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1. Introduction

In this paper we prove theorems on the existence of solutions to the differential
system

(1.1) x(k) = f(t, x, x′, . . . , x(k−1))

satisfying the boundary condition

(1.2) V (x) = o,

where V is a continuous operator of boundary conditions and o is a zero point of the

space �kn , o =

kn times︷ ︸︸ ︷
(0, 0, . . . , 0).

We generalize the results of [2] where the second-order differential systems with
L∞-Carathéodory right-hand sides are considered. Here we consider the k-th order

differential system (1.1) with a Carathéodory function f . The problem (1.1), (1.2)
is approximated by a sequence of problems with continuous right-hand sides. The

existence of solutions of (1.1), (1.2) is obtained as a consequence of the existence of
solutions of these auxiliary problems.
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Let −∞ < a∗ � a < b � b∗ < ∞, I = [a, b], I∗ = [a∗, b∗], � = (−∞,∞), n, k

natural numbers. �n denotes the Euclidean n-space as usual and ‖x‖ denotes the
Euclidean norm. Ck

n(I) = Ck([a, b],�n ) is the Banach space of functions u such that
u(k) is continuous on I with the norm

‖u‖k = max
{‖u‖, ‖u′‖, ‖u′′‖, . . . , ‖u(k)‖},

where

‖u‖ = max{‖u(t)‖, t ∈ I
}
.

Let Cn(I) denote the space C0n(I). C∞
nO(�) = C∞

nO(�,�n ) is the space of functions

ϕ such that for each l ∈ {1, 2, . . .} there exists a continuous on � function ϕ(l) and
the support of the function ϕ is a bounded closed set, suppϕ = {x ∈ �; ‖ϕ(x)‖ > 0}.
Finally, let 1 � p < ∞, let Lp

n(I) = Lp
n((a, b),�n ) be as usual the space of Lebesgue

integrable functions with the norm

|u|p =
( ∫ b

a

‖u(t)‖p dt

) 1
p

,

let us denote Lp(I) = Lp
1(I), L(I) = L1(I).

Definition 1.1. A function f : I∗ × �
kn → �

n is a Carathéodory function
provided

(i) the map y �→ f(t, y) is continuous for almost every t ∈ I∗,
(ii) the map t �→ f(t, y) is measurable for all y ∈ �

kn ,

(iii) for each bounded subset B ⊂ �
kn we have

lf(t) = sup{‖f(t, y)‖, y ∈ B} ∈ L(I∗).

Throughout the paper let us assume f : I∗×�kn → �
n is a Carathéodory function

and V : Ck−1
n (I)→ �

kn is a continuous operator.

If f is continuous, by a solution on I to the equation (1.1) we mean a classical

solution with a continuous k-th derivative, while if f is a Carathéodory function,
a solution will mean a function x which has an absolutely continuous (k − 1)-st
derivative such that x fulfils the equality x(k)(t) = f(t, x(t), x′(t), . . . , x(k−1)(t)) for
almost every t ∈ I.

By xy where x, y ∈ �
n we mean a scalar product of two vectors from �

n .
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2. Regularization operator

Let ϕ in C∞
1O be such that

ϕ(t) � 0 ∀t ∈ �, suppϕ = [−1, 1],
∫ 1

−1
ϕ(t) dt = 1.

For an example of such a function see [4], page 26.

Instead of problem (1.1), (1.2) we will consider the equation

(2.1ε) x(k) = fε(t, x, x′, . . . , x(k−1))

with the boundary condition (1.2), where ε is a positive real number and ∀y ∈ �
kn

we have

fε(t, y) =
1
ε

∫ b∗

a∗
ϕ
( t − η

ε

)
f(η, y) dη

or equivalently

fε(t, y) =
∫ 1

−1
f(t − εη, y)ϕ(η) dη,

where f(t, y) =

{
f(t, y) t ∈ [a∗, b∗]

0 t /∈ [a∗, b∗]
.

The following theorem is proved in [3] (a simple form for n=1 is presented):

Theorem 2.1. Let u ∈ Lp(I∗), where 1 � p < ∞, and for ε > 0 let us denote

(Rεu)(t) =
1
ε

∫ b∗

a∗
ϕ
( t − η

ε

)
u(η) dη =

∫ 1

−1
u(t − εη)ϕ(η) dη,

where u(t) =

{
u(t) t ∈ [a∗, b∗]

0 t /∈ [a∗, b∗]
.

Then

(i) Rεu ∈ C∞(�) for ε > 0,

(ii) lim
ε→0+

|Rεu − u|p = 0.

Lemma 2.1. Let B be a bounded subset in �kn . Then the function fε(t, y) is
continuous on I∗ × B for every ε > 0.

�����. Continuity of fε follows from the theorem on continuous dependence of
the integral on a parameter. �
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Definition 2.1. Let w : I∗ × [0,∞)→ [0,∞) be a Carathéodory function. We
write w ∈ M(I∗ × [0,∞); [0,∞)) if w satisfies:
(i) For almost every t ∈ I∗ and for every d1, d2 ∈ [0,∞), d1 < d2 we have

w(t, d1) � w(t, d2).

(ii) For almost every t ∈ I∗ we have w(t, 0) = 0.

Definition 2.2. Let B be a compact subset of �kn , τ ∈ �, δ ∈ [0,∞) and
ε > 0. Let us denote by ω(τ, δ) the function

ω(τ, δ) = max
{‖f(τ, x1, . . . , xk)− f(τ, y1, . . . , yk)‖;
(x1, . . . , xk), (y1, . . . , yk) ∈ B, ‖xi − yi‖ � δ, i = 1, . . . , k

}
and by ωε(τ, δ) the function

ωε(τ, δ) =
1
ε

∫ b∗

a∗
ϕ
(τ − η

ε

)
ω(η, δ) dη

or equivalently

ωε(τ, δ) =
∫ 1

−1
ω(τ − εη, δ)ϕ(η) dη.

Lemma 2.2. Let B be a compact subset of �kn . Then for every ε > 0

(i) ω, ωε ∈ M(I∗ × [0,∞); [0,∞));
(ii) lim

ε→0+
fε(t, y) = f(t, y) and lim

ε→0+
ωε(t, δ) = ω(t, δ) for all y ∈ B, δ � 0 and

for almost every t ∈ I∗;
(iii) for every (x1, . . . , xk), (y1, . . . , yk) ∈ B and for almost every t ∈ I∗ we have

‖fε(t, x1, . . . , xk)− fε(t, y1, . . . , yk)− f(t, x1, . . . , xk) + f(t, y1, . . . , yk)‖
� ωε(t,max{‖xi − yi‖; i = 1, 2, . . . , k}) + ω(t,max{‖xi − yi‖; i = 1, 2, . . . , k});

(iv) lim
ε→0+

∫ t

a

(fε(τ, x)− f(τ, x)) dτ = 0 uniformly on I × B.

�����.

(i) Since f(τ, .) is a Carathéodory function and B is a compact set, for almost

every τ ∈ I∗ we have 0 � ω(τ, δ) � 2lf(τ), ω(τ, .) is nondecreasing and continuous,
ω(., δ) is measurable and

lim
δ→0+

ω(τ, δ) = 0.
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It means that ω(τ, 0) = 0 for almost every τ ∈ I∗. Therefore we can see that
ω ∈ M(I∗ × [0,∞); [0,∞)).
By the theorem on continuous dependence of the integral on a parameter, ωε is a

continuous function for arbitrary ε > 0 . Therefore ωε is a Carathéodory function

such that ωε(τ, 0) = 0 for almost every τ ∈ I∗. If δ1 < δ2, then for almost every
τ ∈ I∗

(2.2) 0 � ω(τ, δ1) � ω(τ, δ2)

hence for almost every η ∈ I∗

0 � 1
ε
ϕ
(τ − η

ε

)
ω(η, δ1) �

1
ε
ϕ
(τ − η

ε

)
ω(η, δ2)

and therefore

(2.3) 0 � ωε(τ, δ1) � ωε(τ, δ2).

It means that ωε ∈ M(I∗ × [0,∞); [0,∞)).
(ii) This statement is a consequence of Theorem 2.1 which asserts that our as-

sumption implies for every δ > 0, y ∈ B and i = 1, 2, . . . , n

lim
ε→0+

∫ 1

−1
|ωε(τ, δ)− ω(τ, δ)| dτ = 0,

lim
ε→0+

∫ 1

−1
|fεi(τ, y)− fi(τ, y)| dτ = 0,

where fi, fεi are the i-th components of the functions f , fε, respectively.

(iii) Obviously for ‖xi − yi‖ � δ, i = 1, . . . , k

‖fε(t, x1, . . . , xk)− fε(t, y1, . . . , yk)‖

=

∥∥∥∥
∫ 1

−1
ϕ(η)

(
f(t − εη, x1, . . . , xk)− f(t − εη, y1, . . . , yk)

)
dη

∥∥∥∥
�

∫ 1

−1
‖f(t − εη, x1, . . . , xk)− f(t − εη, y1, . . . , yk)‖ϕ(η) dη

�
∫ 1

−1
ω(t − εη, δ)ϕ(η) dη = ωε(t, δ).

Now it is easy to see that the statement (iii) of the above lemma holds.
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(iv) We will prove that for every (t, x) ∈ I × B, x = (x1, . . . , xk), and every e > 0

there exist ε0 > 0 and a neighbourhood O(t,x) of (t, x) in the set I ×B such that for
every 0 < ε < ε0 and for every (t′, y) ∈ O(t,x), y = (y1, . . . , yk),

∥∥∥∥
∫ t′

a

(fε(τ, y)− f(τ, y)) dτ

∥∥∥∥ < e.

By (ii) and by the Lebesgue dominated convergence theorem there exists ε1 > 0
such that for every 0 < ε < ε1

∫ b

a

‖fε(τ, x)− f(τ, x)‖ dτ < e
4 .

Since ω ∈ M(I∗ × [0,∞); [0,∞)) there exists such a δ > 0 that

∫ b

a

ω(τ, δ) dτ < e
4 .

By (ii) and the Lebesgue dominated convergence theorem there exists ε2 > 0 such
that for every 0 < ε < ε2 ∫ b

a

ωε(τ, δ) dτ < e
2 .

Let us denote O(t,x) = {(t′, y) ∈ I × B; ‖xi − yi‖ < δ, i = 1, 2, . . . , k} and ε0 =

min{ε1, ε2}. Now for every 0 < ε < ε0 and for every (t′, y) ∈ O(t,x) we have

∥∥∥∥
∫ t′

a

(
fε(τ, y)− f(τ, y)

)
dτ

∥∥∥∥
�

∥∥∥∥
∫ t′

a

(
fε(τ, x)− f(τ, x)

)
dτ

∥∥∥∥
+

∥∥∥∥
∫ t′

a

(fε(τ, x) − fε(τ, y)− f(τ, x) + f(τ, y)) dτ

∥∥∥∥
�

∫ b

a

‖fε(τ, x) − f(τ, x)‖ dτ +
∫ b

a

ωε(τ, δ) + ω(τ, δ) dτ

< e
4 +

e
2 +

e
4 � e.

This means that the system of the sets
{
O(t,x)

}
(t,x)∈I×B

covers the compact set

I × B and therefore there exists a finite subsystem which covers the set I × B and
therefore the statement of (iv) holds. �
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Lemma 2.3. Let B ⊂ �
kn be a compact set. Let E be a set of ε > 0 such that

the system of functions {xε}ε∈E, xε : I → B, is equi-continuous and 0 ∈ E.

Then lim
ε→0+

∫ t

a

fε(τ, xε(τ)) − f(τ, xε(τ)) dτ = 0 uniformly on I.

�����. This proof is a modification of the proof of Lemma 3.1 in [6].

For ε ∈ E let us denote

αε = sup

{∥∥∥∥
∫ t

s

fε(τ, y)− f(τ, y) dτ

∥∥∥∥; a � s < t � b, y ∈ B

}
,

βε = max

{∥∥∥∥
∫ t

a

fε(τ, xε(τ)) − f(τ, xε(τ)) dτ

∥∥∥∥; a � t � b

}
.

By (iv) of Lemma 2.2

lim
ε→0

αε = 0.

We want to prove
lim
ε→0

βε = 0.

Let e > 0 be an arbitrary real number. Then by (i) of Lemma 2.2 there exists
such a δ > 0 that ∫ b

a

ω(τ, δ) dτ < e
3 ,

and by (i), (ii) of Lemma 2.2 such an ε1 > 0 that for every ε ∈ E, ε < ε1 we have

∫ b

a

ωε(τ, δ) dτ < 2e
3 .

Since {xε}ε∈E, xε = (xε1, . . . , xεk) is equi-continuous there exists δ0 > 0 such that

‖xεi(t)− xεi(τ)‖ < δ for t, τ ∈ I, i = 1, . . . , k, |t − τ | � δ0, ε ∈ E.

Let l be such an integer that l � b−a
δ0

< l + 1. Let us denote tj = a + jδ0 and
xε(t) = xε(tj) for tj � t < tj+1, where j = 0, 1, . . . , l. Then

‖xεi(t)− xεi(t)‖ < δ

for t ∈ I, i = 1, . . . , k and ε ∈ E and∥∥∥∥
∫ t

a

fε(τ, xε(τ)) − f(τ, xε(τ)) dτ

∥∥∥∥ � (l + 1)αε

for a < t < b and ε < ε0, ε ∈ E.
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Therefore by (iii) of Lemma 2.2 we obtain

∥∥∥∥
∫ t

a

(
fε(τ, xε(τ)) − f(τ, xε(τ))

)
dτ

∥∥∥∥
�

∫ t

a

‖fε(τ, xε(τ)) − f(τ, xε(τ)) − fε(τ, xε(τ)) + f(τ, xε(τ))‖ dτ

+

∥∥∥∥
∫ t

a

(
fε(τ, xε(τ)) − f(τ, xε(τ))

)
dτ

∥∥∥∥
�

∫ b

a

(
ωε(τ, δ) + ω(τ, δ)

)
dτ + (l + 1)αε < e+ (l + 1)αε

for t ∈ I, ε < ε1, ε ∈ E.

Therefore βε < e+(l+1)αε for ε < ε1, ε ∈ E. Since lim
ε→0

αε = 0 and e is arbitrary

we conclude that lim
ε→0

βε = 0. �

Theorem 2.2. Let f : I∗×�kn → �
n be a Carathéodory function. Denote by E

the set of positive ε such that for each ε ∈ E there exists a solution xε : I ⊆ I∗ → �
n

to the problem (2.1ε), (1.2). Suppose that 0 ∈ E and that there exists a compact sub-

set B ⊂ �
kn independent of ε such that (xε(t), x′

ε(t), . . . , x
(k−1)
ε (t)) ∈ B is satisfied

for each ε ∈ E and for each t ∈ I.

Then there exist a sequence {εs}∞s=1 and a solution x : I → �
n to the given

boundary value problem (1.1), (1.2) such that εs ∈ E for all s ∈ �, lim
s→∞ εs = 0,(

x(t), x′(t), . . . , x(k−1)(t)
) ∈ B for all t ∈ I, lim

s→∞ x
(i)
εs (t) = x(i)(t) uniformly on I for

any i = 1, 2, . . . , k − 1, and lim
s→∞x

(k)
εs (t) = x(k)(t) on I.

�����. First let us prove that the set {xε}ε∈E is relatively compact in Ck−1
n (I).

Really, for the assumptions of the Arzelà-Ascoli theorem to be satisfied, it is necessary

to prove equi-continuity of the set {x(k−1)ε }ε∈E.

Let e > 0 be an arbitrary real number, suppose t1, t2 ∈ I and compute

‖x(k−1)ε (t1)− x(k−1)ε (t2)‖ =
∥∥∥∥

∫ t2

t1

x(k)ε (t) dt

∥∥∥∥
=

∥∥∥∥
∫ t2

t1

fε(t, xε(t), x′
ε(t), . . . , x

(k−1)
ε (t)) dt

∥∥∥∥
=

∥∥∥∥
∫ t2

t1

∫ 1

−1
f(t − εη, xε(t), x′

ε(t), . . . , x
(k−1)
ε (t))ϕ(η) dη dt

∥∥∥∥
�

∣∣∣∣
∫ t2

t1

∫ 1

−1
lf(t − εη)ϕ(η) dη dt

∣∣∣∣,
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where lf(t) =

{
lf (t) t ∈ I∗

0 t /∈ I∗
. Now for ε close to 0 (ε < ε1, where ε1 is defined

below) we have

∣∣∣∣
∫ t2

t1

∫ 1

−1
lf (t − εη)ϕ(η) dη dt

∣∣∣∣
�

∣∣∣∣
∫ t2

t1

lf (t) dt

∣∣∣∣+
∣∣∣∣
∫ t2

t1

(∫ 1

−1
lf (t − εη)ϕ(η) dη − lf(t)

)
dt

∣∣∣∣.
Since lf (t) ∈ L(I∗) then

∫ t

a
lf (τ) dτ is a continuous function, every continuous

function on a compact interval is uniformly continuous on that interval, and therefore
there exists δ1 > 0 such that for all |t1 − t2| < δ1 we have∣∣∣∣

∫ t2

t1

lf (t) dt

∣∣∣∣ < e
2 .

By Theorem 2.1 there exists ε1 such that for each ε ∈ E, 0 < ε < ε1,∫ b

a

∣∣∣∣
∫ 1

−1
lf (t − εη)ϕ(η) dη − lf (t)

∣∣∣∣ dt < e
2 ,

and therefore for ∀ε ∈ E, 0 < ε < ε1, we have∣∣∣∣
∫ t2

t1

∫ 1

−1
lf(t − εη)ϕ(η) dη dt

∣∣∣∣ < e.

Now for ε ∈ E, ε1 � ε,

∣∣∣∣
∫ t2

t1

∫ 1

−1
lf (t − εη)ϕ(η) dη dt

∣∣∣∣ = 1ε
∣∣∣∣
∫ t2

t1

∫ b

a

lf (η)ϕ
( t − η

ε

)
dη dt

∣∣∣∣.
Let Φ = max{ϕ(t), t ∈ I}. Then

1
ε

∣∣∣∣
∫ t2

t1

∫ b

a

lf (η)ϕ
( t − η

ε

)
dη dt

∣∣∣∣
� 1

ε1

∣∣∣∣
∫ t2

t1

∫ b

a

lf (η)Φ dη dt

∣∣∣∣ � 1
ε1

|t1 − t2|Φ
∫ b

a

lf (η) dη.

Let δ2 = eε1
Φ

∫ b
a

lf (η) dη
, then for |t1 − t2| < δ2 we obtain

∣∣∣∣
∫ t2

t1

∫ 1

−1
lf(t − εη)ϕ(η) dη dt

∣∣∣∣ < e.
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Let δ = min{δ1, δ2} then for |t1 − t2| < δ we have

‖x(k−1)ε (t1)− x(k−1)ε (t2)‖ < e.

This means that the set {xε}ε∈E is relatively compact in Ck−1
n (I). Therefore

there exist a sequence {εs}, εs ∈ E, εs → 0 and a function x : I → �
n such that

(x(t), x′(t), . . . , x(k−1)(t)) ∈ B, ∀t ∈ I, xεs → x in Ck−1
n (I).

Now, since xεs is the solution to the equation (2.1ε) for ε = εs, we have

(2.4) x(k−1)εs
(t) = x(k−1)εs

(a) +
∫ t

a

fεs(τ, xεs(τ), x
′
εs
(τ), . . . , x(k−1)εs

(τ)) dτ, ∀t ∈ I.

Using Lemma 2.3 we get

x(k−1)(t) = x(k−1)(a) +
∫ t

a

f(τ, x(τ), x′(τ), . . . , x(k−1)(τ)) dτ,

which means that x is a solution to the equation (1.1).

Since xεs uniformly converges to x in Ck−1
n (I), V is a continuous operator V :

Ck−1
n (I)→ �

kn and xεs is a solution to the problem (2.1εs), (1.2), we can see that

V (xεs) = o,

and therefore for εs → 0 we have

V (x) = o.

It means that x is a solution to the problem (1.1), (1.2). �

������ 2.1. When lf (t) ∈ Lp(I∗) in Definition 1.1, where 1 � p < ∞ (in this
case we speak about an Lp-Carathéodory function) we can prove that the convergence
of x

(k)
εs to x(k) is in the norm of Lp(I∗). To prove it we need only to assume in

Definition 2.2

ω(τ, δ) = max
{‖f(τ, x1, . . . , xk)− f(τ, y1, . . . , yk)‖p

}
.
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3. An application

As an example how to use Theorem 2.2 we may consider the equation

(3.1) x′′ = f(t, x, x′)

with the four point boundary conditions

(3.2) x(0) = x(c), x(d) = x(1),

where 0 < c � d < 1. In [1] the following result is proved.

Theorem 3.1. Let f : [0, 1] × �
2n → �

n be a continuous function and let us

consider the problem (3.1), (3.2). Assume

(i) there is a constant M � 0 such that uf(t, u, p) � 0 for ∀t ∈ [0, 1], ∀u ∈ �
n ,

‖u‖ > M and ∀p ∈ �
n , pu = 0,

(ii) there exist continuous positive functions Aj , Bj , j ∈ {1, 2, . . . , n},

Aj : [0, 1]× �
n+j−1 → �, Bj : [0, 1]× �

n+j−1 → �

such that

|fj(t, u, p)| � Aj(t, u, p1, p2, . . . , pj−1)p2j +Bj(t, u, p1, p2, . . . , pj−1),

where f = (f1, f2, . . . , fn), u ∈ �
n , p ∈ �

n , p = (p1, p2, . . . , pn) and for j = 1,

A1 and B1 are independent of p functions.

Then the problem (3.1), (3.2) has a solution.

������ 3.1. From the proof of this theorem and from the topological transver-

sality theorem in [4] it follows that the solution to the problem (3.1), (3.2) is bounded
in C1n([0, 1]) by a constant M which depends only on M , Aj , Bj .

Now we can extend the results of Theorem 3.1 to the Carathéodory case similarly
to [2]. We allow discontinuities of functions Aj , Bj in contrast to [2].

Definition 3.1. Let k, l be natural numbers. A function f : I × �
k → �

l is

an L∞-Carathéodory function provided f = f(t, u) satisfies
(i) the map u �→ f(t, u) is continuous for almost every t ∈ I,

(ii) the map t �→ f(t, u) is measurable for all (u, p) ∈ �
k ,

(iii) for each bounded subset B ⊂ �
k ,

lf(t) = sup{‖f(t, u)‖, u ∈ B} ∈ L∞(I),
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where L∞ is the space of Lebesgue integrable functions with the norm

‖f‖∞ = ess sup
t∈I

‖f‖.

Theorem 3.2. Let f : [0, 1]× �
2n → �

n be a Carathéodory function and let us

consider the problem (3.1), (3.2). Assume
(i) there is a constant M � 0 such that uf(t, u, p) � 0 for almost every t in [0, 1],

∀u ∈ �
n , ‖u‖ > M and ∀p ∈ �

n , pu = 0,
(ii) there exist positive L∞-Carathéodory functions Aj , Bj , where the index j is

from {1, 2, . . . , n},

Aj : [0, 1]× �
n+j−1 → �, Bj : [0, 1]× �

n+j−1 → �,

such that for almost every t ∈ [0, 1]

|fj(t, u, p)| � Aj(t, u, p1, p2, . . . , pj−1)p2j +Bj(t, u, p1, p2, . . . , pj−1),

where f = (f1, f2, . . . , fn), u ∈ �
n , p ∈ �

n , p = (p1, p2, . . . , pn) and for j = 1,
A1 and B1 are independent of p functions.

Then the problem (3.1), (3.2) has a solution.

�����. Let fε be an approximated function as in Section 2, where a = a∗ = 0,
b = b∗ = 1 and k = 2, that is

fε(t, u, p)u =
1
ε

∫ 1

0
ϕ
( t − η

ε

)
f(η, u, p) dη,

and let V : C1n([0, 1])→ �
2n be a continuous operator of boundary conditions V (x) =

(x(0)− x(a), x(b) − x(1)) . Then

1) for ∀ε ∈ (0, 1), for ∀t ∈ [0, 1], ∀u ∈ �
n , ‖u‖ > M and ∀p ∈ �

n , pu = 0 we have

fε(t, u, p)u =

(
1
ε

∫ 1

0
ϕ
( t − η

ε

)
f(η, u, p) dη

)
u =

=
1
ε

∫ 1

0
ϕ
( t − η

ε

)(
f(η, u, p)u

)
dη � 0

by the assumption (i) of this theorem.

2) Let j ∈ {1, 2, . . . , n}, u ∈ �
n , p ∈ �

n , p = (p1, p2, . . . , pn),

Aj(u, p1, p2, . . . , pj−1) = ess sup
t∈[0,1]

{
Aj(t, u, p1, p2, . . . , pj−1)

}
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and

Bj(u, p1, p2, . . . , pj−1) = ess sup
t∈[0,1]

{
Bj(t, u, p1, p2, . . . , pj−1)

}
.

Since Aj , Bj are L∞-Carathéodory functions, Aj , Bj are obviously continuous.
Now we have

|fεj (t, u, p)| =
∣∣∣∣
∫ 1

−1
fj(t − εη, u, p)ϕ(η) dη

∣∣∣∣ �
∫ 1

−1
|fj(t − εη, u, p)|ϕ(η) dη

�
∫ 1

−1
(Aj(u, p1, p2, . . . , pj−1)p2j + Bj(u, p1, p2, . . . , pj−1))ϕ(η) dη

�
∫ 1

−1
Aj(u, p1, p2, . . . , pj−1)p2jϕ(η) dη +

∫ 1

−1
Bj(u, p1, p2, . . . , pj−1)ϕ(η) dη

= Aj(u, p1, p2, . . . , pj−1)p2j + Bj(u, p1, p2, . . . , pj−1).

By Theorem 3.1 and Remark 3.1, for any ε > 0 there exists a solution xε to the
approximated problem

(3.1ε) x′′ = fε(t, x, x′)

where x satisfies boundary conditions (3.2) such that ‖xε‖1 � M.

Now all assumptions of Theorem 2.1 are fullfiled and therefore there exists a
solution to the problem (1.1), (3.1). �
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