ON POINTWISE INTERPOLATION INEQUALITIES FOR DERIVATIVES

Vladimir Maz'ya, Tatyana Shaposhnikova, Linköping

(Received September 24, 1998)

Dedicated to Professor Alois Kufner on the occasion of his 65th birthday

Abstract. Pointwise interpolation inequalities, in particular,

$$
\left|\nabla_{k} u(x)\right| \leqslant c(\mathcal{M} u(x))^{1-k / m}\left(\mathcal{M} \nabla_{m} u(x)\right)^{k / m}, \quad k<m,
$$

and

$$
\left|I_{z} f(x)\right| \leqslant c\left(\mathcal{M} I_{\zeta} f(x)\right)^{\operatorname{Re} z / \operatorname{Re} \zeta}(\mathcal{M} f(x))^{1-\operatorname{Re} z / \operatorname{Re} \zeta}, 0<\operatorname{Re} z<\operatorname{Re} \zeta<n
$$

where ∇_{k} is the gradient of order k, \mathcal{M} is the Hardy-Littlewood maximal operator, and I_{z} is the Riesz potential of order z, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ is described.

Keywords: Landau inequality, interpolation inequalities, Hardy-Littlewood maximal operator, Gagliardo-Nirenberg inequality, Sobolev multipliers

MSC 2000: 26D10, 46E35, 46E25, 42B25

1. Introduction

It is well known that an arbitrary function on the real line \mathbb{R} with Lipschitz derivative u^{\prime} satisfies

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{2} \leqslant 2 \sup |u| \sup \left|u^{\prime \prime}\right|, \tag{1}
\end{equation*}
$$

where 2 is the best possible constant (Landau [1]). For the history of this estimate as well as of its analogs and generalizations one can consult, for example, Section 13.5 of our book [2].

In the present paper we are interested in purely pointwise modifications of (1), where both factors in the right-hand side are functions of x. It is trivial, of course, that the second sign of supremum cannot be removed. Moreover, (1) is no longer valid without the first supremum if f has a simple zero at a point.

However, under the additional assumption of non-negativity of u one obtains the following stronger variant of (1)

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{2} \leqslant 2 u(x) \sup \left|u^{\prime \prime}\right| \tag{2}
\end{equation*}
$$

for all $x \in \mathbb{R}$ (early applications and generalizations of this inequality can be found in [3] and [4]). Indeed, for any $t \in \mathbb{R}$ we have

$$
0 \leqslant u(x+t)=u(x)+t u^{\prime}(x)+\int_{0}^{t}\left(u^{\prime}(x+\tau)-u^{\prime}(x)\right) \mathrm{d} \tau
$$

Therefore, the trinomial $u(x)+t u^{\prime}(x)+\frac{1}{2} t^{2} \sup \left|u^{\prime \prime}\right|$ is non-negative and the nonpositivity of its discriminant is equivalent to (2).

Kufner and Maz'ya [5] gave generalizations of (2), and showed, in particular, that it can be easily improved as

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{2} \leqslant 2 u(x) \mathcal{M}_{ \pm} u^{\prime \prime}(x) \tag{3}
\end{equation*}
$$

where the sign + or - is taken if $u^{\prime}(x) \leqslant 0$ or $u^{\prime}(x) \geqslant 0$, respectively, and $\mathcal{M}_{+}, \mathcal{M}_{-}$ are the Hardy-Littlewood right and left maximal operators:

$$
\begin{aligned}
& \mathcal{M}_{+} \varphi(x)=\sup _{\tau>0} \frac{1}{\tau} \int_{x}^{x+\tau}|\varphi(y)| \mathrm{d} y \\
& \mathcal{M}_{-} \varphi(x)=\sup _{\tau>0} \frac{1}{\tau} \int_{x-\tau}^{x}|\varphi(y)| \mathrm{d} y
\end{aligned}
$$

We claim that any complex valued function on \mathbb{R} with absolutely continuous first derivative is subject to the inequality

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{2} \leqslant 8 \mathcal{M} u(x) \mathcal{M} u^{\prime \prime}(x) \tag{4}
\end{equation*}
$$

where \mathcal{M} is the Hardy-Littlewood operator

$$
\mathcal{M} \varphi(x)=\sup _{\tau>0} \frac{1}{2 \tau} \int_{x-\tau}^{x+\tau}|\varphi(y)| \mathrm{d} y
$$

Moreover, (4) can be improved as

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{2} \leqslant 8 \mathcal{M}^{\diamond} u(x) \mathcal{M} u^{\prime \prime}(x) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{M}^{\diamond} u(x)=\sup _{\tau>0} \frac{1}{2 \tau}\left|\int_{x-\tau}^{x+\tau} \operatorname{sign}(x-y) u(y) \mathrm{d} y\right| \tag{6}
\end{equation*}
$$

In fact, the following identity is readily checked by integration by parts

$$
\begin{equation*}
u^{\prime}(0)=\frac{1}{t^{2}} \int_{-t}^{t} \operatorname{sign} y u(y) \mathrm{d} y-\frac{1}{2} \int_{-t}^{t}\left(1-\frac{|y|}{t}\right)^{2} \operatorname{sign} y u^{\prime \prime}(y) \mathrm{d} y \tag{7}
\end{equation*}
$$

where $t>0$. (We replace x by 0 to simplify the notation.) Hence

$$
\left|u^{\prime}(0)\right| \leqslant \frac{2}{t} \mathcal{M}^{\diamond} u(0)+t \mathcal{M} u^{\prime \prime}(0)
$$

which is equivalent to (5).
Another direct consequence of (7) is the inequality

$$
\left|u^{\prime}(x)\right|^{2} \leqslant \frac{8}{3} \mathcal{M}^{\diamond} u(x) \sup \left|u^{\prime \prime}\right|
$$

The constant $\frac{8}{3}$ in this inequality (and even in the weaker one with M^{\diamond} replaced by M) is best possible. In fact, one can easily check that the odd function u_{0} given by

$$
u_{0}(x)= \begin{cases}x(2-x) & \text { for } \quad 0 \leqslant x<\frac{3}{2} \\ \frac{(x-3)^{2}}{3} & \text { for } \quad \frac{3}{2} \leqslant x<3 \\ 0 & \text { for } x \geqslant 3\end{cases}
$$

satisfies

$$
u_{0}^{\prime}(0)=2, \quad \mathcal{M}^{\diamond} u_{0}(0)=\mathcal{M} u_{0}(0)=\frac{3}{4}, \quad \sup \left|u_{0}^{\prime \prime}\right|=2
$$

As Kufner and Maz'ya noticed in [5], a simple change in the above argument leading to (2) results in the following generalization of (2) with the best possible constant

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{\alpha+1} \leqslant\left(\frac{\alpha+1}{\alpha}\right)^{\alpha} u(x)^{\alpha} \sup _{y} \frac{\left|u^{\prime}(y)-u^{\prime}(x)\right|}{|y-x|^{\alpha}} \tag{8}
\end{equation*}
$$

where $u(x) \geqslant 0$ and $0<\alpha<1$.
One can arrive at an analogue of (8) for arbitrary complex valued functions, where the role of Hölder's seminorm is played by the function

$$
\mathcal{D}_{p, m} u(x)=\left(\int_{\mathbb{R}} \frac{\left|u^{\prime}(x)-u^{\prime}(y)\right|^{p}}{|x-y|^{p(m-1)+1}} \mathrm{~d} y\right)^{1 / p}, \quad m \in(1,2), p \in[1, \infty]
$$

This function is important because its L_{p}-norm is a seminorm in the fractional Sobolev space $W_{p}^{m}(\mathbb{R})$.

We note that

$$
\begin{equation*}
u^{\prime}(0)=\frac{1}{t^{2}} \int_{-t}^{t} \operatorname{sign} y u(y) \mathrm{d} y+\frac{1}{t^{2}} \int_{-t}^{t}(t-|y|)\left(u^{\prime}(0)-u^{\prime}(y)\right) \mathrm{d} y \tag{9}
\end{equation*}
$$

By Hölder's inequality, the absolute value of the second term on the right-hand side is dominated by

$$
t^{m-1}(2 \mathbf{B}(q m, q+1))^{1 / q} \mathcal{D}_{p, m} u(0)
$$

where $m \in(1,2), p^{-1}+q^{-1}=1$ and \mathbf{B} is Euler's Beta-function. This along with (9) implies

$$
\left|u^{\prime}(0)\right| \leqslant 2 t^{-1} \mathcal{M}^{\diamond} u(0)+t^{m-1}(2 \mathbf{B}(q m, q+1))^{1 / q} \mathcal{D}_{p, m} u(0)
$$

Minimizing the right-hand side we conclude that the inequality

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{m} \leqslant m\left(\frac{2 m}{m-1}\right)^{m-1}(2 \mathbf{B}(q m, q+1))^{1 / q}\left(\mathcal{M}^{\diamond} u(x)\right)^{m-1} \mathcal{D}_{p, m} u(x) \tag{10}
\end{equation*}
$$

is valid for almost all $x \in \mathbb{R}$. In particular, for $p=\infty$ and $m=\alpha+1,0<\alpha<1$, we have the following analogue of (8):

$$
\begin{equation*}
\left|u^{\prime}(x)\right|^{\alpha+1} \leqslant \frac{2^{\alpha+1}}{\alpha+2}\left(\frac{\alpha+1}{\alpha}\right)^{\alpha}\left(\mathcal{M}^{\diamond} u(x)\right)^{\alpha} \sup _{y} \frac{\left|u^{\prime}(y)-u^{\prime}(x)\right|}{|y-x|^{\alpha}} \tag{11}
\end{equation*}
$$

The constant factor in this inequality (and even in the weaker one with \mathcal{M}^{\diamond} replaced by \mathcal{M}) is best possible as can be checked by the odd function u_{α} given for $x \geqslant 0$ by

$$
u_{\alpha}(x)= \begin{cases}(\alpha+1) x-x^{\alpha+1} & \text { for } 0 \leqslant x<\left(\frac{\alpha+2}{2}\right)^{1 / \alpha} \\ \frac{\alpha}{\alpha+2}\left(2\left(\frac{\alpha+2}{2}\right)^{1 / \alpha}-x\right)^{\alpha+1} & \text { for }\left(\frac{\alpha+2}{2}\right)^{1 / \alpha} \leqslant x<2\left(\frac{\alpha+2}{2}\right)^{1 / \alpha} \\ 0 & \text { for } x \geqslant 2\left(\frac{\alpha+2}{2}\right)^{1 / \alpha}\end{cases}
$$

In the sequel we prove n-dimensional generalizations of the above interpolation inequalities and give applications to the theory of pointwise multipliers in pairs of Sobolev spaces.

2. Multidimensional variants of inequality (4)

Let u be a function on \mathbb{R}^{n} such that its distributional derivatives of order m are locally summable. By $\nabla_{m} u$ we mean the gradient of u of order m, i.e.

$$
\nabla_{m} u=\left\{\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{n}}^{\alpha_{n}} u\right\}, \quad \alpha_{1}+\ldots+\alpha_{n}=m
$$

where $\partial_{x_{j}}$ is a partial derivative. The Euclidean length of $\nabla_{m} u$ will be denoted by $\left|\nabla_{m} u\right|$ and we write ∂ or ∇ instead of ∇_{1}.

Let \mathcal{M} be the Hardy-Littlewood maximal operator over centered balls defined by

$$
\mathcal{M} \varphi(x)=\sup _{r>0}\left(\operatorname{meas}_{n} B_{r}\right)^{-1} \int_{B_{r}(x)}|\varphi(y)| \mathrm{d} y
$$

where φ is a scalar or vector-valued function in $\mathbb{R}^{n}, B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}$ and $B_{r}=B_{r}(0)$.

Our goal is to prove the following generalization of inequality (4).
Theorem 1. Let k, l and m be integers, $0 \leqslant l \leqslant k \leqslant m$. Then there exists a positive constant $c=c(k, l, m, n)$ such that

$$
\begin{equation*}
\left|\nabla_{k} u(x)\right| \leqslant c\left(\mathcal{M} \nabla_{l} u(x)\right)^{\frac{m-k}{m-l}}\left(\mathcal{M} \nabla_{m} u(x)\right)^{\frac{k-l}{m-l}} \tag{12}
\end{equation*}
$$

for almost all $x \in \mathbb{R}^{n}$.
Proof. Clearly, it suffices to prove (12) for $l=0$ when it becomes

$$
\begin{equation*}
\left|\nabla_{k} u(x)\right| \leqslant c(\mathcal{M} u(x))^{\frac{m-k}{m}}\left(\mathcal{M} \nabla_{m} u(x)\right)^{\frac{k}{m}} \tag{13}
\end{equation*}
$$

Let η be a function in the ball B_{1} with Lipschitz derivatives of order $m-2$ which vanishes on ∂B_{1} together with all these derivatives. Also let

$$
\int_{B_{1}} \eta(y) \mathrm{d} y=1
$$

We shall use the Sobolev integral representation:

$$
\begin{aligned}
v(0)= & \sum_{|\beta|<m-k} t^{-n} \int_{B_{t}} \frac{(-y)^{\beta}}{\beta!} \partial^{\beta} v(y) \eta\left(\frac{y}{t}\right) \mathrm{d} y \\
& +(-1)^{m-k}(m-k) \sum_{|\alpha|=m-k} \int_{B_{t}} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha} v(y) \int_{|y| / t}^{\infty} \eta\left(\varrho \frac{y}{|y|}\right) \varrho^{n-1} \mathrm{~d} \varrho \frac{\mathrm{~d} y}{|y|^{n}}
\end{aligned}
$$

(see [7], Section 1.5.1).
By setting here $v=\partial^{\gamma} u$ with an arbitrary multiindex γ of order k and integrating by parts in the first integral, we arrive at the identity

$$
\begin{align*}
& \partial^{\gamma} u(0)=(-1)^{k} t^{-n} \int_{B_{t}} u(y) \sum_{|\beta|<m-k} \frac{1}{\beta!} \partial^{\beta+\gamma}\left(y^{\beta} \eta\left(\frac{y}{t}\right)\right) \mathrm{d} y \tag{14}\\
& \quad+\sum_{|\alpha|=m-k}(-1)^{m-k}(m-k) \int_{B_{t}} \frac{y^{\alpha}}{\alpha!} \partial^{\alpha+\gamma} u(y) \int_{|y| / t}^{\infty} \eta\left(\varrho \frac{y}{|y|}\right) \varrho^{n-1} \mathrm{~d} \varrho \frac{\mathrm{~d} y}{|y|^{n}} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\left|\nabla_{k} u(0)\right| \leqslant c_{1} t^{-n-k} \int_{B_{t}}|u(y)| \mathrm{d} y+c_{2} \int_{B_{t}}\left|\nabla_{m} u(y)\right| \frac{\mathrm{d} y}{|y|^{n-m+k}} \tag{15}
\end{equation*}
$$

If $m-k \geqslant n$, the second integral does not exceed

$$
t^{m-k-n} \int_{B_{t}}\left|\nabla_{m} u(y)\right| \mathrm{d} y .
$$

In the case $m-k<n$ the second integral in (15) equals

$$
t^{m-k-n} \int_{B_{t}}\left|\nabla_{m} u(y)\right| \mathrm{d} y+(n-m+k) \int_{0}^{t} \frac{\mathrm{~d} \tau}{\tau^{n-m+k+1}} \int_{B \tau}\left|\nabla_{m} u(y)\right| \mathrm{d} y
$$

Therefore

$$
\begin{equation*}
\int_{B_{t}}\left|\nabla_{m} u(y)\right| \frac{\mathrm{d} y}{|y|^{n-m+k}} \leqslant \frac{n}{m-k} t^{m-k} \sup _{\tau \leqslant t} \tau^{-n} \int_{B_{\tau}}\left|\nabla_{m} u(y)\right| \mathrm{d} y . \tag{16}
\end{equation*}
$$

Thus, for any $t>0$,

$$
\begin{equation*}
\left|\nabla_{k} u(0)\right| \leqslant c_{3} t^{-k} \mathcal{M} u(0)+c_{4} t^{m-k} \mathcal{M} \nabla_{m} u(0) \tag{17}
\end{equation*}
$$

which implies (13). The result follows.
Remark 1. The above proof enables one to improve (13) replacing \mathcal{M} by the maximal operator

$$
\sup _{t>0} \frac{1}{\operatorname{meas}_{n} B_{t}} \sum_{|\gamma|=k}\left|\int_{B_{t}(x)} u(y) H_{\gamma}\left(t^{-1}(y-x)\right) \mathrm{d} y\right|
$$

Here $\left\{H_{\gamma}\right\}_{|\gamma|=k}$ is a collection of bounded measurable functions such that, for all multiindices α of order $|\alpha| \leqslant k$,

$$
\int_{B_{t}} y^{\alpha} H_{\gamma}(y) \mathrm{d} y=\delta_{\alpha}^{\gamma}
$$

where δ_{α}^{γ} is Kronecker's symbol.

Remark 2. One can specify the constants c_{3} and c_{4} in (17) but we do not dwell upon this being unaware if the values obtained are best possible. In the special case $k=1, m=2$ a direct generalization of (5) is proved as follows. First, (14) becomes

$$
\begin{aligned}
\frac{\partial u(0)}{\partial x_{i}}= & -t^{-n} \int_{B_{t}} u(y) \frac{\partial}{\partial y_{i}}\left(\eta\left(\frac{y}{t}\right)\right) \mathrm{d} y \\
& -\sum_{j=1}^{n} \int_{B_{t}} y_{j} \frac{\partial^{2} u(y)}{\partial y_{i} \partial y_{j}} \int_{|y| / t}^{\infty} \eta\left(\varrho \frac{y}{|y|}\right) \varrho^{n-1} \mathrm{~d} \varrho \frac{\mathrm{~d} y}{|y|^{n}} .
\end{aligned}
$$

We choose

$$
\begin{equation*}
\eta(y)=\frac{n+1}{\operatorname{meas}_{n} B_{1}}(1-|y|)_{+} . \tag{18}
\end{equation*}
$$

Then

$$
\begin{aligned}
|\nabla u(0)| \leqslant & t^{-1} \frac{n+1}{\operatorname{meas}_{n} B_{t}}\left|\int_{B_{t}} u(y) \frac{y}{|y|} \mathrm{d} y\right| \\
& +\frac{1}{\operatorname{meas}_{n-1} \partial B_{1}} \int_{B_{t}}\left|\nabla_{2} u(y)\right| \frac{\mathrm{d} y}{|y|^{n-1}}
\end{aligned}
$$

By (16) the second term on the right is not greater than $t \mathcal{M} \nabla_{2} u(0)$. Therefore

$$
|\nabla u(0)| \leqslant \frac{n+1}{t} \mathcal{M} \curvearrowright u(0)+t \mathcal{M} \nabla_{2} u(0)
$$

where \mathcal{M}^{\diamond} is a multidimensional generalization of (6):

$$
\begin{equation*}
\mathcal{M}^{\diamond} u(x)=\sup _{t>0} \frac{1}{\operatorname{meas}_{n} B_{t}}\left|\int_{B_{t}(x)} u(y) \frac{y-x}{|y-x|} \mathrm{d} y\right| . \tag{19}
\end{equation*}
$$

Finally,

$$
|\nabla u(x)|^{2} \leqslant 4(n+1) \mathcal{M}^{\diamond} u(x) \mathcal{M} \nabla_{2} u(x)
$$

for almost all $x \in \mathbb{R}^{n}$.
Remark 3. Suppose that instead of \mathcal{M} we use the modified maximal operator \mathcal{M}_{δ} given by

$$
\mathcal{M}_{\delta} \varphi(x)=\sup _{0<r<\delta}\left(\operatorname{meas}_{n} B_{r}\right)^{-1} \int_{B_{r}(x)}|\varphi(y)| \mathrm{d} y
$$

Then the proof of Theorem 1 (with small changes) leads to the following alternatives: either

$$
\mathcal{M}_{\delta} u(x)<\frac{m-k}{m} \delta^{m} \mathcal{M}_{\delta} \nabla_{m} u(x)
$$

and

$$
\left|\nabla_{k} u(x)\right| \leqslant c\left(\mathcal{M}_{\delta} u(x)\right)^{1-k / m}\left(\mathcal{M}_{\delta} \nabla_{m} u(x)\right)^{k / m}
$$

or

$$
\mathcal{M}_{\delta} u(x) \geqslant \frac{m-k}{m} \delta^{m} \mathcal{M}_{\delta} \nabla_{m} u(x)
$$

and

$$
\left|\nabla_{k} u(x)\right| \leqslant c \delta^{-k} \mathcal{M}_{\delta} u(x) .
$$

As a consequence, the local variant of (13)

$$
\left|\nabla_{k} u(x)\right| \leqslant c\left(\delta^{-m} \mathcal{M}_{\delta} u(x)+\mathcal{M}_{\delta} \nabla_{m} u(x)\right)^{k / m}\left(\mathcal{M}_{\delta} u(x)\right)^{1-k / m}
$$

is valid with c independent of δ. A similar remark can be made concerning Theorems $2-4$ in the next sections.

Remark 4. Estimate (13) leads directly to the Gagliardo-Nirenberg ([8], [9]) inequality

$$
\begin{equation*}
\left\|\nabla_{k} u ; \mathbb{R}^{n}\right\|_{L_{s}} \leqslant c\left\|u ; \mathbb{R}^{n}\right\|_{L_{q}}^{1-k / m}\left\|\nabla_{m} u ; \mathbb{R}^{n}\right\|_{L_{p}}^{k / m} \tag{20}
\end{equation*}
$$

where $1<q \leqslant \infty, 1<p \leqslant \infty$ and

$$
\frac{1}{s}=\frac{k}{m} \frac{1}{p}+\left(1-\frac{k}{m}\right) \frac{1}{q} .
$$

Indeed, by (13) the left-hand side of (20) does not exceed

$$
c\left(\int_{\mathbb{R}^{n}}(\mathcal{M} u(x))^{s(1-k / m)}\left(\mathcal{M} \nabla_{m} u(x)\right)^{s k / m} \mathrm{~d} x\right)^{1 / r}
$$

which by Hölder's inequality is majorized by

$$
c\left\|\mathcal{M} u ; \mathbb{R}^{n}\right\|_{L_{q}}^{1-k / m}\left\|\mathcal{M} \nabla_{m} u ; \mathbb{R}^{n}\right\|_{L_{p}}^{k / m}
$$

and it remains to refer to the boundedness of the operator \mathcal{M} in $L_{\sigma}\left(\mathbb{R}^{n}\right), 1<\sigma \leqslant \infty$.

3. Interpolation inequality for the Riesz potentials

If m is even and u is the Riesz potential of order m with non-negative density, then the estimate

$$
\begin{equation*}
\left|\nabla_{k} u(x)\right| \leqslant c \mathcal{M} u(x)^{1-k / m}\left(\mathcal{M} \Delta^{m / 2} u(x)\right)^{k / m} \tag{21}
\end{equation*}
$$

which is stronger than (2), follows directly from Hedberg's inequality

$$
\begin{equation*}
I_{t} f(x) \leqslant c\left(I_{\tau} f(x)\right)^{t / \tau}(\mathcal{M} f(x))^{1-t / \tau} \tag{22}
\end{equation*}
$$

where $0<t<\tau<n, f$ is a non-negative locally summable function, and the Riesz potential is defined by

$$
\begin{equation*}
I_{t} f(x)=c \int_{\mathbb{R}^{n}} \frac{f(y)}{|y-x|^{n-t}} \mathrm{~d} y \tag{23}
\end{equation*}
$$

(see [10] or [6], Proposition 3.1.2(b)). The constant c in (23) is chosen in such a way that $I_{t}=(-\Delta)^{-t / 2}$, i.e.

$$
I_{t} f(x)=F_{\xi \rightarrow x}^{-1}|\xi|^{-t} F_{x \rightarrow \xi} f(x)
$$

where F is the Fourier transform in \mathbb{R}^{n}.
However, in our case u is not a potential with non-negative density and we cannot refer to (22). Nevertheless, (21) is a direct corollary of the following assertion which seems to be of independent interest.

Theorem 2. Let z and ζ be complex numbers subject to

$$
0<\operatorname{Re} z<\operatorname{Re} \zeta<n
$$

and let $I_{z} f$ denote the Riesz potential of order z defined by (23) where $t=z$ and f is a complex valued function in $L_{1}\left(\mathbb{R}^{n}\right)$ with compact support. Then there exists a constant c independent of f such that

$$
\begin{equation*}
\left|I_{z} f(x)\right| \leqslant c\left(\mathcal{M} I_{\zeta} f(x)\right)^{\operatorname{Re} z / \operatorname{Re} \zeta}(\mathcal{M} f(x))^{1-\operatorname{Re} z / \operatorname{Re} \zeta} \tag{24}
\end{equation*}
$$

for almost all $x \in \mathbb{R}^{n}$.
Proof. Denote by χ a function in the Schwartz space \mathcal{S} such that $F \chi=1$ in a neighbourhood of the origin. From the identity

$$
|\xi|^{-z}=|\xi|^{\zeta-z} F \chi(\xi)|\xi|^{-\zeta}+|\xi|^{-z}(1-F \chi(\xi)), \quad \xi \in \mathbb{R}^{n}
$$

it follows that

$$
\begin{equation*}
I_{z} f(0)=P * I_{\zeta} f(0)+Q * f(0) \tag{25}
\end{equation*}
$$

where $*$ stands for the convolution and

$$
\begin{aligned}
& P(x)=c_{1} F_{\xi \rightarrow x}^{-1}\left(|\xi|^{\zeta-z} F \chi(\xi)\right) \\
& Q(x)=c_{2} F_{\xi \rightarrow x}^{-1}\left(|\xi|^{-z}(1-F \chi(\xi))\right.
\end{aligned}
$$

Let m be a positive integer such that

$$
0 \leqslant 2 m-\operatorname{Re} \zeta+\operatorname{Re} z<2
$$

In the case $n \geqslant 2$ we have

$$
|P(x)|=c\left|\Delta_{x}^{m} \int_{\mathbb{R}^{n}} \frac{\chi(y) \mathrm{d} y}{|x-y|^{n-2 m+\zeta-z}}\right| \leqslant c(|x|+1)^{-n-\operatorname{Re} \zeta+\operatorname{Re} z}
$$

Analogously, for $n=1$ we obtain

$$
|P(x)|=c\left|\partial_{x} \int_{\mathbb{R}} \frac{(x-y) \chi(y) \mathrm{d} y}{|x-y|^{1+\zeta-z}}\right| \leqslant c(|x|+1)^{-1-\operatorname{Re} \zeta+\operatorname{Re} z}
$$

Hence

$$
\begin{align*}
\left|P * I_{\zeta} f(0)\right| & \leqslant c \int_{\mathbb{R}^{n}} \frac{\left|I_{\zeta} f(y)\right| \mathrm{d} y}{(|y|+1)^{n+\operatorname{Re} \zeta-\operatorname{Re} z}} \\
& =c \int_{0}^{\infty} \int_{B_{\varrho}}\left|I_{\zeta} f(y)\right| \mathrm{d} y \frac{\mathrm{~d} \varrho}{(\varrho+1)^{n+1+\operatorname{Re} \zeta-\operatorname{Re} z}} \tag{26}\\
& \leqslant c \mathcal{M} I_{\zeta} f(0)
\end{align*}
$$

The function $|\xi|^{-z}(1-F \eta(\xi))$ is smooth which implies

$$
\begin{equation*}
|Q(y)| \leqslant c(N)|y|^{-N} \tag{27}
\end{equation*}
$$

for $|y| \geqslant 1$ and for sufficiently large N. If $|y|<1$ we have

$$
|Q(y)| \leqslant c|y|^{-n+\operatorname{Re} z}+\left|I_{z} \chi(y)\right|
$$

and since the second term on the right is bounded,

$$
\begin{equation*}
|Q(y)| \leqslant c|y|^{-n+\operatorname{Re} z} \tag{28}
\end{equation*}
$$

for $|y|<1$. Using (27) and (28) we arrive at

$$
|Q * f(0)| \leqslant c\left(\int_{|y|>1} \frac{|f(y)| \mathrm{d} y}{|y|^{n+1}}+\int_{|y|<1} \frac{|f(y)| \mathrm{d} y}{|y|^{n-\operatorname{Re} z}}\right) \leqslant c \mathcal{M} f(0)
$$

Combining this inequality with (26) we obtain from (25) that

$$
\left|I_{z} f(0)\right| \leqslant c\left(\mathcal{M} I_{\zeta} f(0)+\mathcal{M} f(0)\right)
$$

Now the dilation $y \rightarrow y / r$ with an arbitrary positive r implies

$$
\left|I_{z} f(0)\right| \leqslant c\left(r^{\operatorname{Re} z-\operatorname{Re} \zeta} \mathcal{M} I_{\zeta} f(0)+r^{\operatorname{Re} z} \mathcal{M} f(0)\right)
$$

and it remains to minimize the right-hand side with respect to r.
The following analogue of the inequality (20) can be easily obtained from (24).
Corollary 1. Let $1<q \leqslant \infty, 1<p \leqslant \infty$, and

$$
\frac{1}{s}=\left(1-\frac{\operatorname{Re} z}{\operatorname{Re} \zeta}\right) \frac{1}{p}+\frac{\operatorname{Re} z}{\operatorname{Re} \zeta} \frac{1}{q}
$$

Then

$$
\begin{equation*}
\left\|I_{z} f ; \mathbb{R}^{n}\right\|_{L_{s}} \leqslant c\left\|I_{\zeta} f ; \mathbb{R}^{n}\right\|_{L_{q}}^{\operatorname{Re} z / \operatorname{Re} \zeta}\left\|f ; \mathbb{R}^{n}\right\|_{L_{p}}^{1-\operatorname{Re} z / \operatorname{Re} \zeta} \tag{29}
\end{equation*}
$$

Proof. By (24), the left-hand side in (29) does not exceed

$$
\int_{\mathbb{R}^{n}}\left(\mathcal{M} I_{\zeta} f(x)\right)^{s \operatorname{Re} z / \operatorname{Re} \zeta}(\mathcal{M} f(x))^{s(1-\operatorname{Re} z / \operatorname{Re} \zeta)} \mathrm{d} x
$$

which by Hölder's inequality is majorized by

$$
c\left\|\mathcal{M} I_{\zeta} f ; \mathbb{R}^{n}\right\|_{L_{q}}^{\operatorname{Re} z / \operatorname{Re} \zeta}\left\|\mathcal{M} f ; \mathbb{R}^{n}\right\|_{L_{p}}^{1-\operatorname{Re} z / \operatorname{Re} \zeta}
$$

It remains to refer to the boundednesss of the operator \mathcal{M} in $L_{\sigma}\left(\mathbb{R}^{n}\right)$ for $1<\sigma \leqslant \infty$.

Remark 5. Note that Hedberg's inequality (22) with $f \geqslant 0$ follows from (24) since, obviously,

$$
\int_{B_{r}} I_{\tau} f(y) \mathrm{d} y \leqslant c \int_{\mathbb{R}^{n}} \frac{r^{n} f(y) \mathrm{d} y}{r^{n-\tau}+|y|^{n-\tau}}
$$

and hence

$$
\begin{equation*}
\mathcal{M} I_{\tau} f(x) \leqslant c I_{\tau} f(x) \text { a.e. } \tag{30}
\end{equation*}
$$

if f is non-negative. Moreover, the proof of Corollary 1, along with (30), gives inequality (29) with real z, ζ and with non-negative f also for $q \in(0,1]$. (This is an alternative proof of the corresponding inequality in Theorem 3.1.6 of [6].)

4. Multidimensional variants of inequality (10)

Let m be a fractional number with $[m]$ and $\{m\}$ denoting its integer and fractional parts. We introduce the function

$$
\left(\mathcal{D}_{p, m} u\right)(x)=\left(\int_{\mathbb{R}^{n}}\left|\nabla_{[m]} u(x)-\nabla_{[m]} u(y)\right|^{p}|x-y|^{-n-p\{m\}} \mathrm{d} y\right)^{1 / p}
$$

Theorem 3. Let k, l be integers and let m be fractional, $0 \leqslant l \leqslant k<m$. Then there exists a positive constant $c=c(k, l, m, n)$ such that

$$
\begin{equation*}
\left|\nabla_{k} u(x)\right| \leqslant c\left[\mathcal{M} \nabla_{l} u(x)\right]^{\frac{m-k}{m-l}}\left[\mathcal{D}_{p, m} u(x)\right]^{\frac{k-l}{m-l}} \tag{31}
\end{equation*}
$$

for almost all $x \in \mathbb{R}^{n}$.
Proof. It suffices to prove inequality (31) for $l=0$ and $x=0$. By (14) we have

$$
\begin{align*}
\left|\nabla_{k} u(0)\right| \leqslant c\left(t^{-k} \mathcal{M} u(0)\right. & +t^{[m]-k}\left|\nabla_{[m]} u(0)\right| \tag{32}\\
& \left.+\int_{B_{t}} \frac{\left|\nabla_{[m]} u(y)-\nabla_{[m]} u(0)\right|}{|y|^{n-[m]+k}} \mathrm{~d} y\right)
\end{align*}
$$

Hölder's inequality implies

$$
\begin{equation*}
\int_{B_{t}} \frac{\left|\nabla_{[m]} u(y)-\nabla_{[m]} u(0)\right|}{|y|^{n-[m]+k}} \mathrm{~d} y \leqslant c t^{m-k} \mathcal{D}_{p, m} u(0) \tag{33}
\end{equation*}
$$

Using the function η, introduced in the proof of Theorem 1, we obtain for any multiindex γ of order [m]

$$
\begin{equation*}
\partial^{\gamma} u(0)=t^{-n} \int_{B_{t}} \eta\left(\frac{y}{t}\right) \partial^{\gamma} u(y) \mathrm{d} y+t^{-n} \int_{B_{t}} \eta\left(\frac{y}{t}\right)\left[\partial^{\gamma} u(0)-\partial^{\gamma}(y)\right] \mathrm{d} y \tag{34}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left|\nabla_{[m]} u(0)\right| \leqslant & t^{-n-[m]}\left|\int_{B_{t}} u(y)\left(\nabla_{[m]} \eta\right)\left(\frac{y}{t}\right) \mathrm{d} y\right| \tag{35}\\
& +t^{\{m\}}\left(\int_{B_{t}}|\eta(y)|^{q}|y|^{\left(\frac{n}{p}+\{m\}\right) q} \mathrm{~d} y\right)^{1 / q} \mathcal{D}_{p, m} u(0)
\end{align*}
$$

where $p^{-1}+q^{-1}=1$. Combining (32), (33) and (35) we arrive at

$$
\left|\nabla_{k} u(0)\right| \leqslant c\left(t^{-k} \mathcal{M} u(0)+t^{m-k} \mathcal{D}_{p, m} u(0)\right)
$$

The minimization of the right-hand side in t completes the proof.

Remark 6. The same argument as in Remark 4 applied to (31) gives the inequality

$$
\left\|\nabla_{k} u ; \mathbb{R}^{n}\right\|_{L_{s}} \leqslant c\left\|u ; \mathbb{R}^{n}\right\|_{L_{q}}^{1-k / m}\left\|\mathcal{D}_{p, m} u ; \mathbb{R}^{n}\right\|_{L_{p}}^{k / m}
$$

where m is fractional, $k<m, 1 \leqslant p \leqslant \infty$, and q, s are the same as in Remark 4.
Remark 7. By (35), inequality (10) can be easily extended to the n-dimensional case. Indeed, let $m \in(1,2)$. Then, inserting the function (18) into (35) we arrive at

$$
\begin{aligned}
|\nabla u(0)| \leqslant & t^{-1} \frac{n+1}{\operatorname{meas}_{n} B_{t}}\left|\int_{B_{t}} u(y) \frac{y}{|y|} \mathrm{d} y\right| \\
& +t^{m-1} \frac{n+1}{\operatorname{meas}_{n} B_{1}}\left(\int_{B_{1}}(1-|y|)^{q}|y|^{\left(\frac{n}{p}+m-1\right) q} \mathrm{~d} y\right)^{1 / q} \mathcal{D}_{p, m} u(0)
\end{aligned}
$$

which implies

$$
\begin{aligned}
|\nabla u(0)| \leqslant & t^{-1}(n+1) \mathcal{M}^{\diamond} u(0) \\
& +\frac{t^{m-1}(n+1) n^{1 / q}}{\left(\operatorname{meas}_{n} B_{1}\right)^{1 / p}}(\mathbf{B}(q(m+n-1), q+1))^{1 / q} \mathcal{D}_{p, m} u(0)
\end{aligned}
$$

with \mathcal{M}^{\diamond} given by (19). The minimization of the right-hand side results in the inequality

$$
|\nabla u(x)|^{m} \leqslant \frac{(n+1)^{m} m^{m}(n \mathbf{B}(q(m+n-1), q+1))^{1 / q}}{(m-1)^{m-1}\left(\operatorname{meas}_{n} B_{1}\right)^{1 / p}}\left(\mathcal{M}^{\diamond} u(x)\right)^{m-1} \mathcal{D}_{p, m} u(x)
$$

containing (10) as a special case. In particular for $p=\infty, m=\alpha+1,0<\alpha<1$, we have

$$
|\nabla u(x)|^{\alpha+1} \leqslant \frac{n(n+1)^{\alpha+1}(\alpha+1)^{\alpha+1}}{(n+\alpha)(n+\alpha+1) \alpha^{\alpha}}\left(\mathcal{M}^{\diamond} u(x)\right)^{\alpha} \sup _{y} \frac{|\nabla u(y)-\nabla u(x)|}{|y-x|^{\alpha}}
$$

which is a multidimensional generalization of (11).
We conclude this section with two inequalities of the same nature as (31).

Theorem 4.

(i) Let k, m be integers, and let l be noninteger, $0<l<k \leqslant m$. Then there exists a positive constant $c=c(k, l, m, n)$ such that

$$
\begin{equation*}
\left|\nabla_{k} u(x)\right| \leqslant c\left(\mathcal{D}_{p, l} u(x)\right)^{\frac{m-k}{m-l}}\left(\mathcal{M} \nabla_{m} u(x)\right)^{\frac{k-l}{m-l}} \tag{36}
\end{equation*}
$$

for almost all $x \in \mathbb{R}^{n}$.
(ii) Let k be integer and let l, m be noninteger, $0<l<k<m$. Then there exists a positive constant $c=c(k, l, m, n)$ such that

$$
\begin{equation*}
\left|\nabla_{k} u(x)\right| \leqslant c\left(\mathcal{D}_{p, l} u(x)\right)^{\frac{m-k}{m-l}}\left(\mathcal{D}_{p, m} u(x)\right)^{\frac{k-l}{m-l}} \tag{37}
\end{equation*}
$$

for almost all $x \in \mathbb{R}^{n}$.
Proof. It is sufficient to take $l \in(0,1)$ and $x=0$.
(i) Since the function $\partial^{\beta+\gamma}\left(y^{\beta} \eta(y)\right)$ in (14) is orthogonal to 1 in $L_{2}\left(B_{1}\right)$, it follows from (14) that

$$
\begin{equation*}
\left|\nabla_{k} u(0)\right| \leqslant c\left(t^{-n-k} \int_{B_{t}}|u(y)-u(0)| \mathrm{d} y+\int_{B_{t}} \frac{\left|\nabla_{m} u(y)\right|}{|y|^{n-m+k}} \mathrm{~d} y\right) \tag{38}
\end{equation*}
$$

By Hölder's inequality, applied to the first integral and by (16) we have

$$
\left|\nabla_{k} u(0)\right| \leqslant c\left(t^{-k} \mathcal{D}_{p, l} u(0)+t^{m-k} \mathcal{M} \nabla_{m}(x)\right) .
$$

The result follows.
(ii) By (38) with m replaced by $[m]$

$$
\left|\nabla_{k} u(0)\right| \leqslant c\left(t^{l-k} \mathcal{D}_{p, l} u(0)+t^{[m]-k}\left|\nabla_{[m]} u(0)\right|+\int_{B_{t}} \frac{\left|\nabla_{[m]} u(y)-\nabla_{[m]} u(0)\right|}{|y|^{n-[m]+k}} \mathrm{~d} y\right)
$$

By (33) the third term in the right-hand side does not exceed

$$
t^{m-k} \mathcal{D}_{p, m} u(0)
$$

Now we note that (35) implies

$$
\left|\nabla_{[m]} u(0)\right| \leqslant c\left(t^{l-[m]} \mathcal{D}_{p, l} u(0)+t^{\{m\}} \mathcal{D}_{p, m} u(0)\right)
$$

Hence

$$
\left|\nabla_{k} u(0)\right| \leqslant c\left(t^{-k} \mathcal{D}_{p, l} u(0)+t^{m-k} \mathcal{D}_{p, m} u(0)\right)
$$

The result follows.

5. Applications to the theory of multipliers in Sobolev spaces

5.1. The maximal algebra in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$.

Let m and l be integers, $m \geqslant l$, and let $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ denote the space of pointwise multipliers acting from $W_{p}^{m}\left(\mathbb{R}^{n}\right)$ to $W_{p}^{l}\left(\mathbb{R}^{n}\right)$ (see [11]). Analytical descriptions of $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ as well as separate necessary and sufficient conditions for the membership in this multiplier space can be found in [11]. We characterize the maximal algebra in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ by using inequality (13).

Theorem 5. The maximal Banach algebra in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right), m \geqslant l$, $1<p<\infty$, is isomorphic to the space

$$
\begin{equation*}
M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right) \cap L_{\infty}\left(\mathbb{R}^{n}\right) \tag{39}
\end{equation*}
$$

Remark 8. In the case $m=l$ the statement of Theorem 5 is trivial since the multiplier space $M\left(W_{p}^{l}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ is an algebra and is embedded into $L_{\infty}\left(\mathbb{R}^{n}\right)$.

Proof of Theorem 5. Let A be a subalgebra of $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$. Then, for any $N=1,2, \ldots$ and for any $\gamma \in A, u \in W_{p}^{m}\left(\mathbb{R}^{n}\right)$,

$$
\left\|\gamma^{N} u\right\|_{L_{p}}^{1 / N} \leqslant\left\|\gamma^{N} u\right\|_{W_{p}^{l}}^{1 / N} \leqslant c^{1 / N}\|\gamma\|_{A}\|u\|_{W_{p}^{m}}^{1 / N}
$$

(Here and elsewhere in the present section we omit \mathbb{R}^{n} in the notations of norms.) Passing to the limit as $N \rightarrow \infty$ we obtain $\gamma \in L_{\infty}\left(\mathbb{R}^{n}\right)$. Hence A is a part of the intersection (39).

Let γ_{1}, γ_{2} belong to (39). Then, for any $u \in W_{p}^{m}\left(\mathbb{R}^{n}\right)$,

$$
\begin{align*}
\left\|\nabla_{l}\left(\gamma_{1} \gamma_{2} u\right)\right\|_{L_{p}} \leqslant & c\left(\left\|\gamma_{1}\right\|_{L_{\infty}}\left\|\nabla_{l}\left(\gamma_{2} u\right)\right\|_{L_{p}}\right. \tag{40}\\
& +\left\|\gamma_{2}\right\|_{L_{\infty}} \sum_{h=1}^{l}\left\|\left|\nabla_{h} \gamma_{1}\right|\left|\nabla_{l-h} u\right|\right\|_{L_{p}} \\
& \left.+\sum_{h=1}^{l-1} \sum_{k=1}^{l-h}\left\|\left|\nabla_{h} \gamma_{1}\right|\left|\nabla_{k} \gamma_{2}\right|\left|\nabla_{l-h-k} u\right|\right\|_{L_{p}}\right)
\end{align*}
$$

The first term in the right-hand side is majorized by

$$
c\left\|\gamma_{1}\right\|_{L_{\infty}}\left\|\gamma_{2}\right\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right)}\|u\|_{W_{p}^{m}}
$$

Before estimating the second term we note that if $\Gamma \in M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ then, for any $h=0, \ldots, l$,

$$
\nabla_{h} \Gamma \in M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l-h}\left(\mathbb{R}^{n}\right)\right) \subset M\left(W_{p}^{m-l+h}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)\right)
$$

and the estimate

$$
\begin{equation*}
\left\|\nabla_{h} \Gamma\right\|_{M\left(W_{p}^{m-l+h} \rightarrow L_{p}\right)} \leqslant c\|\Gamma\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right)} \tag{41}
\end{equation*}
$$

holds (see [11], Section 1.3). Therefore, the second term in the right-hand side of (30) is not greater than

$$
c\left\|\gamma_{2}\right\|_{L_{\infty}}\left\|\gamma_{1}\right\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right)}\|u\|_{W_{p}^{m}}
$$

To estimate the remaining terms in the right-hand side of (40) we need the inequality

$$
\left|\nabla_{h} \Gamma(x)\right| \leqslant c\|\Gamma\|_{L_{\infty}}^{\frac{k}{h+k}}\left(\mathcal{M} \nabla_{h+k} \Gamma(x)\right)^{\frac{h}{k+h}}
$$

stemming from (13). Hence

$$
\begin{aligned}
& \left\|\left|\nabla_{h} \gamma_{1}\left\|\nabla_{k} \gamma_{2}\right\| \nabla_{l-h-k} u\right|\right\|_{L_{p}} \\
& \quad \leqslant c\left\|\gamma_{1}\right\|_{L_{\infty}}^{\frac{k}{h+k}}\left\|\gamma_{2}\right\|_{L_{\infty}}^{\frac{h}{h+k}}\left\|\left(\mathcal{M} \nabla_{h+k} \gamma_{1}\right)^{\frac{h}{h+k}}\left(\mathcal{M} \nabla_{h+k} \gamma_{2}\right)^{\frac{k}{h+k}}\left|\nabla_{l-h-k} u\right|\right\|_{L_{p}} \\
& \quad \leqslant c\left\|\gamma_{1}\right\|_{L_{\infty}}^{\frac{k}{h+k}}\left\|\gamma_{2}\right\|_{L_{\infty}}^{\frac{h}{h+k}}\left\|\left(\mathcal{M} \nabla_{h+k} \gamma_{1}\right)\left|\nabla_{l-h-k} u\right|\right\|_{L_{p}}^{\frac{h}{n+k}}\left\|\left(\mathcal{M} \nabla_{h+k} \gamma_{2}\right)\left|\nabla_{l-h-k} u\right|\right\|_{L_{p}}^{\frac{k}{n+k}} .
\end{aligned}
$$

By Verbitsky's theorem (see [12], Lemma 3.1)

$$
\begin{equation*}
\|\mathcal{M} \Gamma\|_{M\left(W_{p}^{s} \rightarrow L_{p}\right)} \leqslant c\|\Gamma\|_{M\left(W_{p}^{s} \rightarrow L_{p}\right)} \tag{42}
\end{equation*}
$$

which along with (41) implies

$$
\begin{aligned}
& \left\|\left|\nabla_{h} \gamma_{1}\left\|\nabla_{k} \gamma_{2}\right\| \nabla_{l-h-k} u\right|\right\|_{L_{p}} \\
& \leqslant c\left\|\gamma_{1}\right\|_{L_{\infty}}^{\frac{k}{h+k}}\left\|\gamma_{2}\right\|_{L_{\infty}}^{\frac{h}{h+k}}\left\|\left|\nabla_{h+k} \gamma_{1}\left\|\nabla_{l-h-k} u\left|\left\|_{L_{p}}^{\frac{h}{h+k}}\right\|\right| \nabla_{h+k} \gamma_{2}\right\| \nabla_{l-h-k} u \|_{L_{p}}^{\frac{k}{h+k}}\right.\right. \\
& \quad \leqslant c\left\|\gamma_{1}\right\|_{L_{\infty}}^{\frac{k}{h+k}}\left\|\gamma_{2}\right\|_{L_{\infty}}^{\frac{h}{n+k}}\left\|\gamma_{1}\right\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right.}^{\frac{h}{h+k}}\left\|\gamma_{2}\right\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right)}^{\frac{k}{h+k}}\|u\|_{W_{p}^{m}}
\end{aligned}
$$

The proof is complete.
146

From Theorem 5 and the description of $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ obtained in [11, Chapter 1] we arrive at

Corollary 2. The maximal algebra in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right), m \geqslant l$, consists of $\gamma \in W_{p, \text { loc }}^{l}\left(\mathbb{R}^{n}\right)$ with the finite norm

$$
\begin{equation*}
\sup _{e \subset \mathbb{R}^{n}, \operatorname{diam}(e) \leqslant 1} \frac{\left\|\nabla_{l} \gamma ; e\right\|_{L_{p}}}{\left(\operatorname{cap}\left(e, W_{p}^{m}\right)\right)^{1 / p}}+\|\gamma\|_{L_{\infty}} \tag{43}
\end{equation*}
$$

where e is a compact set and cap $\left(e, W_{p}^{m}\right)$ is the capacity of e generated by the norm in $W_{p}^{m}\left(\mathbb{R}^{n}\right)$, i.e.

$$
\operatorname{cap}\left(e, W_{p}^{m}\right)=\inf \left\{\|u\|_{W_{p}^{m}}^{p}: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \quad u \geqslant 1 \text { on } e\right\} .
$$

In the case $m p>n$ the norm (43) can be simplified as

$$
\sup _{x \in \mathbb{R}^{n}}\left\|\nabla_{l} \gamma ; B_{1}(x)\right\|_{L_{p}}+\|\gamma\|_{L_{\infty}}
$$

which also follows from the fact that the norm in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ is equivalent to the norm

$$
\sup _{x \in \mathbb{R}^{n}}\left\|\gamma ; B_{1}(x)\right\|_{W_{p}^{m}}
$$

in the case $m p>n([11$, Chapter 1$])$.
5.2. Estimate for the norm in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$.

According to Theorem 1.3.2/1 [11], the equivalence relation

$$
\|\gamma\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right)} \sim\left\|\nabla_{l} \gamma\right\|_{M\left(W_{p}^{m} \rightarrow L_{p}\right)}+\|\gamma\|_{M\left(W_{p}^{m-l} \rightarrow L_{p}\right)}
$$

holds with $m p \leqslant n$ and $m \geqslant l$. The proof of the upper estimate for the norm in $M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow W_{p}^{l}\left(\mathbb{R}^{n}\right)\right)$ given in [11] is based on the complex interpolation. The inequality (13) enables one to arrive at the same result in a different way. The argument is as follows.

Let $\gamma \in M\left(W_{p}^{m-l}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)\right)$ and $\nabla_{l} \gamma \in M\left(W_{p}^{m}\left(\mathbb{R}^{n}\right) \rightarrow L_{p}\left(\mathbb{R}^{n}\right)\right)$. For any $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\|\gamma u\|_{W_{p}^{l}} \leqslant c\left(\sum_{k=0}^{l}\left\|\left|\nabla_{k} \gamma \nabla_{l-k} u\right|\right\|_{L_{p}}+\|\gamma u\|_{L_{p}}\right) .
$$

By (13) and the Hölder inequality we have for $k=1, \ldots, l-1$

$$
\begin{align*}
\left\|\left|\nabla_{k} \gamma \nabla_{l-k} u\right|\right\|_{L_{p}} & \leqslant c\left\|(\mathcal{M} \gamma)^{1-k / l}\left(\mathcal{M} \nabla_{l} \gamma\right)^{k / l}(\mathcal{M} u)^{k / l}\left(\mathcal{M} \nabla_{l} u\right)^{1-k / l}\right\|_{L_{p}} \tag{44}\\
& \leqslant c\left\|(\mathcal{M} \gamma)\left(\mathcal{M} \nabla_{l} u\right)\right\|_{L_{p}}^{1-k / l}\left\|\left(\mathcal{M} \nabla_{l} \gamma\right)(\mathcal{M} u)\right\|_{L_{p}}^{k / l}
\end{align*}
$$

Clearly,

$$
\left|\nabla_{l} u\right| \leqslant c I_{m-l}\left|\nabla_{m} u\right|, \quad|u| \leqslant c I_{m}\left|\nabla_{m} u\right|
$$

Hence,

$$
\mathcal{M} \nabla_{l} u \leqslant c I_{m-l} \mathcal{M} \nabla_{m} u, \quad \mathcal{M} u \leqslant c I_{m} \mathcal{M} \nabla_{m} u
$$

This along with (42) leads to

$$
\begin{aligned}
\left\|(\mathcal{M} \gamma)\left(\mathcal{M} \nabla_{l} u\right)\right\|_{L_{p}} & \left.\leqslant c\|\gamma\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right.}\right)\left\|I_{m-l} \mathcal{M} \nabla_{m} u\right\|_{W_{p}^{m-l}} \\
& \leqslant c\|\gamma\|_{M\left(W_{p}^{m-l} \rightarrow L_{p}\right)}\left\|\mathcal{M} \nabla_{m} u\right\|_{L_{p}}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\left\|\left(\mathcal{M} \nabla_{l} \gamma\right)(\mathcal{M} u)\right\|_{L_{p}} & \leqslant c\left\|\nabla_{l} \gamma\right\|_{M\left(W_{p}^{m} \rightarrow W_{p}^{l}\right)}\left\|I_{m} \mathcal{M} \nabla_{m} u\right\|_{W_{p}^{m}} \\
& \leqslant c\left\|\nabla_{l} \gamma\right\|_{M\left(W_{p}^{m} \rightarrow L_{p}\right)}\left\|\mathcal{M} \nabla_{m} u\right\|_{L_{p}} .
\end{aligned}
$$

The result follows from (44) and the boundedness of the operator \mathcal{M} in $L_{p}\left(\mathbb{R}^{n}\right)$.

References

[1] E. Landau: Einige Ungleichungen für zweimal differenzierbare Funktionen. Proc. London Math. Soc. 13 (1913), 43-49.
[2] V. Maz'ya, T. Shaposhnikova: Jacques Hadamard, a universal mathematician. American Mathematical Society and London Mathematical Society, Providence, RI, 1998.
[3] L. Nirenberg, F. Trèves: Solvability of a first order linear partial differential equation. Comm. Pure Appl. Math. 16 (1963), 331-351.
[4] P. D. Lax, L. Nirenberg: On solvability for difference schemes, a sharp form of Gårding's inequality. Comm. Pure Appl. Math. 19 (1966), 473-492.
[5] V. Maz'ya, A. Kufner: Variations on the theme of the inequality $\left(f^{\prime}\right)^{2} \leqslant 2 f \sup \left|f^{\prime \prime}\right|$. Manuscripta Math. 56 (1986), 89-104.
[6] D. R. Adams, L. I. Hedberg: Function spaces and potential theory. Springer-Verlag, Berlin, 1996.
[7] V. Maz'ya, S. Poborchi: Differentiable functions on bad domains. World Scientific Publishing, Singapore, 1997.
[8] E. Gagliardo: Ulteriori propietà di alcune classi di funzioni on più variabli. Ric. Mat. 8(1) (1959), 24-51.
[9] L. Nirenberg: On elliptic partial differential equations: Lecture II. Ann. Sc. Norm. Sup. Pisa, Ser. 313 (1959), 115-162.
[10] L.I. Hedberg: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), 505-510.
[11] V. Maz'ya, T. Shaposhnikova: Theory of multipliers in spaces of differentiable functions. Pitman, London, 1985.
[12] V. Maz'ya, I. Verbitsky: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33 (1995), 81-115.

Authors' addresses: Vladimir Maz'ya, Tatyana Shaposhnikova, Department of Mathematics, Linköping University, S-581 83 Linköping, Sweden, e-mails: vlmaz@mai.liu.se; tasha@mai.liu.se.

