HIGHER-ORDER DIFFERENTIAL SYSTEMS AND A REGULARIZATION OPERATOR

PAVEL CALÁBEK, Olomouc

(Received May 19, 1997)

Abstract. Sufficient conditions for the existence of solutions to boundary value problems with a Carathéodory right hand side for ordinary differential systems are established by means of continuous approximations.

Keywords: Carathéodory functions, Arzelà-Ascoli theorem, Lebesgue theorem $MSC\ 2000\colon$ 34B10

1. INTRODUCTION

In this paper we prove theorems on the existence of solutions to the differential system

(1.1)
$$x^{(k)} = f(t, x, x', \dots, x^{(k-1)})$$

satisfying the boundary condition

$$(1.2) V(x) = \mathbf{o}$$

where V is a continuous operator of boundary conditions and **o** is a zero point of the kn times

space \mathbb{R}^{kn} , $\mathbf{o} = (0, 0, ..., 0)$.

We generalize the results of [2] where the second-order differential systems with L^{∞} -Carathéodory right-hand sides are considered. Here we consider the k-th order differential system (1.1) with a Carathéodory function f. The problem (1.1), (1.2) is approximated by a sequence of problems with continuous right-hand sides. The existence of solutions of (1.1), (1.2) is obtained as a consequence of the existence of solutions of these auxiliary problems.

Let $-\infty < a^* \leq a < b \leq b^* < \infty$, I = [a, b], $I^* = [a^*, b^*]$, $\mathbb{R} = (-\infty, \infty)$, n, k natural numbers. \mathbb{R}^n denotes the Euclidean *n*-space as usual and ||x|| denotes the Euclidean norm. $C_n^k(I) = C^k([a, b], \mathbb{R}^n)$ is the Banach space of functions u such that $u^{(k)}$ is continuous on I with the norm

$$||u||_k = \max\{||u||, ||u'||, ||u''||, \dots, ||u^{(k)}||\},\$$

where

$$||u|| = \max\{||u(t)||, t \in I\}.$$

Let $C_n(I)$ denote the space $C_n^0(I)$. $C_{nO}^{\infty}(\mathbb{R}) = C_{nO}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ is the space of functions φ such that for each $l \in \{1, 2, ...\}$ there exists a continuous on \mathbb{R} function $\varphi^{(l)}$ and the support of the function φ is a bounded closed set, supp $\varphi = \overline{\{x \in \mathbb{R}; \|\varphi(x)\| > 0\}}$. Finally, let $1 \leq p < \infty$, let $L_n^p(I) = L_n^p((a, b), \mathbb{R}^n)$ be as usual the space of Lebesgue integrable functions with the norm

$$|u|_p = \left(\int_a^b \|u(t)\|^p \,\mathrm{d}t\right)^{\frac{1}{p}},$$

let us denote $L^{p}(I) = L_{1}^{p}(I), L(I) = L^{1}(I).$

Definition 1.1. A function $f: I^* \times \mathbb{R}^{kn} \to \mathbb{R}^n$ is a Carathéodory function provided

- (i) the map $y \mapsto f(t, y)$ is continuous for almost every $t \in I^*$,
- (ii) the map $t \mapsto f(t, y)$ is measurable for all $y \in \mathbb{R}^{kn}$,
- (iii) for each bounded subset $B \subset \mathbb{R}^{kn}$ we have

$$l_f(t) = \sup\{\|f(t,y)\|, y \in B\} \in L(I^*).$$

Throughout the paper let us assume $f: I^* \times \mathbb{R}^{kn} \to \mathbb{R}^n$ is a Carathéodory function and $V: C_n^{k-1}(I) \to \mathbb{R}^{kn}$ is a continuous operator.

If f is continuous, by a solution on I to the equation (1.1) we mean a classical solution with a continuous k-th derivative, while if f is a Carathéodory function, a solution will mean a function x which has an absolutely continuous (k - 1)-st derivative such that x fulfils the equality $x^{(k)}(t) = f(t, x(t), x'(t), \dots, x^{(k-1)}(t))$ for almost every $t \in I$.

By xy where $x, y \in \mathbb{R}^n$ we mean a scalar product of two vectors from \mathbb{R}^n .

2. Regularization operator

Let φ in C_{1O}^{∞} be such that

$$\varphi(t) \ge 0 \quad \forall t \in \mathbb{R}, \quad \operatorname{supp} \varphi = [-1, 1], \quad \int_{-1}^{1} \varphi(t) \, \mathrm{d}t = 1.$$

For an example of such a function see [4], page 26.

Instead of problem (1.1), (1.2) we will consider the equation

(2.1
$$_{\varepsilon}$$
) $x^{(k)} = f_{\varepsilon}(t, x, x', \dots, x^{(k-1)})$

with the boundary condition (1.2), where ε is a positive real number and $\forall y \in \mathbb{R}^{kn}$ we have

$$f_{\varepsilon}(t,y) = \frac{1}{\varepsilon} \int_{a^*}^{b^*} \varphi\Big(\frac{t-\eta}{\varepsilon}\Big) f(\eta,y) \,\mathrm{d}\eta$$

or equivalently

$$f_{\varepsilon}(t,y) = \int_{-1}^{1} \overline{f}(t-\varepsilon\eta,y)\varphi(\eta) \,\mathrm{d}\eta,$$

where $\overline{f}(t,y) = \begin{cases} f(t,y) & t \in [a^*, b^*] \\ 0 & t \notin [a^*, b^*] \end{cases}$. The following theorem is proved in [3] (a simple form for n=1 is presented):

Theorem 2.1. Let $u \in L^p(I^*)$, where $1 \leq p < \infty$, and for $\varepsilon > 0$ let us denote

$$(R_{\varepsilon}u)(t) = \frac{1}{\varepsilon} \int_{a^*}^{b^*} \varphi\Big(\frac{t-\eta}{\varepsilon}\Big) u(\eta) \,\mathrm{d}\eta = \int_{-1}^1 \overline{u}(t-\varepsilon\eta)\varphi(\eta) \,\mathrm{d}\eta,$$

where $\overline{u}(t) = \begin{cases} u(t) & t \in [a^*, b^*] \\ 0 & t \notin [a^*, b^*] \end{cases}$. Then

(i) $R_{\varepsilon}u \in C^{\infty}(\mathbb{R})$ for $\varepsilon > 0$,

(ii) $\lim_{\varepsilon \to 0+} |R_{\varepsilon}u - u|_p = 0.$

Lemma 2.1. Let B be a bounded subset in \mathbb{R}^{kn} . Then the function $f_{\varepsilon}(t,y)$ is continuous on $I^* \times B$ for every $\varepsilon > 0$.

Proof. Continuity of f_{ε} follows from the theorem on continuous dependence of the integral on a parameter.

Definition 2.1. Let $w: I^* \times [0, \infty) \to [0, \infty)$ be a Carathéodory function. We write $w \in M(I^* \times [0, \infty); [0, \infty))$ if w satisfies:

(i) For almost every $t \in I^*$ and for every $d_1, d_2 \in [0, \infty), d_1 < d_2$ we have

$$w(t, d_1) \leqslant w(t, d_2).$$

(ii) For almost every $t \in I^*$ we have w(t, 0) = 0.

Definition 2.2. Let *B* be a compact subset of \mathbb{R}^{kn} , $\tau \in \mathbb{R}$, $\delta \in [0,\infty)$ and $\varepsilon > 0$. Let us denote by $\omega(\tau, \delta)$ the function

$$\omega(\tau, \delta) = \max\{ \|\overline{f}(\tau, x_1, \dots, x_k) - \overline{f}(\tau, y_1, \dots, y_k)\|; \\ (x_1, \dots, x_k), \ (y_1, \dots, y_k) \in B, \ \|x_i - y_i\| \le \delta, \ i = 1, \dots, k \}$$

and by $\omega_{\varepsilon}(\tau, \delta)$ the function

$$\omega_{\varepsilon}(\tau,\delta) = \frac{1}{\varepsilon} \int_{a^*}^{b^*} \varphi\Big(\frac{\tau-\eta}{\varepsilon}\Big) \omega(\eta,\delta) \,\mathrm{d}\eta$$

or equivalently

$$\omega_{\varepsilon}(\tau,\delta) = \int_{-1}^{1} \omega(\tau - \varepsilon\eta, \delta)\varphi(\eta) \,\mathrm{d}\eta$$

Lemma 2.2. Let B be a compact subset of \mathbb{R}^{kn} . Then for every $\varepsilon > 0$

- (i) $\omega, \omega_{\varepsilon} \in M(I^* \times [0, \infty); [0, \infty));$
- (ii) $\lim_{\varepsilon \to 0+} f_{\varepsilon}(t,y) = f(t,y)$ and $\lim_{\varepsilon \to 0+} \omega_{\varepsilon}(t,\delta) = \omega(t,\delta)$ for all $y \in B$, $\delta \ge 0$ and for almost every $t \in I^*$;

(iii) for every (x_1, \ldots, x_k) , $(y_1, \ldots, y_k) \in B$ and for almost every $t \in I^*$ we have

$$\begin{aligned} \|f_{\varepsilon}(t, x_1, \dots, x_k) - f_{\varepsilon}(t, y_1, \dots, y_k) - f(t, x_1, \dots, x_k) + f(t, y_1, \dots, y_k)\| \\ &\leqslant \omega_{\varepsilon}(t, \max\{\|x_i - y_i\|; \ i = 1, 2, \dots, k\}) + \omega(t, \max\{\|x_i - y_i\|; \ i = 1, 2, \dots, k\}); \end{aligned}$$

(iv)
$$\lim_{\varepsilon \to 0+} \int_{a}^{t} (f_{\varepsilon}(\tau, x) - f(\tau, x)) d\tau = 0$$
 uniformly on $I \times B$

Proof.

(i) Since $f(\tau, .)$ is a Carathéodory function and B is a compact set, for almost every $\tau \in I^*$ we have $0 \leq \omega(\tau, \delta) \leq 2l_f(\tau)$, $\omega(\tau, .)$ is nondecreasing and continuous, $\omega(., \delta)$ is measurable and

$$\lim_{\delta\to 0+}\omega(\tau,\delta)=0$$

It means that $\omega(\tau, 0) = 0$ for almost every $\tau \in I^*$. Therefore we can see that $\omega \in M(I^* \times [0, \infty); [0, \infty)).$

By the theorem on continuous dependence of the integral on a parameter, ω_{ε} is a continuous function for arbitrary $\varepsilon > 0$. Therefore ω_{ε} is a Carathéodory function such that $\omega_{\varepsilon}(\tau, 0) = 0$ for almost every $\tau \in I^*$. If $\delta_1 < \delta_2$, then for almost every $\tau \in I^*$

(2.2)
$$0 \leqslant \omega(\tau, \delta_1) \leqslant \omega(\tau, \delta_2)$$

hence for almost every $\eta \in I^*$

$$0 \leqslant \frac{1}{\varepsilon} \varphi \Big(\frac{\tau - \eta}{\varepsilon} \Big) \omega(\eta, \delta_1) \leqslant \frac{1}{\varepsilon} \varphi \Big(\frac{\tau - \eta}{\varepsilon} \Big) \omega(\eta, \delta_2)$$

and therefore

(2.3)
$$0 \leqslant \omega_{\varepsilon}(\tau, \delta_1) \leqslant \omega_{\varepsilon}(\tau, \delta_2).$$

It means that $\omega_{\varepsilon} \in M(I^* \times [0, \infty); [0, \infty)).$

(ii) This statement is a consequence of Theorem 2.1 which asserts that our assumption implies for every $\delta > 0, y \in B$ and i = 1, 2, ..., n

$$\lim_{\varepsilon \to 0+} \int_{-1}^{1} |\omega_{\varepsilon}(\tau, \delta) - \omega(\tau, \delta)| \, \mathrm{d}\tau = 0,$$
$$\lim_{\varepsilon \to 0+} \int_{-1}^{1} |f_{\varepsilon_i}(\tau, y) - f_i(\tau, y)| \, \mathrm{d}\tau = 0,$$

where f_i , f_{ε_i} are the *i*-th components of the functions f, f_{ε} , respectively.

(iii) Obviously for $||x_i - y_i|| \leq \delta$, i = 1, ..., k

$$\begin{split} \|f_{\varepsilon}(t, x_{1}, \dots, x_{k}) - f_{\varepsilon}(t, y_{1}, \dots, y_{k})\| \\ &= \left\| \int_{-1}^{1} \varphi(\eta) \left(\overline{f}(t - \varepsilon \eta, x_{1}, \dots, x_{k}) - \overline{f}(t - \varepsilon \eta, y_{1}, \dots, y_{k}) \right) \mathrm{d}\eta \right\| \\ &\leqslant \int_{-1}^{1} \|\overline{f}(t - \varepsilon \eta, x_{1}, \dots, x_{k}) - \overline{f}(t - \varepsilon \eta, y_{1}, \dots, y_{k})\|\varphi(\eta) \mathrm{d}\eta \\ &\leqslant \int_{-1}^{1} \omega(t - \varepsilon \eta, \delta)\varphi(\eta) \mathrm{d}\eta = \omega_{\varepsilon}(t, \delta). \end{split}$$

Now it is easy to see that the statement (iii) of the above lemma holds.

(iv) We will prove that for every $(t, x) \in I \times B$, $x = (x_1, \ldots, x_k)$, and every e > 0there exist $\varepsilon_0 > 0$ and a neighbourhood $O_{(t,x)}$ of (t, x) in the set $I \times B$ such that for every $0 < \varepsilon < \varepsilon_0$ and for every $(t', y) \in O_{(t,x)}$, $y = (y_1, \ldots, y_k)$,

$$\left\|\int_{a}^{t'} \left(f_{\varepsilon}(\tau, y) - f(\tau, y)\right) \, \mathrm{d}\tau\right\| < e.$$

By (ii) and by the Lebesgue dominated convergence theorem there exists $\varepsilon_1 > 0$ such that for every $0 < \varepsilon < \varepsilon_1$

$$\int_a^b \|f_{\varepsilon}(\tau, x) - f(\tau, x)\| \,\mathrm{d}\tau < \frac{e}{4}.$$

Since $\omega \in M(I^* \times [0, \infty); [0, \infty))$ there exists such a $\delta > 0$ that

$$\int_a^b \omega(\tau,\delta) \,\mathrm{d}\tau < \tfrac{e}{4}.$$

By (ii) and the Lebesgue dominated convergence theorem there exists $\varepsilon_2 > 0$ such that for every $0 < \varepsilon < \varepsilon_2$

$$\int_{a}^{b} \omega_{\varepsilon}(\tau, \delta) \, \mathrm{d}\tau < \frac{e}{2}.$$

Let us denote $O_{(t,x)} = \{(t',y) \in I \times B; ||x_i - y_i|| < \delta, i = 1, 2, ..., k\}$ and $\varepsilon_0 = \min\{\varepsilon_1, \varepsilon_2\}$. Now for every $0 < \varepsilon < \varepsilon_0$ and for every $(t', y) \in O_{(t,x)}$ we have

$$\begin{split} \left\| \int_{a}^{t'} \left(f_{\varepsilon}(\tau, y) - f(\tau, y) \right) \mathrm{d}\tau \right\| \\ & \leq \left\| \int_{a}^{t'} \left(f_{\varepsilon}(\tau, x) - f(\tau, x) \right) \mathrm{d}\tau \right\| \\ & + \left\| \int_{a}^{t'} \left(f_{\varepsilon}(\tau, x) - f_{\varepsilon}(\tau, y) - f(\tau, x) + f(\tau, y) \right) \mathrm{d}\tau \right\| \\ & \leq \int_{a}^{b} \left\| f_{\varepsilon}(\tau, x) - f(\tau, x) \right\| \mathrm{d}\tau + \int_{a}^{b} \omega_{\varepsilon}(\tau, \delta) + \omega(\tau, \delta) \mathrm{d}\tau \\ & < \frac{e}{4} + \frac{e}{2} + \frac{e}{4} \leq e. \end{split}$$

This means that the system of the sets $\{O_{(t,x)}\}_{(t,x)\in I\times B}$ covers the compact set $I\times B$ and therefore there exists a finite subsystem which covers the set $I\times B$ and therefore the statement of (iv) holds.

Lemma 2.3. Let $B \subset \mathbb{R}^{kn}$ be a compact set. Let \mathfrak{E} be a set of $\varepsilon > 0$ such that the system of functions $\{x_{\varepsilon}\}_{\varepsilon \in \mathfrak{E}}, x_{\varepsilon} \colon I \to B$, is equi-continuous and $0 \in \overline{\mathfrak{E}}$.

Then
$$\lim_{\varepsilon \to 0+} \int_{a}^{\varepsilon} f_{\varepsilon}(\tau, x_{\varepsilon}(\tau)) - f(\tau, x_{\varepsilon}(\tau)) d\tau = 0$$
 uniformly on I

Proof. This proof is a modification of the proof of Lemma 3.1 in [6]. For $\varepsilon \in \mathfrak{E}$ let us denote

$$\alpha_{\varepsilon} = \sup\left\{ \left\| \int_{s}^{t} f_{\varepsilon}(\tau, y) - f(\tau, y) \,\mathrm{d}\tau \right\|; \ a \leqslant s < t \leqslant b, \ y \in B \right\},$$
$$\beta_{\varepsilon} = \max\left\{ \left\| \int_{a}^{t} f_{\varepsilon}(\tau, x_{\varepsilon}(\tau)) - f(\tau, x_{\varepsilon}(\tau)) \,\mathrm{d}\tau \right\|; a \leqslant t \leqslant b \right\}.$$

By (iv) of Lemma 2.2

$$\lim_{\varepsilon \to 0} \alpha_{\varepsilon} = 0.$$

We want to prove

$$\lim_{\varepsilon \to 0} \beta_{\varepsilon} = 0.$$

Let e>0 be an arbitrary real number. Then by (i) of Lemma 2.2 there exists such a $\delta>0$ that

$$\int_{a}^{b} \omega(\tau, \delta) \,\mathrm{d}\tau < \tfrac{e}{3},$$

and by (i), (ii) of Lemma 2.2 such an $\varepsilon_1 > 0$ that for every $\varepsilon \in \mathfrak{E}$, $\varepsilon < \varepsilon_1$ we have

$$\int_{a}^{b} \omega_{\varepsilon}(\tau, \delta) \,\mathrm{d}\tau < \tfrac{2e}{3}.$$

Since $\{x_{\varepsilon}\}_{\varepsilon \in \mathfrak{E}}, x_{\varepsilon} = (x_{\varepsilon 1}, \dots, x_{\varepsilon k})$ is equi-continuous there exists $\delta_0 > 0$ such that

$$||x_{\varepsilon i}(t) - x_{\varepsilon i}(\tau)|| < \delta \text{ for } t, \tau \in I, \ i = 1, \dots, k, \ |t - \tau| \leq \delta_0, \ \varepsilon \in \mathfrak{E}.$$

Let *l* be such an integer that $l \leq \frac{b-a}{\delta_0} < l+1$. Let us denote $t_j = a + j\delta_0$ and $\overline{x_{\varepsilon}}(t) = x_{\varepsilon}(t_j)$ for $t_j \leq t < t_{j+1}$, where $j = 0, 1, \ldots, l$. Then

$$\|x_{\varepsilon i}(t) - \overline{x_{\varepsilon i}}(t)\| < \delta$$

for $t \in I$, $i = 1, \ldots, k$ and $\varepsilon \in \mathfrak{E}$ and

$$\left\|\int_{a}^{t} f_{\varepsilon}(\tau, \overline{x_{\varepsilon}}(\tau)) - f(\tau, \overline{x_{\varepsilon}}(\tau)) \,\mathrm{d}\tau\right\| \leq (l+1)\alpha_{\varepsilon}$$

for a < t < b and $\varepsilon < \varepsilon_0, \varepsilon \in \mathfrak{E}$.

Therefore by (iii) of Lemma 2.2 we obtain

$$\begin{split} \left\| \int_{a}^{t} \left(f_{\varepsilon}(\tau, x_{\varepsilon}(\tau)) - f(\tau, x_{\varepsilon}(\tau)) \right) \mathrm{d}\tau \right\| \\ &\leqslant \int_{a}^{t} \left\| f_{\varepsilon}(\tau, x_{\varepsilon}(\tau)) - f(\tau, x_{\varepsilon}(\tau)) - f_{\varepsilon}(\tau, \overline{x_{\varepsilon}}(\tau)) + f(\tau, \overline{x_{\varepsilon}}(\tau)) \right\| \mathrm{d}\tau \\ &+ \left\| \int_{a}^{t} \left(f_{\varepsilon}(\tau, \overline{x_{\varepsilon}}(\tau)) - f(\tau, \overline{x_{\varepsilon}}(\tau)) \right) \mathrm{d}\tau \right\| \\ &\leqslant \int_{a}^{b} \left(\omega_{\varepsilon}(\tau, \delta) + \omega(\tau, \delta) \right) \mathrm{d}\tau + (l+1)\alpha_{\varepsilon} < e + (l+1)\alpha_{\varepsilon} \end{split}$$

for $t \in I$, $\varepsilon < \varepsilon_1$, $\varepsilon \in \mathfrak{E}$.

Therefore $\beta_{\varepsilon} < e + (l+1)\alpha_{\varepsilon}$ for $\varepsilon < \varepsilon_1, \varepsilon \in \mathfrak{E}$. Since $\lim_{\varepsilon \to 0} \alpha_{\varepsilon} = 0$ and e is arbitrary we conclude that $\lim_{\varepsilon \to 0} \beta_{\varepsilon} = 0$.

Theorem 2.2. Let $f: I^* \times \mathbb{R}^{kn} \to \mathbb{R}^n$ be a Carathéodory function. Denote by \mathfrak{E} the set of positive ε such that for each $\varepsilon \in \mathfrak{E}$ there exists a solution $x_{\varepsilon}: I \subseteq I^* \to \mathbb{R}^n$ to the problem $(2.1_{\varepsilon}), (1.2)$. Suppose that $0 \in \overline{\mathfrak{E}}$ and that there exists a compact subset $B \subset \mathbb{R}^{kn}$ independent of ε such that $(x_{\varepsilon}(t), x'_{\varepsilon}(t), \ldots, x^{(k-1)}_{\varepsilon}(t)) \in B$ is satisfied for each $\varepsilon \in \mathfrak{E}$ and for each $t \in I$.

Then there exist a sequence $\{\varepsilon_s\}_{s=1}^{\infty}$ and a solution $x: I \to \mathbb{R}^n$ to the given boundary value problem (1.1), (1.2) such that $\varepsilon_s \in \mathfrak{E}$ for all $s \in \mathbb{N}$, $\lim_{s \to \infty} \varepsilon_s = 0$, $(x(t), x'(t), \ldots, x^{(k-1)}(t)) \in B$ for all $t \in I$, $\lim_{s \to \infty} x_{\varepsilon_s}^{(i)}(t) = x^{(i)}(t)$ uniformly on I for any $i = 1, 2, \ldots, k-1$, and $\lim_{s \to \infty} x_{\varepsilon_s}^{(k)}(t) = x^{(k)}(t)$ on I.

Proof. First let us prove that the set $\{x_{\varepsilon}\}_{\varepsilon \in \mathfrak{E}}$ is relatively compact in $C_n^{k-1}(I)$. Really, for the assumptions of the Arzelà-Ascoli theorem to be satisfied, it is necessary to prove equi-continuity of the set $\{x_{\varepsilon}^{(k-1)}\}_{\varepsilon \in \mathfrak{E}}$.

Let e > 0 be an arbitrary real number, suppose $t_1, t_2 \in I$ and compute

$$\begin{aligned} \|x_{\varepsilon}^{(k-1)}(t_{1}) - x_{\varepsilon}^{(k-1)}(t_{2})\| &= \left\| \int_{t_{1}}^{t_{2}} x_{\varepsilon}^{(k)}(t) \,\mathrm{d}t \right\| \\ &= \left\| \int_{t_{1}}^{t_{2}} f_{\varepsilon}(t, x_{\varepsilon}(t), x_{\varepsilon}'(t), \dots, x_{\varepsilon}^{(k-1)}(t)) \,\mathrm{d}t \right\| \\ &= \left\| \int_{t_{1}}^{t_{2}} \int_{-1}^{1} \overline{f}(t - \varepsilon \eta, x_{\varepsilon}(t), x_{\varepsilon}'(t), \dots, x_{\varepsilon}^{(k-1)}(t)) \varphi(\eta) \,\mathrm{d}\eta \,\mathrm{d}t \right\| \\ &\leqslant \left\| \int_{t_{1}}^{t_{2}} \int_{-1}^{1} l_{\overline{f}}(t - \varepsilon \eta) \varphi(\eta) \,\mathrm{d}\eta \,\mathrm{d}t \right\|, \end{aligned}$$

where $l_{\overline{f}}(t) = \begin{cases} l_f(t) & t \in I^* \\ 0 & t \notin I^* \end{cases}$. Now for ε close to 0 ($\varepsilon < \varepsilon_1$, where ε_1 is defined below) we have

$$\left| \int_{t_1}^{t_2} \int_{-1}^{1} l_{\overline{f}}(t - \varepsilon \eta) \varphi(\eta) \, \mathrm{d}\eta \, \mathrm{d}t \right| \\ \leqslant \left| \int_{t_1}^{t_2} l_f(t) \, \mathrm{d}t \right| + \left| \int_{t_1}^{t_2} \left(\int_{-1}^{1} l_{\overline{f}}(t - \varepsilon \eta) \varphi(\eta) \, \mathrm{d}\eta - l_f(t) \right) \, \mathrm{d}t \right|.$$

Since $l_f(t) \in L(I^*)$ then $\int_a^t l_f(\tau) d\tau$ is a continuous function, every continuous function on a compact interval is uniformly continuous on that interval, and therefore there exists $\delta_1 > 0$ such that for all $|t_1 - t_2| < \delta_1$ we have

$$\left|\int_{t_1}^{t_2} l_f(t) \,\mathrm{d}t\right| < \frac{e}{2}.$$

By Theorem 2.1 there exists ε_1 such that for each $\varepsilon \in \mathfrak{E}$, $0 < \varepsilon < \varepsilon_1$,

$$\int_{a}^{b} \left| \int_{-1}^{1} l_{\overline{f}}(t - \varepsilon \eta) \varphi(\eta) \, \mathrm{d}\eta - l_{f}(t) \right| \, \mathrm{d}t < \frac{e}{2},$$

and therefore for $\forall \varepsilon \in \mathfrak{E}, \ 0 < \varepsilon < \varepsilon_1$, we have

$$\left|\int_{t_1}^{t_2}\int_{-1}^{1}l_{\overline{f}}(t-\varepsilon\eta)\varphi(\eta)\,\mathrm{d}\eta\,\mathrm{d}t\right| < e.$$

Now for $\varepsilon \in \mathfrak{E}$, $\varepsilon_1 \leqslant \varepsilon$,

$$\left|\int_{t_1}^{t_2}\int_{-1}^{1}l_{\bar{f}}(t-\varepsilon\eta)\varphi(\eta)\,\mathrm{d}\eta\,\mathrm{d}t\right| = \frac{1}{\varepsilon}\left|\int_{t_1}^{t_2}\int_{a}^{b}l_{f}(\eta)\varphi\left(\frac{t-\eta}{\varepsilon}\right)\,\mathrm{d}\eta\,\mathrm{d}t\right|.$$

Let $\Phi = \max\{\varphi(t), t \in I\}$. Then

$$\begin{aligned} \frac{1}{\varepsilon} \bigg| \int_{t_1}^{t_2} \int_a^b l_f(\eta) \varphi \Big(\frac{t-\eta}{\varepsilon} \Big) \,\mathrm{d}\eta \,\mathrm{d}t \bigg| \\ &\leqslant \frac{1}{\varepsilon_1} \bigg| \int_{t_1}^{t_2} \int_a^b l_f(\eta) \Phi \,\mathrm{d}\eta \,\mathrm{d}t \bigg| \leqslant \frac{1}{\varepsilon_1} |t_1 - t_2| \Phi \int_a^b l_f(\eta) \,\mathrm{d}\eta. \end{aligned}$$

Let $\delta_2 = \frac{e\varepsilon_1}{\Phi \int_a^b l_f(\eta) \, \mathrm{d}\eta}$, then for $|t_1 - t_2| < \delta_2$ we obtain

$$\left| \int_{t_1}^{t_2} \int_{-1}^{1} l_f(t - \varepsilon \eta) \varphi(\eta) \, \mathrm{d}\eta \, \mathrm{d}t \right| < e.$$

9	1	Б
0	4	J

Let $\delta = \min{\{\delta_1, \delta_2\}}$ then for $|t_1 - t_2| < \delta$ we have

$$||x_{\varepsilon}^{(k-1)}(t_1) - x_{\varepsilon}^{(k-1)}(t_2)|| < e.$$

This means that the set $\{x_{\varepsilon}\}_{\varepsilon \in \mathfrak{E}}$ is relatively compact in $C_n^{k-1}(I)$. Therefore there exist a sequence $\{\varepsilon_s\}, \varepsilon_s \in \mathfrak{E}, \varepsilon_s \to 0$ and a function $x: I \to \mathbb{R}^n$ such that $(x(t), x'(t), \ldots, x^{(k-1)}(t)) \in B, \forall t \in I, x_{\varepsilon_s} \to x \text{ in } C_n^{k-1}(I).$

Now, since x_{ε_s} is the solution to the equation (2.1_{ε}) for $\varepsilon = \varepsilon_s$, we have

(2.4)
$$x_{\varepsilon_s}^{(k-1)}(t) = x_{\varepsilon_s}^{(k-1)}(a) + \int_a^t f_{\varepsilon_s}(\tau, x_{\varepsilon_s}(\tau), x'_{\varepsilon_s}(\tau), \dots, x_{\varepsilon_s}^{(k-1)}(\tau)) \,\mathrm{d}\tau, \ \forall t \in I.$$

Using Lemma 2.3 we get

$$x^{(k-1)}(t) = x^{(k-1)}(a) + \int_a^t f(\tau, x(\tau), x'(\tau), \dots, x^{(k-1)}(\tau)) \,\mathrm{d}\tau,$$

which means that x is a solution to the equation (1.1).

Since x_{ε_s} uniformly converges to x in $C_n^{k-1}(I)$, V is a continuous operator V: $C_n^{k-1}(I) \to \mathbb{R}^{kn}$ and x_{ε_s} is a solution to the problem (2.1_{ε_s}) , (1.2), we can see that

$$V(x_{\varepsilon_s}) = \mathbf{o},$$

and therefore for $\varepsilon_s \to 0$ we have

$$V(x) = \mathbf{o}.$$

It means that x is a solution to the problem (1.1), (1.2).

Remark 2.1. When $l_f(t) \in L^p(I^*)$ in Definition 1.1, where $1 \leq p < \infty$ (in this case we speak about an L^p -Carathéodory function) we can prove that the convergence of $x_{\varepsilon_s}^{(k)}$ to $x^{(k)}$ is in the norm of $L^p(I^*)$. To prove it we need only to assume in Definition 2.2

$$\omega(\tau,\delta) = \max\{\|\overline{f}(\tau,x_1,\ldots,x_k) - \overline{f}(\tau,y_1,\ldots,y_k)\|^p\}.$$

346

3. An application

As an example how to use Theorem 2.2 we may consider the equation

(3.1)
$$x'' = f(t, x, x')$$

with the four point boundary conditions

(3.2)
$$x(0) = x(c), \quad x(d) = x(1),$$

where $0 < c \leq d < 1$. In [1] the following result is proved.

Theorem 3.1. Let $f: [0,1] \times \mathbb{R}^{2n} \to \mathbb{R}^n$ be a continuous function and let us consider the problem (3.1), (3.2). Assume

- (i) there is a constant $M \ge 0$ such that $uf(t, u, p) \ge 0$ for $\forall t \in [0, 1], \forall u \in \mathbb{R}^n$, ||u|| > M and $\forall p \in \mathbb{R}^n$, pu = 0,
- (ii) there exist continuous positive functions $A_j, B_j, j \in \{1, 2, ..., n\}$,

$$A_j: [0,1] \times \mathbb{R}^{n+j-1} \to \mathbb{R}, \qquad B_j: [0,1] \times \mathbb{R}^{n+j-1} \to \mathbb{R}$$

such that

$$|f_j(t, u, p)| \leq A_j(t, u, p_1, p_2, \dots, p_{j-1})p_j^2 + B_j(t, u, p_1, p_2, \dots, p_{j-1})$$

where $f = (f_1, f_2, \ldots, f_n)$, $u \in \mathbb{R}^n$, $p \in \mathbb{R}^n$, $p = (p_1, p_2, \ldots, p_n)$ and for j = 1, A_1 and B_1 are independent of p functions.

Then the problem (3.1), (3.2) has a solution.

R e m a r k 3.1. From the proof of this theorem and from the topological transversality theorem in [4] it follows that the solution to the problem (3.1), (3.2) is bounded in $C_n^1([0,1])$ by a constant \mathfrak{M} which depends only on M, A_j , B_j .

Now we can extend the results of Theorem 3.1 to the Carathéodory case similarly to [2]. We allow discontinuities of functions A_j, B_j in contrast to [2].

Definition 3.1. Let k, l be natural numbers. A function $f: I \times \mathbb{R}^k \to \mathbb{R}^l$ is an L^{∞} -Carathéodory function provided f = f(t, u) satisfies

- (i) the map $u \mapsto f(t, u)$ is continuous for almost every $t \in I$,
- (ii) the map $t \mapsto f(t, u)$ is measurable for all $(u, p) \in \mathbb{R}^k$,
- (iii) for each bounded subset $B \subset \mathbb{R}^k$,

$$l_f(t) = \sup\{\|f(t, u)\|, u \in B\} \in L^{\infty}(I),\$$

where L^{∞} is the space of Lebesgue integrable functions with the norm

$$\|f\|_{\infty} = \mathop{\mathrm{ess\,sup}}_{t\in I} \|f\|.$$

Theorem 3.2. Let $f: [0,1] \times \mathbb{R}^{2n} \to \mathbb{R}^n$ be a Carathéodory function and let us consider the problem (3.1), (3.2). Assume

- (i) there is a constant $M \ge 0$ such that $uf(t, u, p) \ge 0$ for almost every t in [0, 1], $\forall u \in \mathbb{R}^n, ||u|| > M$ and $\forall p \in \mathbb{R}^n, pu = 0$,
- (ii) there exist positive L[∞]-Carathéodory functions A_j, B_j, where the index j is from {1,2,...,n},

$$A_j \colon [0,1] \times \mathbb{R}^{n+j-1} \to \mathbb{R}, \qquad B_j \colon [0,1] \times \mathbb{R}^{n+j-1} \to \mathbb{R}$$

such that for almost every $t \in [0, 1]$

$$|f_j(t, u, p)| \leq A_j(t, u, p_1, p_2, \dots, p_{j-1})p_j^2 + B_j(t, u, p_1, p_2, \dots, p_{j-1}),$$

where $f = (f_1, f_2, \ldots, f_n)$, $u \in \mathbb{R}^n$, $p \in \mathbb{R}^n$, $p = (p_1, p_2, \ldots, p_n)$ and for j = 1, A_1 and B_1 are independent of p functions.

Then the problem (3.1), (3.2) has a solution.

Proof. Let f_{ε} be an approximated function as in Section 2, where $a = a^* = 0$, $b = b^* = 1$ and k = 2, that is

$$f_{\varepsilon}(t, u, p)u = \frac{1}{\varepsilon} \int_{0}^{1} \varphi\left(\frac{t-\eta}{\varepsilon}\right) f(\eta, u, p) \,\mathrm{d}\eta,$$

and let $V: C_n^1([0,1]) \to \mathbb{R}^{2n}$ be a continuous operator of boundary conditions V(x) = (x(0) - x(a), x(b) - x(1)). Then

1) for $\forall \varepsilon \in (0,1)$, for $\forall t \in [0,1], \forall u \in \mathbb{R}^n, \|u\| > M$ and $\forall p \in \mathbb{R}^n, pu = 0$ we have

$$f_{\varepsilon}(t, u, p)u = \left(\frac{1}{\varepsilon} \int_{0}^{1} \varphi\left(\frac{t-\eta}{\varepsilon}\right) f(\eta, u, p) \,\mathrm{d}\eta\right) u =$$
$$= \frac{1}{\varepsilon} \int_{0}^{1} \varphi\left(\frac{t-\eta}{\varepsilon}\right) \left(f(\eta, u, p)u\right) \,\mathrm{d}\eta \ge 0$$

by the assumption (i) of this theorem.

2) Let $j \in \{1, 2, ..., n\}, u \in \mathbb{R}^n, p \in \mathbb{R}^n, p = (p_1, p_2, ..., p_n),$

$$\mathcal{A}_{j}(u, p_{1}, p_{2}, \dots, p_{j-1}) = \underset{t \in [0,1]}{\mathrm{ess}} \sup \left\{ A_{j}(t, u, p_{1}, p_{2}, \dots, p_{j-1}) \right\}$$

and

$$\mathcal{B}_j(u, p_1, p_2, \dots, p_{j-1}) = \underset{t \in [0,1]}{\mathrm{ess}} \sup \{ B_j(t, u, p_1, p_2, \dots, p_{j-1}) \}.$$

Since A_j , B_j are L^{∞} -Carathéodory functions, \mathcal{A}_j , \mathcal{B}_j are obviously continuous. Now we have

$$\begin{aligned} |f_{\varepsilon_j}(t,u,p)| &= \left| \int_{-1}^1 \overline{f_j}(t-\varepsilon\eta,u,p)\varphi(\eta) \,\mathrm{d}\eta \right| \leqslant \int_{-1}^1 |\overline{f_j}(t-\varepsilon\eta,u,p)|\varphi(\eta) \,\mathrm{d}\eta \\ &\leqslant \int_{-1}^1 (\mathcal{A}_j(u,p_1,p_2,\ldots,p_{j-1})p_j^2 + \mathcal{B}_j(u,p_1,p_2,\ldots,p_{j-1}))\varphi(\eta) \,\mathrm{d}\eta \\ &\leqslant \int_{-1}^1 \mathcal{A}_j(u,p_1,p_2,\ldots,p_{j-1})p_j^2\varphi(\eta) \,\mathrm{d}\eta + \int_{-1}^1 \mathcal{B}_j(u,p_1,p_2,\ldots,p_{j-1})\varphi(\eta) \,\mathrm{d}\eta \\ &= \mathcal{A}_j(u,p_1,p_2,\ldots,p_{j-1})p_j^2 + \mathcal{B}_j(u,p_1,p_2,\ldots,p_{j-1}). \end{aligned}$$

By Theorem 3.1 and Remark 3.1, for any $\varepsilon > 0$ there exists a solution x_{ε} to the approximated problem

$$(3.1_{\varepsilon}) \qquad \qquad x'' = f_{\varepsilon}(t, x, x')$$

where x satisfies boundary conditions (3.2) such that $||x_{\varepsilon}||_1 \leq \mathfrak{M}$.

Now all assumptions of Theorem 2.1 are fulfiled and therefore there exists a solution to the problem (1.1), (3.1).

References

- [1] P. Calábek: A four-point problem for second-order differential systems. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 114, 7–15.
- P. Calábek: Second-order differential systems and a regularization operator. Ann. Math. Sil. 10, 67–78.
- [3] S. Fučík, O. John, A. Kufner: Function Spaces. Academia, Prague, 1977.
- [4] K. Yosida: Functional Analysis. 6-th edition, Springer-Verlag, Berlin, 1980.
- [5] A. Granas, R. Guenther, J. Lee: Some existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures Appl. 70 (1991), 153–196.
- [6] I. T. Kiguradze: Boundary value problems for systems of ordinary differential equations. Itogi nauki i tehniki, ser. Sovr. problemy matematiki. Nov. dostizhenija. t. 30, VINITI, Moskva, 1987, pp. 3–103. (In Russian.)

Author's address: Pavel Calábek, Department of Algebra and Geometry, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: calabek@risc.upol.cz.