\mathbb{R}_{+}^{N}} Q(\omega(x) f(x)) u(x) \mathrm{d} x\right) & \leqslant P^{-1}\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k-1}} P(M B f(x)) v(x) \mathrm{d} x\right) \\
& =P^{-1}\left(\int_{\mathbb{R}_{+}^{N}} P(M B f(x)) v(x) \mathrm{d} x\right),
\end{aligned}
$$

i.e., (2) holds with $C=M B$. The proof is complete.

We will give now two important corollaries of Theorem 3.1.

Corollary 3.2. If P and Q are as in Theorem 3.1 and $Q \circ P^{-1}$ is convex, then (2) holds if and only if, for all $\varepsilon>0$ and decreasing sets D, there exists a $C>0$ such that

$$
\begin{equation*}
Q^{-1}\left(\int_{D} Q\left(\frac{\omega(x)}{C} P^{-1}\left(\frac{\varepsilon}{\int_{D} v}\right)\right) u(x) \mathrm{d} x\right) \leqslant P^{-1}(\varepsilon) . \tag{5}
\end{equation*}
$$

Proof. For the necessity we just have to substitute f in (2) with the function

$$
f_{0}(x)=\frac{P^{-1}\left(\frac{\varepsilon}{J_{D} v}\right)}{C} \chi_{D}(x) .
$$

Next we prove the sufficiency, i.e., that (5) implies (2). According to Theorem 3.1 it is sufficient to prove that (5) implies (4). By applying (5) with $\varepsilon=P\left(C \varepsilon_{k}\right) \int_{D_{k+1}} v$ for
each decreasing set D_{k+1} and using the convexity of $Q \circ P^{-1}$ and the weak convexity of P we find that

$$
\begin{aligned}
\left(\sum_{k \in \mathbb{Z}} \int_{\Delta_{k}} Q\left(\varepsilon_{k} \omega(x)\right) u(x) \mathrm{d} x\right) & \leqslant\left(\sum_{k \in \mathbb{Z}} \int_{D_{k+1}} Q\left(\varepsilon_{k} \omega(x)\right) u(x) \mathrm{d} x\right) \\
& \leqslant \sum_{k \in \mathbb{Z}} Q \circ P^{-1}\left(P\left(C \varepsilon_{k}\right) \int_{D_{k+1}} v\right) \\
& \leqslant Q \circ P^{-1}\left(\sum_{k \in \mathbb{Z}} 2 P\left(C \varepsilon_{k}\right) \int_{D_{k}} v\right) \\
& \leqslant Q \circ P^{-1}\left(\sum_{k \in \mathbb{Z}} P\left(M C \varepsilon_{k}\right) 2^{k}\right) \\
& =Q \circ P^{-1}\left(\sum_{k \in \mathbb{Z}} P\left(M C \varepsilon_{k}\right) \int_{\Delta_{k}} v\right)
\end{aligned}
$$

Hence (4) follows with $B=M C$ and the corollary is proved.
Remark. If $Q(x)=x^{q}$ and $P(x)=x^{p}, 0<p \leqslant q<\infty$, then $Q \circ P^{-1}$ is convex and the condition (5) coincides with condition (3). Hence, Corollary 3.2 generalizes Theorem 2.2(d) in [1].

Remark. For $N=1$ the condition (5) reads

$$
Q^{-1}\left(\int_{0}^{r} Q\left(\frac{\omega(x)}{B} P^{-1}\left(\frac{\varepsilon}{\int_{0}^{r} v}\right)\right) u(x) \mathrm{d} x\right) \leqslant P^{-1}(\varepsilon), \quad \forall r>0
$$

Thus, if $N=1$, then Corollary 3.2 coincides with Corollary 1 in [6].
Finally we apply Theorem 3.1 with $P(x)=x^{p}$ and $Q(x)=x^{q}, 0<p, q<\infty$, and obtain the following result:

Corollary 3.3. The inequality (1) holds for all $0<f \downarrow$ if and only if there exists a constant $K=K(p, q)$ such that

$$
\left(\sum_{k \in \mathbb{Z}} \varepsilon_{k}^{q} \int_{\Delta_{k}} u(x) \mathrm{d} x\right)^{1 / q} \leqslant K\left(\sum_{k \in \mathbb{Z}} \varepsilon_{k}^{p} \int_{\Delta_{k}} v(x) \mathrm{d} x\right)^{1 / p}
$$

for all positive decreasing sequences $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{Z}}$ and such that $\int_{D_{k}} v(x) \mathrm{d} x=2^{k}$.
Remark. For $N=1$ a similar characterization is given in [6]. For other multidimensional characterizations of (1) in the case $0<p \leqslant q<\infty$ see [1] and in the case $0<q<p<\infty$ see [2] (cf. Section 2).

Final remarks.(i) The results in this paper can also be formulated when we remove the technical assumption (3) (cf. [2], [8]).
(ii) Similar results to all results in this paper can be formulated also for increasing functions of several variables.

References

[1] Barza, S.; Persson, L.E.; Soria, J.: Sharp weighted multidimensional integral inequalities for monotone functions. Math. Nachr. To appear.
[2] Barza, S.; Persson, L. E.; Stepanov, V. D.: On weighted multidimensional embeddings for monotone functions. Math. Scand. To appear.
[3] Carro, M. J.; Pick, L.; Soria, J; Stepanov, V.D.: On embeddings between classical Lorentz spaces. Research Report, 1998, submitted.
[4] Drábek, P.; Heinig, H. P.; Kufner, A.: Weighted modular inequalities for monotone functions. J. Inequal. Appl. 1 (1997), 183-197.
[5] Heinig, H. P.; Kufner, A.: Hardy operators on monotone functions and sequences in Orlicz spaces. J. Lond. Math. Soc., 53(2) (1996), 256-270.
[6] Heinig, H.; Lai, Q.: Weighted modular inequalities for Hardy-type operators defined on monotone functions. Research Report, 1998, submitted.
[7] Krasnosel'ski, M. A.; Ruticki, Ya. B.: Convex Functions and Orlicz spaces. Noordhoff, Groningen, 1961.
[8] Stepanov, V. D.: The weighted Hardy's inequality for nonincreasing functions. Trans. Amer. Math. Soc. 338 (1993), 173-186.

Authors' addresses: Sorina Barza, Lars-Erik Persson, Department of Mathematics, Luleå University of Technology, S-97187 Luleå, Sweden, e-mails: sorina@sm.luth.se, larserik@sm.luth.se.

