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Abstract. The paper is devoted to the estimate

|u(x, k)| � K|k|
{
capp,w(F )

�p

w(B(x, �))

} 1
p−1

,

2 � p < n for a solution of a degenerate nonlinear elliptic equation in a domain B(x0, 1) \ F ,
F ⊂ B(x0, d) = {x ∈ �

n : |x0 − x| < d}, d < 1
2 , under the boundary-value conditions

u(x, k) = k for x ∈ ∂F , u(x, k) = 0 for x ∈ ∂B(x0, 1) and where 0 < � � dist(x,F ), w(x) is
a weighted function from some Muckenhoupt class, and capp,w(F ), w(B(x, �)) are weighted
capacity and measure of the corresponding sets.

Keywords: degeneracy, Muckenhoupt class, pointwise estimate, nonlinear elliptic equa-
tion, capacity, a-priori estimate

MSC 2000 : 35J70, 35B45

In the study of behaviour of solutions of nonlinear elliptic and parabolic equations

an important role is played by special estimates of model problems in domains with
small holes (see [1, 2]). In many cases this role is analogous to that of estimates

of singular solutions of linear equations. By using these estimates the following
problems were studied: asymptotical behaviour and the construction of correctors

for nonlinear elliptic and parabolic problems in perforated domains, a necessary
condition for the regularity of boundary points, the stability of solutions of nonlinear

problems with respect to the variation of domains. The proof and applications of
these estimates for elliptic equations are given in [1]. This paper is devoted to the
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extension of the method of obtaining of pointwise estimates for degenerate nonlinear

elliptic equations.

1. Auxiliary lemmas and statement of the result

Let w be a locally integrable nonnegative function in �n and assume that 0 <

w(x) <∞ almost everywhere. We say that w belongs to the Muckenhoupt class At,
1 < t <∞, if there exists a constant ct,w such that

(1)
1
|B|

∫
B

w dx � ct,w

(
1
|B|

∫
B

w
1
1−t dx

)1−t

for all balls B in �n . By |E| we denote the Lebesgue n-measure of a measurable set
E ⊂ �

n .

We shall note only certain properties of functions from Muckenhoupt class.

Lemma 1. If w ∈ At, then

(2)

( |E|
|B|

)t
� ct,w

w(E)
w(B)

,

where B is an arbitrary ball in �n , E is a measurable subset of B and

w(E) =
∫
E

w(x) dx.

Lemma 2. If w ∈ At, t > 1, then w ∈ At−ε for some ε, 0 < ε < t− 1. Moreover,
ε and ct−ε,w depend only on n, t, ct,w.

For the proofs of Lemmas 1, 2 see [3], Chapter 15.

Lemma 3. Suppose w ∈ At and s > t. Then w ∈ As.

This statement immedeatly follows from the Hölder inequality and (1).

Lemma 4. (At-weighted Poincaré inequality) Suppose w ∈ At and let for arbi-

trary x, s, h, 0 < s � h an inequality

s

h

(w(B(x, s))
w(B(x, h))

) 1
q � c

(w(B(x, s))
w(B(x, h))

) 1
t

, q > t,
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hold with a constant c independent of x, s, h. Then

(
1

w(B)

∫
B

∣∣∣v(x)− 1
|B|

∫
B

v(x) dx
∣∣∣qw(x) dx

) 1
q

� Cr

(
1

w(B)

∫
B

∣∣∣∂v(x)
∂x

∣∣∣tw(x) dx
) 1

t

,

where B = B (x0, r), v(x) ∈ C∞(B) and C is independent of x0, r, v.

Lemma 5. (At-weighted Sobolev inequality) With the same hypotheses as in
Lemma 4 we have

(
1

w(B)

∫
B

|v(x)|q w(x) dx
) 1

q

� Cr

(
1

w(B)

∫
B

∣∣∣∣∂v(x)∂x

∣∣∣∣
t

w(x) dx

) 1
t

,

where B = B (x0, r), v(x) ∈ C∞
0 (B) and C is independent of x0, r, v.

For the proofs of Lemmas 4, 5 see [4].

Definition and basic properties of the Muckenhoupt classAt were explicitly studied
in [3].

Let F be an arbitrary compact set in �n . Let us denote by d the minimum of
the radii of balls containing F , and let x0 be the center of such a ball with radius d,

satisfying F ⊂ B(x0, d). Here and in the sequel B(x, r) denotes the ball with radius
r and center at x.

Let ψ(x) be a function from the class C∞
0 (B(x0, 1)), equal to one in B

(
x0,

1
2

)
. If

d < 1
2 , then for an arbitrary real k we consider a nonlinear elliptic boundary value

problem

n∑
i=1

d
dxi

ai
(
x,
∂u

∂x

)
= 0, x ∈ D,(3)

u(x) = kψ(x), x ∈ ∂D.(4)

Here D = B(x0, 1) \ F .
We assume that the functions ai(x, g), i = 1, . . . , n, are defined for x ∈ B (here

and in the sequel B = B(x0, 1)) and g ∈ �
n , and satisfy the following conditions:

A1) functions ai(x, g) are continuous in g for almost every x ∈ B, measurable in
x for all g ∈ �

n ;
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A2) there are positive constants ν1, ν2 such that for 2 � p < n and x ∈ B, g,

q ∈ �
n the inequalities

|ai(x, g)| � ν1|g|p−1w(x),
n∑
i=1

[ai(x, g)− ai(x, q)](gi − qi) � 0,

n∑
i=1

ai(x, g)gi � ν2|g|pw(x)

hold, where w(x) ∈ A(p−1)+ p
n
(�n ), [w(x)]−

1
p−1 ∈ A p

p−1 (1− 1
n )
(�n ).

������ �� Let us choose w(x) = |x|α,−n + p < α < n(p − 1) − (n − p) and
p � 2. In this case w(x) satisfies A2. This is easily verified by a direct computation.

A solution of the boundary value problem (1), (2) is a function u(x, k) ∈ W 1
p (D,w)

such that u(x, k)− kψ(x) ∈W ◦1
p(D,w) and the integral identity

(5)
n∑
i=1

∫
D

ai

(
x,
∂u

∂x

)
∂ϕ

∂xi
dx = 0

holds for arbitrary function ϕ(x) ∈
◦
W
1

p(D,w).

The definitions and properties of weighted Sobolev spaces W 1
p (Ω, w),W

◦1
p(Ω, w)

were studied in [3, 4, 5] (here Ω ⊂ �
n ).

The existence and uniqueness of the function u(x, k) follows from the global theory
of monotone operators (for example, see [1]). The function u(x, k) is assumed to be

extended to F by the constant k.
For the purpose of formulation of our main result let us introduce the notion of

weighted (p, w)-capacity capp,w (see [3]).

The number

(6) capp,w(E) = inf
∫
B

∣∣∣∣∂v(x)∂x

∣∣∣∣
p

w(x) dx

is called the (p, w)-capacity of the closed set E ⊂ B(x0, 12 ). The infimum in (6) is
taken over all functions v(x) ∈ C∞

0 (B) satisfying the equality v(x) = 1 for x ∈ E.

Further, we shall prove the following

Theorem. Let us assume that conditions A1, A2, are satisfied. Then there exists
a constant K depending only on n, p, ν1, ν2 and the Muckenhoupt constant cp,w of
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w such that, for a solution u(x, k) of the problem (1), (2) and for an arbitrary point

x ∈ D,

(7) |u(x, k)| � K|k|
{
capp,w(F )

�p

w(B(x, �))

} 1
p−1

,

where 0 < � � �(x, F ).

������ �� In case w(x) ≡ 1 the estimate (7) coincides with the pointwise
estimate of the solution of nonlinear Dirichlet problem obtained by the first author

in [2]. Exactness of (7) follows also from

G(x, ξ) ≈ |x− ξ|2
w(B(x, |x− ξ|))

for the fundamental solution G(x, ξ) of the operator

L =
n∑

i,j=1

Dxi

(
aij(x)Dxj

)
,

where ai,j(x) are real-valued, symmetric and

λw(x)|ξ|2 �
n∑

i,j=1

aij(x)ξiξj � 1
λ
w(x)|ξ|2 ,

whenever λ > 0, ξ = (ξ1, . . . , ξn), and w(x) is the same as in condition A2 (case

p = 2). This estimate was obtained in [6].

2. Proof of the main result

Let us assume k > 0.

Lemma 6. Let us assume that conditions A1, A2 are satisfied and let u(x, k) be
the solution of the problem (1), (2). Then for k �= 0

0 � 1
ku(x, k) � 1.

	�

�. Let us take the test-function ϕ1(x) = min{u(x, k), 0} in the integral
identity (5) and use the condition A2. We obtain∫

D1

∣∣∣∣∂u(x, k)∂x

∣∣∣∣
p

w(x) dx � 0,

where D1 = {x ∈ D : u(x, k) < 0}. From this inequality it follows that u(x, k) � 0.
Similarly, replacing ϕ(x) in (5) by ϕ2(x) = max{u(x, k) − k, 0} the inequality
u(x, k) � k is established. �
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Lemma 7. Assume that conditions A1, A2 are satisfied. Then there exists a
constant c1, depending only on n, p, ν1, ν2, cp,w, such that

(8)
∫
D

∣∣∣∣∂u(x, k)∂x

∣∣∣∣
p

w(x) dx � c1k
p capp,w(F ).

	�

�. Let us take the test-function ϕ = u(x, k)−kψ(x) in the integral identity
(5), where ψ(x) is from the class C∞

0 (B), and ψ is equal to one in F . Using the

condition A2 and Young’s inequality we estimate the terms of the obtained equality
and get

(9)
∫
D

∣∣∣∣∂u(x, k)∂x

∣∣∣∣
p

w(x) dx � c2k
p

∫
B

∣∣∣∣∂ψ(x)∂x

∣∣∣∣
p

w(x) dx.

Here and in the sequel we denote by ci constants depending only on the same para-
meters as the constant K in the formulation of the Theorem.

By virtue of definition (6), inequality (9) proves the estimate (8). �

Let us denote for 0 < µ < k

Eµ = {x ∈ D : 0 � u(x, k) � µ}.

Lemma 8. Let us assume that conditions A1, A2 are satisfied. Then there exists
a constant c3 such that

(10)
∫
Eµ

∣∣∣∣∂u(x, k)∂x

∣∣∣∣
p

w(x) dx � c3µk
p−1 capp,w(F ).

	�

�. We substitute ϕ(x) = uµ(x, k) − µ
ku(x, k) in (5), where uµ(x, k) =

min{u(x, k), µ}. By standard computations and (8) we obtain (10). �

In order to prove Theorem we need some auxiliary results.

Lemma 9. Let 2 � p < n and w ∈ A(p−1)+ p
n
, [w]−

1
p−1 ∈ A p

p−1 (1− 1
n )
. For any

function v(x) ∈ W ◦1
p(B(0, R), w) and any numbers r,R, satisfying the conditions

0 < r � R the inequality

(11)
∫

B(0,r)

|v(x)|pw(x) dx � K1r
p

∫
B(0,R)

∣∣∣∣∂v(x)∂x

∣∣∣∣
p

w(x) dx
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holds with a constant K1 depending only on n, p, cp,w.

	�

�. Without loss of generality we may assume that v(x) ∈ C∞
0 (B(0, R)).

From Ap-weighted Poincaré inequality we have

(12)
1

w(B(0, r))

∫
B(0,r)

|v(x)|pw(x) dx

� 2p−1

w(B(0, r))

∫
B(0,r)

∣∣∣∣v(x)− 1
|B(0, r)|

∫
B(0,r)

v(y) dy

∣∣∣∣
p

w(x) dx

+ 2p−1
(

1
|B(0, r)|

∫
B(0,r)

|v(y)| dy
)p

� c4
rp

w(B(0, r))

∫
B(0,r)

∣∣∣∣∂v(x)∂x

∣∣∣∣
p

w(x) dx+ c4

(
1

|B(0, r)|
∫

B(0,r)

|v(y)| dy
)p
.

Now we only need to estimate the last term on the right-hand side of (12).

Let ω = x
|x| . A straightforward calculation yields

(13) |v(x)| =
∣∣∣∣
R∫

|x|

d
dt
v(ωt) dt

∣∣∣∣ �
∣∣∣∣
R∫

|x|

∣∣∣∂v
∂x
(ωt)

∣∣∣ dt
∣∣∣∣.

Transforming the last integral on the right-hand side of (12) into spherical coordinates

with respect to the variables |x| ∈ [0, r], ω = x
|x| ∈ S1(0), using (13) and Hölder

inequality, we obtain

(14)

I1 =

{
1

|B(0, r)|
∫

B(0,r)

|v(y)| dy
}p

=

{
1

|B(0, r)|

r∫
0

∫
S1(0)

|v(|x|ω)| |x|n−1 dω d|x|
}p

�
{

1
|B(0, r)|

r∫
0

∫
S1(0)

R∫
|x|

∣∣∣∂v
∂x
(ωt)

∣∣∣ dt|x|n−1 dω d|x|
}p

� c5

{
1

|B(0, r)|p
r∫
0

R∫
|x|

∫
S1(0)

∣∣∣∂v
∂x
(ωt)

∣∣∣pw(ωt)tn−1 dω dt|x|n−1 d|x|
}

×
{ r∫
0

R∫
|x|

∫
S1(0)

[w(ωt)]−
1

p−1 t−
n−1
p−1 dω dt|x|n−1 d|x|

}p−1
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� c6

{
1

rn(p−1)

∫
B(0,R)

∣∣∣∂v
∂x
(x)

∣∣∣pw(x) dx
}

×
{ r∫
0

|x|n−1
R∫

|x|

∫
S1(0)

[w(ωt)]−
1

p−1 t−
n−1
p−1 dω dt d|x|

}p−1
.

Now we estimate separately the integral

(15)

I2 =

R∫
|x|

∫
S1(0)

[w(ωt)]−
1

p−1 t−
n−1
p−1 dω dt =

∫
|x|�|z|�R

|z|−np+p
p−1 [w(z)]−

1
p−1 dz

�
∞∑
j=1

∫
2j−1|x|�|z|�2j |x|

|z|−np+p
p−1 [w(z)]−

1
p−1 dz

� c7

∞∑
j=1

(
2j|x|)−np+p

p−1
∫

|z|�2j |x|

[w(z)]−
1

p−1 dz.

Since w− 1
p−1 ∈ A p

p−1 (1− 1
n )
, by Lemma 2, w− 1

p−1 ∈ A p
p−1 (1− 1

n )−ε1 , where ε1 > 0.

Now, using (2), from (15) we obtain

(16)

I2 � c8

∞∑
j=1

(
2j|x|)−np+p

p−1 (
2j

)np−p
p−1 (

2j
)−nε1 ∫

|z|�|x|

[w(z)]−
1

p−1 dz

� c9 |x|
−np+p

p−1

∫
|z|�|x|

[w(z)]−
1

p−1 dz.

By virtue of Lemma 3, w ∈ Ap, and estimating the integral on the right-hand side

of (16) with the help of (1) we have

(17) I2 � c10 |x|
−np+p

p−1 |x| np
p−1 [w(B(0, |x|))]− 1

p−1 = c10 |x|
p

p−1 [w(B(0, |x|))]− 1
p−1 .

Since w ∈ Ap−1+ p
n
, by Lemma 2, w ∈ Ap−1+ p

n−ε2 , where ε2 > 0. Using this, we
obtain from Lemma 1

(18) [w(B(0, |x|))]− 1
p−1 � c11

[ r

|x|
]n+ p−ε2n

p−1
[w(B(0, r))]−

1
p−1 .

180



Thus from (14), (17), (18) we have

I1 � c12 [w(B(0, r))]
−1
rp−ε2n

×
{ ∫
B(0,R)

∣∣∣∂v
∂x
(x)

∣∣∣pw(x) dx
}{ r∫

0

|x|n−1|x| p
p−1 |x|−n− p

p−1+
ε2n
p−1 d|x|

}p−1

� c13
rp

w(B(0, r))

∫
B(0,R)

∣∣∣∂v
∂x
(x)

∣∣∣pw(x) dx.

Now the desired estimate follows from (12) and the last inequality. �

������ �� In case p = 2 the statement of Lemma 9 coincides with the state-

ment of Lemma 2.2 in [7].

	�

� 
� ��
���. Let ξ be an arbitrary point ofD and for 0 < � � �(ξ, F )
we define the numerical sequence

�j =
�
4 [3− 2−j ], j = 1, 2, . . .

Let functions ψj(x) be equal to one on Bj = B (ξ, �j) and to zero outside Bj+1, and

such that 0 � ψj(x) � 1,
∣∣∣∂ψj(x)

∂x

∣∣∣ � 2j+4

� .

Substitute ϕ(x) = [u(x, k)]σ+1[ψj(x)]τ+p into (5), where σ, τ are arbitrary positive
numbers. Using A2 and Young’s inequality, we obtain

(19)
∫
D

∣∣∣∣∂u∂x
∣∣∣∣
p

uσψτ+pj w dx � c14(τ + p)p
2jp

�p
[mj+1]p−1

∫
D

uσ+1ψτjw dx,

where mj = max{u(x, k) : x ∈ Bj}.
Let t, s be arbitrary positive numbers satisfying the inequalities

t+ p >
pnp0
np0 − p

, s+ p >
pnp0
np0 − p

,

where 1 < p0 < p− 1 + p
n and p0 depends only on n, p, cp,w. Then

{
ut+p(x, k)ψs+pj (x)

} np0−p
pnp0 ∈ ◦

W
1
p

(
B

(
ξ, 34�

)
, w

)
.
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By virtue of Ap-weighted Sobolev inequality and (19) we have

[
1

w
(
B

(
ξ, 34�

))
∫

B(ξ, 34�)

(
{ut+pψs+pj }np0−p

pnp0

) pnp0
np0−p

w dx

] np0−p

pnp0

� c15�
[
w

(
B

(
ξ, 34�

))]− 1
p

×
{
(t+ p)p

∫

B(ξ, 34�)

∣∣∣∂u
∂x

∣∣∣pu(t+p)np0−p

np0
−pψ

(s+p)np0−p
np0

j w dx

+ (s+ p)p
∫

B

(
ξ, 34�

) u
(t+p)np0−p

np0

∣∣∣∣2
j

�

∣∣∣∣
p

ψ
(s+p) np0−p

np0
−p

j w dx

} 1
p

� c16(t+ s+ p)2
[
w

(
B

(
ξ, 34�

))]− 1
p 2j [mj+1]

p−1
p

×
{ ∫

B(ξ, 34�)

u(t+p)
np0−p

np0
−p+1ψ

(s+p) np0−p
np0

−p
j w dx

} 1
p

.

Using Lemma 1, we obtain from the last inequality

∫
Bj+1

ut+pψs+pj w dx � c17(t+ s+ p)
2pnp0
np0−p [w(B(ξ, �))]−

p
np0−p

×
[
2jpmp−1

j+1

] np0
np0−p

[ ∫
Bj+1

u
(t+p)np0−p

np0
−p+1

ψ
(s+p) np0−p

np0
−p

j w dx

] np0
np0−p

.

Choosing

t = ti =
[
p+

np0
p
(p− 1)

]( np0
np0 − p

)i
− np0

p
(p− 1)− p,

s = si = [p+ np0]
( np0
np0 − p

)i
− np0 − p,

we rewrite the last inequality in the form

(20) Ji � c18

(
np0

np0 − p

)2i pnp0
np0−p

[w(B(ξ, �))]−
p

np0−p

[
2jpmp−1

j+1

] np0
np0−p

[Ji−1]
np0

np0−p ,

where Ji =
∫

Bj+1

uti+pψsi+pw dx.
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By iterating we arrive at

(21)

[Ji]
(

np0−p
np0

)i

�
{
c19

[
2jpmp−1

j+1

] np0
np0−p

[w(B(ξ, �))]
−p

np0−p

}np0−p

np0
+

(
np0−p

np0

)2
+...+

(
np0−p

np0

)i

×
{ (

np0
np0−p

)2p }1+2np0−p

np0
+...+i

(
np0−p

np0

)i−1

× J0.

When i tends to infinity, then (21) yields

(22) [mj ]
p+np0

p (p−1) � c202jnp0 [w(B(ξ, �))]−1[mj+1]
np0

p (p−1)
∫

Bj+1

upψpjw dx.

Now we estimate the integral on the right-hand side of (22) by Lemma 8 and Lemma
9:

(23)

∫
Bj+1

upψpjw dx �
∫

Bj+1

[
umj+1

]p
w dx

� c21�
p

∫
Emj+1

∣∣∣∣∂u∂x
∣∣∣∣
p

w dx

� c22�
pmj+1k

p−1 capp,w(F ).

By virtue of (22), (23) implies

(24) [mj ]
p+np0

p (p−1) � c232jnp0
�p

w(B(ξ, �))
[mj+1]

1+np0
p (p−1)kp−1 capp,w(F ),

Further we shall use the following:

Lemma 10. Let {αi} be a bounded number sequence satisfying
αi � Aασi+1a

i, i = 1, 2, . . .

with positive constants A, a, σ ∈ (0, 1). Then we have
α1 � cA

1
1−σ

with a constant c depending only on σ and a.

For the proof of Lemma 10 see [1], Chapter 5.

Finally, from (24) and Lemma 10 we have

m1 � c24k
{
capp,w(F )

�p

w(B(ξ, �))

} 1
p−1

,

and so the inequality (7) is established.

This completes the proof of Theorem.
�
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