124 (1999) MATHEMATICA BOHEMICA No. 2-3, 329-335

WEIGHTED MULTIDIMENSIONAL INEQUALITIES FOR
MONOTONE FUNCTIONS

SORINA BARZA, LARS-ERIK PERSSON, Lulea

(Received January 18, 1999)

Dedicated to Professor Alois Kufner on the occasion of his 65th birthday

Abstract. We discuss the characterization of the inequality
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for monotone functions f > 0 and nonnegative weights v and v and N > 1. We prove a
new multidimensional integral modular inequality for monotone functions. This inequality
generalizes and unifies some recent results in one and several dimensions.
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1. INTRODUCTION

Let RY = {(z1,...,2n); @ 2 0,4=1,2,...,N} and Ry := R} . Assume that
f: RY — R4 is monotone which means that it is monotone with respect to each
variable. We denote f |, when f is decreasing (= nonincreasing) and f 7 when f is
increasing (= nondecreasing). Throughout this paper w, u, v are positive measurable
functions defined on [Rf , N > 1.

A function P on [0, 00) is called a modular function if it is strictly increasing, with
the values 0 at 0 and oo at co. For the definition of an N-function we refer to [7]. We
say that a modular function P is weakly convex if 2P(t) < P(Mt), for all ¢ > 0 and
some constant M > 1. All convex modular functions are obviously weakly convex.
The function P;(¢) = t*, 0 < p < 1 and the function P,(t) = exp(y/t) — 1 are weakly
convex, but not convex. See also [6].
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In order to motivate this investigation and put it into a frame we use Section 2 to
present the characterization of the inequality

o (L) el

forall f | or f 1.

In Section 3 we will characterize the weights w, v and v such that

1/p
fpv) , 0<p,g<oo,

N N
+ +

) Q”(M s uoar) <P ([ Pese) )

N
+
holds for modular functions P and (), where P is weakly convex and 0 < f |. Here
and in the sequel C' > 0 denotes a constant independent of f.

, 2, Yare
taken to be 0. Z stands for the set of all integers and y g denotes the characteristic
function of a set E.

Conventions and notation. Products and quotients of the form 0-oco

2. WEIGHTED LP INEQUALITIES FOR MONOTONE FUNCTIONS

In the one-dimensional case the inequality (1) was characterized in [8, Proposi-
tion 1] for both alternative cases 0 < p < ¢ < 0o and 0 < ¢ < p < o as follows:
(a) If N =1,0< p < ¢ < oo, then (1) is valid for all f | if and only if

t N\ 1/4q t N\ —1/p
A := sup(/ u) (/ v) < 00
t>0 0 0

and the constant C' = Aq is sharp.
b)IN=1,0<qg<p<oo,1/r=1/q—1/p, then (1) is true for all f | if and

only if
1/r

o ([ () )

()" mec< ()" 5

pr q

oour/q 50 ¢ r/q ¢ —r/q
B{):%%-ﬁ-%/o (/0 u)/ (/0 v) /v(t)dt.

(c) Similar characterizations are valid when f 7, with the only change that the
integrals over [0, t] are replaced by integrals over [t, oo].

Moreover,

and
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Since the one-dimensional inequality (1) expresses the embedding of classical
Lorentz spaces, further generalizations and references in this directions can be found
in [3].

The multidimensional case was recently treated in [1, Theorem 2.2], for the case
0 <p<¢<ooand in [2, Theorem 4.1], for the case 0 < ¢ < p < oo as follows:

(a) If 0 < p < ¢ < o0, then (1) is valid for all f | if and only if

(fD u)l/q

ANy = sup ———— <0
T e (f,0)”

and the constant C' = Ay is sharp. Here the supremum is taken over the set Dy of
all “decreasing” domains, i.e., for which the characteristic function is a decreasing
function in each variable.

(b) If 0 < ¢ < p < o0, then (1) is valid for all f | if and only if

S —r/p r/q
By = sup/ (/ v) d(—(/ u) ) < 00,
0<hlJO Dy, ¢ Dy, ¢

Dpy={z € RY; h(z) >t}

where

Moreover,
1

21/q(27’/q 4 9r/p

)WBN < C < 4Y1By.

If N =1, P and Q are N-functions and Q o P~! is convex, then some weight
characterizations of the inequality (2) have been obtained in [4] and [5].

For N > 1, P and Q N-functions and Q o P~! convex, (2) holds for all 0 < f | if
and only if there exists a constant A = A(®1, P2, u, v,w) such that, for all ¢ > 0 and

D € Dy,
Q' (/DQ(aw(x))u(x) dx) <Pt (P (Aa)/Dv(x) dx).

This characterization can be found in [2, Theorem 2.1].

However, if Q and P are not N-functions (hence not convex) and @ o P! is not
convex, then the problem of characterizing weights for which (2) holds seems to be
to a large extent open. For N = 1 the first characterization of this type was given
in [6].

In the next section we characterize the weights for which (2) holds when P is
weakly convex. This result generalizes both the corresponding one-dimensional result
obtained in [6] and the multidimensional case obtained in [2]. Some particular cases
of (2) will also be pointed out.
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3. A MULTIDIMENSIONAL MODULAR INEQUALITY

Let 0 < h(z) | and ¢ > 0. Denote
Dy, :={x € [R_IX; h(z) > t},

and

Da:= | J | Dnas-

0<h] t>0

The set Dy consists of all “decreasing” domains Dp ;. In particular, XD, is de-
creasing in each variable. For a strictly decreasing, positive sequence {¢}, such that
ty — 0 as k — oo we put

Dy =Dpy, i={z € [Rf; h(z) > tp}, k€ Z.
Obviously, Diy+1 D Dy, and we define
Ap = Apyty, = Diy1 \ Di.

Hence, Ay N A, =0, k # n and RY = |JAy. For simplicity we also assume in the
k
sequel that

(3) /[R v(z)dz = oo.

N
+

Theorem 3.1. Let @ and P be modular functions and P weakly convex. Then
(2) holds for all 0 < f | if and only if there exists a constant B > 0 such that

(4) Q‘1<Z /AkQ (o) utx) dx) < P‘1<Z P(ak)/Akv(ac) dx)

kez kez

is satisfied for all positive decreasing sequences {ey }rcz and all increasing sequences
of decreasing sets { Dy }rez such that ka v(z)dz = 2F.

Proof. The necessity follows, if we replace f in (2) by the decreasing function

=72 exxa,, {ex}r being a decreasing sequence.
kez
Next we consider the sufficiency. Fix f | and set e, = Bty, Dy = Dy, and

Ay = Ayy, . Because Rf = |J Ak we obtain, using also (4) and the facts that @, P,
k
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Q~!, P! are increasing and f is decreasing,

Q1< [ Q@@ dx) —q

Therefore, by using the assumption that P is weakly convex, we find that

o ( [ Qe as) <P (X[ POBiE)E) i)

kez

=p! </M P (MBf(z))v(z) dx),

i.e., (2) holds with C' = M B. The proof is complete. O

We will give now two important corollaries of Theorem 3.1.

Corollary 3.2. If P and Q are as in Theorem 3.1 and Q o P! is convex, then
(2) holds if and only if, for all € > 0 and decreasing sets D, there exists a C > 0 such
that

(5) Q! (LQ(%@P_l(ﬁ»u(x)dx) <P (o).

Proof. For the necessity we just have to substitute f in (2) with the function

P (15)

fo(x) = e

XD ().

Next we prove the sufficiency, i.e., that (5) implies (2). According to Theorem 3.1 it is
sufficient to prove that (5) implies (4). By applying (5) with ¢ = P(Cey,) ka+1 v for
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each decreasing set Dy and using the convexity of Q o P~! and the weak convexity
of P we find that

(Z Q (exw()) (x)dx) < (Z Q(s;w(x))u(x)dx)

kez kez ’ Dr+1

ZQOP ( Cek)/DMv)

kez

< (Zzp (Cex) / v)

kez

<QopP! (Z P(MCek)2k>

kez

- QoP‘l(];ZP(MCek)/Ak v).

Hence (4) follows with B = MC' and the corollary is proved. g

Remark. If Q(z) = 27 and P(x) = 2P, 0 < p < ¢ < 00, then Q o P~! is convex
and the condition (5) coincides with condition (3). Hence, Corollary 3.2 generalizes
Theorem 2.2(d) in [1].

Remark. For N =1 the condition (5) reads

Q—l(/OTQ(%P—l(va))u(x) dx) <P l(e), Vr>o.

Thus, if N =1, then Corollary 3.2 coincides with Corollary 1 in [6].

Finally we apply Theorem 3.1 with P(z) = 2P and Q(z) = 2%, 0 < p,q < 00, and
obtain the following result:

Corollary 3.3. The inequality (1) holds for all 0 < f | if and only if there exists
a constant K = K(p, q) such that

(St f o) " <x(ge | sorar)”

kez keZ

for all positive decreasing sequences {ey.}, ., and such that ka v(x)dr = 2F.

Remark. For N =1 a similar characterization is given in [6]. For other mul-
tidimensional characterizations of (1) in the case 0 < p < ¢ < oo see [1] and in the
case 0 < ¢ < p < 0o see [2] (cf. Section 2).
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Final remarks. (i) The results in this paper can also be formulated when
we remove the technical assumption (3) (cf. [2], [8]).

(ii) Similar results to all results in this paper can be formulated also for increasing
functions of several variables.
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