HIGHER-ORDER DIFFERENTIAL SYSTEMS AND
 A REGULARIZATION OPERATOR

Pavel Calábek, Olomouc

(Received May 19, 1997)

Abstract

Sufficient conditions for the existence of solutions to boundary value problems with a Carathéodory right hand side for ordinary differential systems are established by means of continuous approximations.

Keywords: Carathéodory functions, Arzelà-Ascoli theorem, Lebesgue theorem
MSC 2000: 34B10

1. Introduction

In this paper we prove theorems on the existence of solutions to the differential system

$$
\begin{equation*}
x^{(k)}=f\left(t, x, x^{\prime}, \ldots, x^{(k-1)}\right) \tag{1.1}
\end{equation*}
$$

satisfying the boundary condition

$$
\begin{equation*}
V(x)=\mathbf{o}, \tag{1.2}
\end{equation*}
$$

where V is a continuous operator of boundary conditions and \mathbf{o} is a zero point of the space $\mathbb{R}^{k n}, \mathbf{o}=\overbrace{(0,0, \ldots, 0)}^{k n \text { times }}$.

We generalize the results of [2] where the second-order differential systems with L^{∞}-Carathéodory right-hand sides are considered. Here we consider the k-th order differential system (1.1) with a Carathéodory function f. The problem (1.1), (1.2) is approximated by a sequence of problems with continuous right-hand sides. The existence of solutions of $(1.1),(1.2)$ is obtained as a consequence of the existence of solutions of these auxiliary problems.

Let $-\infty<a^{*} \leqslant a<b \leqslant b^{*}<\infty, I=[a, b], I^{*}=\left[a^{*}, b^{*}\right], \mathbb{R}=(-\infty, \infty), n, k$ natural numbers. \mathbb{R}^{n} denotes the Euclidean n-space as usual and $\|x\|$ denotes the Euclidean norm. $C_{n}^{k}(I)=C^{k}\left([a, b], \mathbb{R}^{n}\right)$ is the Banach space of functions u such that $u^{(k)}$ is continuous on I with the norm

$$
\|u\|_{k}=\max \left\{\|u\|,\left\|u^{\prime}\right\|,\left\|u^{\prime \prime}\right\|, \ldots,\left\|u^{(k)}\right\|\right\}
$$

where

$$
\|u\|=\max \{\|u(t)\|, t \in I\} .
$$

Let $C_{n}(I)$ denote the space $C_{n}^{0}(I) . C_{n O}^{\infty}(\mathbb{R})=C_{n O}^{\infty}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ is the space of functions φ such that for each $l \in\{1,2, \ldots\}$ there exists a continuous on \mathbb{R} function $\varphi^{(l)}$ and the support of the function φ is a bounded closed set, $\operatorname{supp} \varphi=\overline{\{x \in \mathbb{R} ;\|\varphi(x)\|>0\}}$. Finally, let $1 \leqslant p<\infty$, let $L_{n}^{p}(I)=L_{n}^{p}\left((a, b), \mathbb{R}^{n}\right)$ be as usual the space of Lebesgue integrable functions with the norm

$$
|u|_{p}=\left(\int_{a}^{b}\|u(t)\|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

let us denote $L^{p}(I)=L_{1}^{p}(I), L(I)=L^{1}(I)$.
Definition 1.1. A function $f: I^{*} \times \mathbb{R}^{k n} \rightarrow \mathbb{R}^{n}$ is a Carathéodory function provided
(i) the map $y \mapsto f(t, y)$ is continuous for almost every $t \in I^{*}$,
(ii) the $\operatorname{map} t \mapsto f(t, y)$ is measurable for all $y \in \mathbb{R}^{k n}$,
(iii) for each bounded subset $B \subset \mathbb{R}^{k n}$ we have

$$
l_{f}(t)=\sup \{\|f(t, y)\|, y \in B\} \in L\left(I^{*}\right)
$$

Throughout the paper let us assume $f: I^{*} \times \mathbb{R}^{k n} \rightarrow \mathbb{R}^{n}$ is a Carathéodory function and $V: C_{n}^{k-1}(I) \rightarrow \mathbb{R}^{k n}$ is a continuous operator.

If f is continuous, by a solution on I to the equation (1.1) we mean a classical solution with a continuous k-th derivative, while if f is a Carathéodory function, a solution will mean a function x which has an absolutely continuous $(k-1)$-st derivative such that x fulfils the equality $x^{(k)}(t)=f\left(t, x(t), x^{\prime}(t), \ldots, x^{(k-1)}(t)\right)$ for almost every $t \in I$.

By $x y$ where $x, y \in \mathbb{R}^{n}$ we mean a scalar product of two vectors from \mathbb{R}^{n}.

2. REGULARIZATION OPERATOR

Let φ in $C_{1 O}^{\infty}$ be such that

$$
\varphi(t) \geqslant 0 \quad \forall t \in \mathbb{R}, \quad \operatorname{supp} \varphi=[-1,1], \quad \int_{-1}^{1} \varphi(t) \mathrm{d} t=1
$$

For an example of such a function see [4], page 26.
Instead of problem (1.1), (1.2) we will consider the equation

$$
x^{(k)}=f_{\varepsilon}\left(t, x, x^{\prime}, \ldots, x^{(k-1)}\right)
$$

with the boundary condition (1.2), where ε is a positive real number and $\forall y \in \mathbb{R}^{k n}$ we have

$$
f_{\varepsilon}(t, y)=\frac{1}{\varepsilon} \int_{a^{*}}^{b^{*}} \varphi\left(\frac{t-\eta}{\varepsilon}\right) f(\eta, y) \mathrm{d} \eta
$$

or equivalently

$$
f_{\varepsilon}(t, y)=\int_{-1}^{1} \bar{f}(t-\varepsilon \eta, y) \varphi(\eta) \mathrm{d} \eta
$$

where $\bar{f}(t, y)=\left\{\begin{array}{l}f(t, y) \quad t \in\left[a^{*}, b^{*}\right] \\ 0 \\ t \notin\left[a^{*}, b^{*}\right]\end{array}\right.$.
The following theorem is proved in [3] (a simple form for $\mathrm{n}=1$ is presented):

Theorem 2.1. Let $u \in L^{p}\left(I^{*}\right)$, where $1 \leqslant p<\infty$, and for $\varepsilon>0$ let us denote

$$
\left(R_{\varepsilon} u\right)(t)=\frac{1}{\varepsilon} \int_{a^{*}}^{b^{*}} \varphi\left(\frac{t-\eta}{\varepsilon}\right) u(\eta) \mathrm{d} \eta=\int_{-1}^{1} \bar{u}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta
$$

where $\bar{u}(t)=\left\{\begin{array}{l}u(t) \quad t \in\left[a^{*}, b^{*}\right] \\ 0 \\ \hline\end{array} t \notin\left[a^{*}, b^{*}\right]\right.$.
Then
(i) $R_{\varepsilon} u \in C^{\infty}(\mathbb{R})$ for $\varepsilon>0$,
(ii) $\lim _{\varepsilon \rightarrow 0+}\left|R_{\varepsilon} u-u\right|_{p}=0$.

Lemma 2.1. Let B be a bounded subset in $\mathbb{R}^{k n}$. Then the function $f_{\varepsilon}(t, y)$ is continuous on $I^{*} \times B$ for every $\varepsilon>0$.

Proof. Continuity of f_{ε} follows from the theorem on continuous dependence of the integral on a parameter.

Definition 2.1. Let $w: I^{*} \times[0, \infty) \rightarrow[0, \infty)$ be a Carathéodory function. We write $w \in M\left(I^{*} \times[0, \infty) ;[0, \infty)\right)$ if w satisfies:
(i) For almost every $t \in I^{*}$ and for every $d_{1}, d_{2} \in[0, \infty), d_{1}<d_{2}$ we have

$$
w\left(t, d_{1}\right) \leqslant w\left(t, d_{2}\right)
$$

(ii) For almost every $t \in I^{*}$ we have $w(t, 0)=0$.

Definition 2.2. Let B be a compact subset of $\mathbb{R}^{k n}, \tau \in \mathbb{R}, \delta \in[0, \infty)$ and $\varepsilon>0$. Let us denote by $\omega(\tau, \delta)$ the function

$$
\begin{aligned}
\omega(\tau, \delta)=\max \{ & \left\|\bar{f}\left(\tau, x_{1}, \ldots, x_{k}\right)-\bar{f}\left(\tau, y_{1}, \ldots, y_{k}\right)\right\| ; \\
& \left.\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right) \in B,\left\|x_{i}-y_{i}\right\| \leqslant \delta, i=1, \ldots, k\right\}
\end{aligned}
$$

and by $\omega_{\varepsilon}(\tau, \delta)$ the function

$$
\omega_{\varepsilon}(\tau, \delta)=\frac{1}{\varepsilon} \int_{a^{*}}^{b^{*}} \varphi\left(\frac{\tau-\eta}{\varepsilon}\right) \omega(\eta, \delta) \mathrm{d} \eta
$$

or equivalently

$$
\omega_{\varepsilon}(\tau, \delta)=\int_{-1}^{1} \omega(\tau-\varepsilon \eta, \delta) \varphi(\eta) \mathrm{d} \eta
$$

Lemma 2.2. Let B be a compact subset of $\mathbb{R}^{k n}$. Then for every $\varepsilon>0$
(i) $\omega, \omega_{\varepsilon} \in M\left(I^{*} \times[0, \infty) ;[0, \infty)\right)$;
(ii) $\lim _{\varepsilon \rightarrow 0+} f_{\varepsilon}(t, y)=f(t, y)$ and $\lim _{\varepsilon \rightarrow 0+} \omega_{\varepsilon}(t, \delta)=\omega(t, \delta)$ for all $y \in B, \delta \geqslant 0$ and for almost every $t \in I^{*}$;
(iii) for every $\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right) \in B$ and for almost every $t \in I^{*}$ we have

$$
\begin{aligned}
& \left\|f_{\varepsilon}\left(t, x_{1}, \ldots, x_{k}\right)-f_{\varepsilon}\left(t, y_{1}, \ldots, y_{k}\right)-f\left(t, x_{1}, \ldots, x_{k}\right)+f\left(t, y_{1}, \ldots, y_{k}\right)\right\| \\
& \quad \leqslant \omega_{\varepsilon}\left(t, \max \left\{\left\|x_{i}-y_{i}\right\| ; i=1,2, \ldots, k\right\}\right)+\omega\left(t, \max \left\{\left\|x_{i}-y_{i}\right\| ; i=1,2, \ldots, k\right\}\right)
\end{aligned}
$$

(iv) $\lim _{\varepsilon \rightarrow 0+} \int_{a}^{t}\left(f_{\varepsilon}(\tau, x)-f(\tau, x)\right) \mathrm{d} \tau=0$ uniformly on $I \times B$.

Proof.
(i) Since $f(\tau,$.$) is a Carathéodory function and B$ is a compact set, for almost every $\tau \in I^{*}$ we have $0 \leqslant \omega(\tau, \delta) \leqslant 2 l_{f}(\tau), \omega(\tau,$.$) is nondecreasing and continuous,$ $\omega(., \delta)$ is measurable and

$$
\lim _{\delta \rightarrow 0+} \omega(\tau, \delta)=0
$$

It means that $\omega(\tau, 0)=0$ for almost every $\tau \in I^{*}$. Therefore we can see that $\omega \in M\left(I^{*} \times[0, \infty) ;[0, \infty)\right)$.

By the theorem on continuous dependence of the integral on a parameter, ω_{ε} is a continuous function for arbitrary $\varepsilon>0$. Therefore ω_{ε} is a Carathéodory function such that $\omega_{\varepsilon}(\tau, 0)=0$ for almost every $\tau \in I^{*}$. If $\delta_{1}<\delta_{2}$, then for almost every $\tau \in I^{*}$

$$
\begin{equation*}
0 \leqslant \omega\left(\tau, \delta_{1}\right) \leqslant \omega\left(\tau, \delta_{2}\right) \tag{2.2}
\end{equation*}
$$

hence for almost every $\eta \in I^{*}$

$$
0 \leqslant \frac{1}{\varepsilon} \varphi\left(\frac{\tau-\eta}{\varepsilon}\right) \omega\left(\eta, \delta_{1}\right) \leqslant \frac{1}{\varepsilon} \varphi\left(\frac{\tau-\eta}{\varepsilon}\right) \omega\left(\eta, \delta_{2}\right)
$$

and therefore

$$
\begin{equation*}
0 \leqslant \omega_{\varepsilon}\left(\tau, \delta_{1}\right) \leqslant \omega_{\varepsilon}\left(\tau, \delta_{2}\right) \tag{2.3}
\end{equation*}
$$

It means that $\omega_{\varepsilon} \in M\left(I^{*} \times[0, \infty) ;[0, \infty)\right)$.
(ii) This statement is a consequence of Theorem 2.1 which asserts that our assumption implies for every $\delta>0, y \in B$ and $i=1,2, \ldots, n$

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0+} \int_{-1}^{1}\left|\omega_{\varepsilon}(\tau, \delta)-\omega(\tau, \delta)\right| \mathrm{d} \tau=0 \\
& \lim _{\varepsilon \rightarrow 0+} \int_{-1}^{1}\left|f_{\varepsilon i}(\tau, y)-f_{i}(\tau, y)\right| \mathrm{d} \tau=0
\end{aligned}
$$

where $f_{i}, f_{\varepsilon i}$ are the i-th components of the functions f, f_{ε}, respectively.
(iii) Obviously for $\left\|x_{i}-y_{i}\right\| \leqslant \delta, i=1, \ldots, k$

$$
\begin{aligned}
& \left\|f_{\varepsilon}\left(t, x_{1}, \ldots, x_{k}\right)-f_{\varepsilon}\left(t, y_{1}, \ldots, y_{k}\right)\right\| \\
& \quad=\left\|\int_{-1}^{1} \varphi(\eta)\left(\bar{f}\left(t-\varepsilon \eta, x_{1}, \ldots, x_{k}\right)-\bar{f}\left(t-\varepsilon \eta, y_{1}, \ldots, y_{k}\right)\right) \mathrm{d} \eta\right\| \\
& \quad \leqslant \int_{-1}^{1}\left\|\bar{f}\left(t-\varepsilon \eta, x_{1}, \ldots, x_{k}\right)-\bar{f}\left(t-\varepsilon \eta, y_{1}, \ldots, y_{k}\right)\right\| \varphi(\eta) \mathrm{d} \eta \\
& \quad \leqslant \int_{-1}^{1} \omega(t-\varepsilon \eta, \delta) \varphi(\eta) \mathrm{d} \eta=\omega_{\varepsilon}(t, \delta) .
\end{aligned}
$$

Now it is easy to see that the statement (iii) of the above lemma holds.
(iv) We will prove that for every $(t, x) \in I \times B, x=\left(x_{1}, \ldots, x_{k}\right)$, and every $e>0$ there exist $\varepsilon_{0}>0$ and a neighbourhood $O_{(t, x)}$ of (t, x) in the set $I \times B$ such that for every $0<\varepsilon<\varepsilon_{0}$ and for every $\left(t^{\prime}, y\right) \in O_{(t, x)}, y=\left(y_{1}, \ldots, y_{k}\right)$,

$$
\left\|\int_{a}^{t^{\prime}}\left(f_{\varepsilon}(\tau, y)-f(\tau, y)\right) \mathrm{d} \tau\right\|<e
$$

By (ii) and by the Lebesgue dominated convergence theorem there exists $\varepsilon_{1}>0$ such that for every $0<\varepsilon<\varepsilon_{1}$

$$
\int_{a}^{b}\left\|f_{\varepsilon}(\tau, x)-f(\tau, x)\right\| \mathrm{d} \tau<\frac{e}{4}
$$

Since $\omega \in M\left(I^{*} \times[0, \infty) ;[0, \infty)\right)$ there exists such a $\delta>0$ that

$$
\int_{a}^{b} \omega(\tau, \delta) \mathrm{d} \tau<\frac{e}{4}
$$

By (ii) and the Lebesgue dominated convergence theorem there exists $\varepsilon_{2}>0$ such that for every $0<\varepsilon<\varepsilon_{2}$

$$
\int_{a}^{b} \omega_{\varepsilon}(\tau, \delta) \mathrm{d} \tau<\frac{e}{2}
$$

Let us denote $O_{(t, x)}=\left\{\left(t^{\prime}, y\right) \in I \times B ;\left\|x_{i}-y_{i}\right\|<\delta, i=1,2, \ldots, k\right\}$ and $\varepsilon_{0}=$ $\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. Now for every $0<\varepsilon<\varepsilon_{0}$ and for every $\left(t^{\prime}, y\right) \in O_{(t, x)}$ we have

$$
\begin{aligned}
& \| \int_{a}^{t^{\prime}}\left(f_{\varepsilon}(\tau, y)\right.-f(\tau, y)) \mathrm{d} \tau \| \\
& \leqslant\left\|\int_{a}^{t^{t^{\prime}}}\left(f_{\varepsilon}(\tau, x)-f(\tau, x)\right) \mathrm{d} \tau\right\| \\
&+\left\|\int_{a}^{t^{\prime}}\left(f_{\varepsilon}(\tau, x)-f_{\varepsilon}(\tau, y)-f(\tau, x)+f(\tau, y)\right) \mathrm{d} \tau\right\| \\
& \leqslant \int_{a}^{b}\left\|f_{\varepsilon}(\tau, x)-f(\tau, x)\right\| \mathrm{d} \tau+\int_{a}^{b} \omega_{\varepsilon}(\tau, \delta)+\omega(\tau, \delta) \mathrm{d} \tau \\
& \quad<\frac{e}{4}+\frac{e}{2}+\frac{e}{4} \leqslant e .
\end{aligned}
$$

This means that the system of the sets $\left\{O_{(t, x)}\right\}_{(t, x) \in I \times B}$ covers the compact set $I \times B$ and therefore there exists a finite subsystem which covers the set $I \times B$ and therefore the statement of (iv) holds.

Lemma 2.3. Let $B \subset \mathbb{R}^{k n}$ be a compact set. Let \mathfrak{E} be a set of $\varepsilon>0$ such that the system of functions $\left\{x_{\varepsilon}\right\}_{\varepsilon \in \mathfrak{E}}, x_{\varepsilon}: I \rightarrow B$, is equi-continuous and $0 \in \overline{\mathfrak{E}}$.

Then $\lim _{\varepsilon \rightarrow 0+} \int_{a}^{t} f_{\varepsilon}\left(\tau, x_{\varepsilon}(\tau)\right)-f\left(\tau, x_{\varepsilon}(\tau)\right) \mathrm{d} \tau=0$ uniformly on I.
Proof. This proof is a modification of the proof of Lemma 3.1 in [6].
For $\varepsilon \in \mathfrak{E}$ let us denote

$$
\begin{gathered}
\alpha_{\varepsilon}=\sup \left\{\left\|\int_{s}^{t} f_{\varepsilon}(\tau, y)-f(\tau, y) \mathrm{d} \tau\right\| ; a \leqslant s<t \leqslant b, y \in B\right\} \\
\beta_{\varepsilon}=\max \left\{\left\|\int_{a}^{t} f_{\varepsilon}\left(\tau, x_{\varepsilon}(\tau)\right)-f\left(\tau, x_{\varepsilon}(\tau)\right) \mathrm{d} \tau\right\| ; a \leqslant t \leqslant b\right\}
\end{gathered}
$$

By (iv) of Lemma 2.2

$$
\lim _{\varepsilon \rightarrow 0} \alpha_{\varepsilon}=0
$$

We want to prove

$$
\lim _{\varepsilon \rightarrow 0} \beta_{\varepsilon}=0
$$

Let $e>0$ be an arbitrary real number. Then by (i) of Lemma 2.2 there exists such a $\delta>0$ that

$$
\int_{a}^{b} \omega(\tau, \delta) \mathrm{d} \tau<\frac{e}{3}
$$

and by (i), (ii) of Lemma 2.2 such an $\varepsilon_{1}>0$ that for every $\varepsilon \in \mathfrak{E}, \varepsilon<\varepsilon_{1}$ we have

$$
\int_{a}^{b} \omega_{\varepsilon}(\tau, \delta) \mathrm{d} \tau<\frac{2 e}{3}
$$

Since $\left\{x_{\varepsilon}\right\}_{\varepsilon \in \mathfrak{E}}, x_{\varepsilon}=\left(x_{\varepsilon 1}, \ldots, x_{\varepsilon k}\right)$ is equi-continuous there exists $\delta_{0}>0$ such that

$$
\left\|x_{\varepsilon i}(t)-x_{\varepsilon i}(\tau)\right\|<\delta \text { for } t, \tau \in I, i=1, \ldots, k,|t-\tau| \leqslant \delta_{0}, \varepsilon \in \mathfrak{E} .
$$

Let l be such an integer that $l \leqslant \frac{b-a}{\delta_{0}}<l+1$. Let us denote $t_{j}=a+j \delta_{0}$ and $\overline{x_{\varepsilon}}(t)=x_{\varepsilon}\left(t_{j}\right)$ for $t_{j} \leqslant t<t_{j+1}$, where $j=0,1, \ldots, l$. Then

$$
\left\|x_{\varepsilon i}(t)-\overline{x_{\varepsilon i}}(t)\right\|<\delta
$$

for $t \in I, i=1, \ldots, k$ and $\varepsilon \in \mathfrak{E}$ and

$$
\left\|\int_{a}^{t} f_{\varepsilon}\left(\tau, \overline{x_{\varepsilon}}(\tau)\right)-f\left(\tau, \overline{x_{\varepsilon}}(\tau)\right) \mathrm{d} \tau\right\| \leqslant(l+1) \alpha_{\varepsilon}
$$

for $a<t<b$ and $\varepsilon<\varepsilon_{0}, \varepsilon \in \mathfrak{E}$.

Therefore by (iii) of Lemma 2.2 we obtain

$$
\begin{aligned}
&\left\|\int_{a}^{t}\left(f_{\varepsilon}\left(\tau, x_{\varepsilon}(\tau)\right)-f\left(\tau, x_{\varepsilon}(\tau)\right)\right) \mathrm{d} \tau\right\| \\
& \leqslant \int_{a}^{t}\left\|f_{\varepsilon}\left(\tau, x_{\varepsilon}(\tau)\right)-f\left(\tau, x_{\varepsilon}(\tau)\right)-f_{\varepsilon}\left(\tau, \overline{x_{\varepsilon}}(\tau)\right)+f\left(\tau, \overline{x_{\varepsilon}}(\tau)\right)\right\| \mathrm{d} \tau \\
&+\left\|\int_{a}^{t}\left(f_{\varepsilon}\left(\tau, \overline{x_{\varepsilon}}(\tau)\right)-f\left(\tau, \overline{x_{\varepsilon}}(\tau)\right)\right) \mathrm{d} \tau\right\| \\
& \leqslant \int_{a}^{b}\left(\omega_{\varepsilon}(\tau, \delta)+\omega(\tau, \delta)\right) \mathrm{d} \tau+(l+1) \alpha_{\varepsilon}<e+(l+1) \alpha_{\varepsilon}
\end{aligned}
$$

for $t \in I, \varepsilon<\varepsilon_{1}, \varepsilon \in \mathfrak{E}$.
Therefore $\beta_{\varepsilon}<e+(l+1) \alpha_{\varepsilon}$ for $\varepsilon<\varepsilon_{1}, \varepsilon \in \mathfrak{E}$. Since $\lim _{\varepsilon \rightarrow 0} \alpha_{\varepsilon}=0$ and e is arbitrary we conclude that $\lim _{\varepsilon \rightarrow 0} \beta_{\varepsilon}=0$.

Theorem 2.2. Let $f: I^{*} \times \mathbb{R}^{k n} \rightarrow \mathbb{R}^{n}$ be a Carathéodory function. Denote by \mathfrak{E} the set of positive ε such that for each $\varepsilon \in \mathfrak{E}$ there exists a solution $x_{\varepsilon}: I \subseteq I^{*} \rightarrow \mathbb{R}^{n}$ to the problem $\left(2.1_{\varepsilon}\right)$, (1.2). Suppose that $0 \in \overline{\mathfrak{E}}$ and that there exists a compact subset $B \subset \mathbb{R}^{k n}$ independent of ε such that $\left(x_{\varepsilon}(t), x_{\varepsilon}^{\prime}(t), \ldots, x_{\varepsilon}^{(k-1)}(t)\right) \in B$ is satisfied for each $\varepsilon \in \mathfrak{E}$ and for each $t \in I$.

Then there exist a sequence $\left\{\varepsilon_{s}\right\}_{s=1}^{\infty}$ and a solution $x: I \rightarrow \mathbb{R}^{n}$ to the given boundary value problem (1.1), (1.2) such that $\varepsilon_{s} \in \mathfrak{E}$ for all $s \in \mathbb{N}, \lim _{s \rightarrow \infty} \varepsilon_{s}=0$, $\left(x(t), x^{\prime}(t), \ldots, x^{(k-1)}(t)\right) \in B$ for all $t \in I, \lim _{s \rightarrow \infty} x_{\varepsilon_{s}}^{(i)}(t)=x^{(i)}(t)$ uniformly on I for any $i=1,2, \ldots, k-1$, and $\lim _{s \rightarrow \infty} x_{\varepsilon_{s}}^{(k)}(t)=x^{(k)}(t)$ on I.

Proof. First let us prove that the set $\left\{x_{\varepsilon}\right\}_{\varepsilon \in \mathfrak{E}}$ is relatively compact in $C_{n}^{k-1}(I)$. Really, for the assumptions of the Arzelà-Ascoli theorem to be satisfied, it is necessary to prove equi-continuity of the set $\left\{x_{\varepsilon}^{(k-1)}\right\}_{\varepsilon \in \mathfrak{E}}$.

Let $e>0$ be an arbitrary real number, suppose $t_{1}, t_{2} \in I$ and compute

$$
\begin{aligned}
\| x_{\varepsilon}^{(k-1)}(& \left.t_{1}\right)-x_{\varepsilon}^{(k-1)}\left(t_{2}\right)\|=\| \int_{t_{1}}^{t_{2}} x_{\varepsilon}^{(k)}(t) \mathrm{d} t \| \\
& =\left\|\int_{t_{1}}^{t_{2}} f_{\varepsilon}\left(t, x_{\varepsilon}(t), x_{\varepsilon}^{\prime}(t), \ldots, x_{\varepsilon}^{(k-1)}(t)\right) \mathrm{d} t\right\| \\
& =\left\|\int_{t_{1}}^{t_{2}} \int_{-1}^{1} \bar{f}\left(t-\varepsilon \eta, x_{\varepsilon}(t), x_{\varepsilon}^{\prime}(t), \ldots, x_{\varepsilon}^{(k-1)}(t)\right) \varphi(\eta) \mathrm{d} \eta \mathrm{~d} t\right\| \\
& \leqslant\left|\int_{t_{1}}^{t_{2}} \int_{-1}^{1} l_{\bar{f}}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta \mathrm{~d} t\right|
\end{aligned}
$$

where $l_{\bar{f}}(t)=\left\{\begin{array}{l}l_{f}(t) \quad t \in I^{*} \\ 0 \\ 0 \not t \notin I^{*}\end{array}\right.$. Now for ε close to $0\left(\varepsilon<\varepsilon_{1}\right.$, where ε_{1} is defined below) we have

$$
\begin{aligned}
& \left|\int_{t_{1}}^{t_{2}} \int_{-1}^{1} l_{\bar{f}}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta \mathrm{~d} t\right| \\
& \quad \leqslant\left|\int_{t_{1}}^{t_{2}} l_{f}(t) \mathrm{d} t\right|+\left|\int_{t_{1}}^{t_{2}}\left(\int_{-1}^{1} l_{\bar{f}}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta-l_{f}(t)\right) \mathrm{d} t\right|
\end{aligned}
$$

Since $l_{f}(t) \in L\left(I^{*}\right)$ then $\int_{a}^{t} l_{f}(\tau) \mathrm{d} \tau$ is a continuous function, every continuous function on a compact interval is uniformly continuous on that interval, and therefore there exists $\delta_{1}>0$ such that for all $\left|t_{1}-t_{2}\right|<\delta_{1}$ we have

$$
\left|\int_{t_{1}}^{t_{2}} l_{f}(t) \mathrm{d} t\right|<\frac{e}{2}
$$

By Theorem 2.1 there exists ε_{1} such that for each $\varepsilon \in \mathfrak{E}, 0<\varepsilon<\varepsilon_{1}$,

$$
\int_{a}^{b}\left|\int_{-1}^{1} l_{\bar{f}}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta-l_{f}(t)\right| \mathrm{d} t<\frac{e}{2}
$$

and therefore for $\forall \varepsilon \in \mathfrak{E}, 0<\varepsilon<\varepsilon_{1}$, we have

$$
\left|\int_{t_{1}}^{t_{2}} \int_{-1}^{1} l_{\bar{f}}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta \mathrm{~d} t\right|<e
$$

Now for $\varepsilon \in \mathfrak{E}, \varepsilon_{1} \leqslant \varepsilon$,

$$
\left|\int_{t_{1}}^{t_{2}} \int_{-1}^{1} l_{\bar{f}}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta \mathrm{~d} t\right|=\frac{1}{\varepsilon}\left|\int_{t_{1}}^{t_{2}} \int_{a}^{b} l_{f}(\eta) \varphi\left(\frac{t-\eta}{\varepsilon}\right) \mathrm{d} \eta \mathrm{~d} t\right|
$$

Let $\Phi=\max \{\varphi(t), t \in I\}$. Then

$$
\begin{aligned}
& \frac{1}{\varepsilon}\left|\int_{t_{1}}^{t_{2}} \int_{a}^{b} l_{f}(\eta) \varphi\left(\frac{t-\eta}{\varepsilon}\right) \mathrm{d} \eta \mathrm{~d} t\right| \\
& \quad \leqslant \frac{1}{\varepsilon_{1}}\left|\int_{t_{1}}^{t_{2}} \int_{a}^{b} l_{f}(\eta) \Phi \mathrm{d} \eta \mathrm{~d} t\right| \leqslant \frac{1}{\varepsilon_{1}}\left|t_{1}-t_{2}\right| \Phi \int_{a}^{b} l_{f}(\eta) \mathrm{d} \eta
\end{aligned}
$$

Let $\delta_{2}=\frac{e \varepsilon_{1}}{\Phi \int_{a}^{b} l_{f}(\eta) \mathrm{d} \eta}$, then for $\left|t_{1}-t_{2}\right|<\delta_{2}$ we obtain

$$
\left|\int_{t_{1}}^{t_{2}} \int_{-1}^{1} l_{f}(t-\varepsilon \eta) \varphi(\eta) \mathrm{d} \eta \mathrm{~d} t\right|<e
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then for $\left|t_{1}-t_{2}\right|<\delta$ we have

$$
\left\|x_{\varepsilon}^{(k-1)}\left(t_{1}\right)-x_{\varepsilon}^{(k-1)}\left(t_{2}\right)\right\|<e
$$

This means that the set $\left\{x_{\varepsilon}\right\}_{\varepsilon \in \mathfrak{E}}$ is relatively compact in $C_{n}^{k-1}(I)$. Therefore there exist a sequence $\left\{\varepsilon_{s}\right\}, \varepsilon_{s} \in \mathfrak{E}, \varepsilon_{s} \rightarrow 0$ and a function $x: I \rightarrow \mathbb{R}^{n}$ such that $\left(x(t), x^{\prime}(t), \ldots, x^{(k-1)}(t)\right) \in B, \forall t \in I, x_{\varepsilon_{s}} \rightarrow x$ in $C_{n}^{k-1}(I)$.

Now, since $x_{\varepsilon_{s}}$ is the solution to the equation $\left(2.1_{\varepsilon}\right)$ for $\varepsilon=\varepsilon_{s}$, we have

$$
\begin{equation*}
x_{\varepsilon_{s}}^{(k-1)}(t)=x_{\varepsilon_{s}}^{(k-1)}(a)+\int_{a}^{t} f_{\varepsilon_{s}}\left(\tau, x_{\varepsilon_{s}}(\tau), x_{\varepsilon_{s}}^{\prime}(\tau), \ldots, x_{\varepsilon_{s}}^{(k-1)}(\tau)\right) \mathrm{d} \tau, \quad \forall t \in I \tag{2.4}
\end{equation*}
$$

Using Lemma 2.3 we get

$$
x^{(k-1)}(t)=x^{(k-1)}(a)+\int_{a}^{t} f\left(\tau, x(\tau), x^{\prime}(\tau), \ldots, x^{(k-1)}(\tau)\right) \mathrm{d} \tau
$$

which means that x is a solution to the equation (1.1).
Since $x_{\varepsilon_{s}}$ uniformly converges to x in $C_{n}^{k-1}(I), V$ is a continuous operator V : $C_{n}^{k-1}(I) \rightarrow \mathbb{R}^{k n}$ and $x_{\varepsilon_{s}}$ is a solution to the problem (2.1 $\varepsilon_{\varepsilon_{s}}$), (1.2), we can see that

$$
V\left(x_{\varepsilon_{s}}\right)=\mathbf{o}
$$

and therefore for $\varepsilon_{s} \rightarrow 0$ we have

$$
V(x)=\mathbf{o} .
$$

It means that x is a solution to the problem (1.1), (1.2).
Remark 2.1. When $l_{f}(t) \in L^{p}\left(I^{*}\right)$ in Definition 1.1, where $1 \leqslant p<\infty$ (in this case we speak about an L^{p}-Carathéodory function) we can prove that the convergence of $x_{\varepsilon_{s}}^{(k)}$ to $x^{(k)}$ is in the norm of $L^{p}\left(I^{*}\right)$. To prove it we need only to assume in Definition 2.2

$$
\omega(\tau, \delta)=\max \left\{\left\|\bar{f}\left(\tau, x_{1}, \ldots, x_{k}\right)-\bar{f}\left(\tau, y_{1}, \ldots, y_{k}\right)\right\|^{p}\right\}
$$

3. An application

As an example how to use Theorem 2.2 we may consider the equation

$$
\begin{equation*}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{3.1}
\end{equation*}
$$

with the four point boundary conditions

$$
\begin{equation*}
x(0)=x(c), \quad x(d)=x(1) \tag{3.2}
\end{equation*}
$$

where $0<c \leqslant d<1$. In [1] the following result is proved.
Theorem 3.1. Let $f:[0,1] \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ be a continuous function and let us consider the problem (3.1), (3.2). Assume
(i) there is a constant $M \geqslant 0$ such that $u f(t, u, p) \geqslant 0$ for $\forall t \in[0,1], \forall u \in \mathbb{R}^{n}$, $\|u\|>M$ and $\forall p \in \mathbb{R}^{n}, p u=0$,
(ii) there exist continuous positive functions $A_{j}, B_{j}, j \in\{1,2, \ldots, n\}$,

$$
A_{j}:[0,1] \times \mathbb{R}^{n+j-1} \rightarrow \mathbb{R}, \quad B_{j}:[0,1] \times \mathbb{R}^{n+j-1} \rightarrow \mathbb{R}
$$

such that

$$
\left|f_{j}(t, u, p)\right| \leqslant A_{j}\left(t, u, p_{1}, p_{2}, \ldots, p_{j-1}\right) p_{j}^{2}+B_{j}\left(t, u, p_{1}, p_{2}, \ldots, p_{j-1}\right)
$$

where $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right), u \in \mathbb{R}^{n}, p \in \mathbb{R}^{n}, p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and for $j=1$, A_{1} and B_{1} are independent of p functions.
Then the problem (3.1), (3.2) has a solution.
Remark 3.1. From the proof of this theorem and from the topological transversality theorem in [4] it follows that the solution to the problem $(3.1),(3.2)$ is bounded in $C_{n}^{1}([0,1])$ by a constant \mathfrak{M} which depends only on M, A_{j}, B_{j}.

Now we can extend the results of Theorem 3.1 to the Carathéodory case similarly to [2]. We allow discontinuities of functions A_{j}, B_{j} in contrast to [2].

Definition 3.1. Let k, l be natural numbers. A function $f: I \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$ is an L^{∞}-Carathéodory function provided $f=f(t, u)$ satisfies
(i) the map $u \mapsto f(t, u)$ is continuous for almost every $t \in I$,
(ii) the map $t \mapsto f(t, u)$ is measurable for all $(u, p) \in \mathbb{R}^{k}$,
(iii) for each bounded subset $B \subset \mathbb{R}^{k}$,

$$
l_{f}(t)=\sup \{\|f(t, u)\|, u \in B\} \in L^{\infty}(I)
$$

where L^{∞} is the space of Lebesgue integrable functions with the norm

$$
\|f\|_{\infty}=\underset{t \in I}{\operatorname{ess} \sup }\|f\|
$$

Theorem 3.2. Let $f:[0,1] \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ be a Carathéodory function and let us consider the problem (3.1), (3.2). Assume
(i) there is a constant $M \geqslant 0$ such that $u f(t, u, p) \geqslant 0$ for almost every t in $[0,1]$, $\forall u \in \mathbb{R}^{n},\|u\|>M$ and $\forall p \in \mathbb{R}^{n}, p u=0$,
(ii) there exist positive L^{∞}-Carathéodory functions A_{j}, B_{j}, where the index j is from $\{1,2, \ldots, n\}$,

$$
A_{j}:[0,1] \times \mathbb{R}^{n+j-1} \rightarrow \mathbb{R}, \quad B_{j}:[0,1] \times \mathbb{R}^{n+j-1} \rightarrow \mathbb{R}
$$

such that for almost every $t \in[0,1]$

$$
\left|f_{j}(t, u, p)\right| \leqslant A_{j}\left(t, u, p_{1}, p_{2}, \ldots, p_{j-1}\right) p_{j}^{2}+B_{j}\left(t, u, p_{1}, p_{2}, \ldots, p_{j-1}\right)
$$

where $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right), u \in \mathbb{R}^{n}, p \in \mathbb{R}^{n}, p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and for $j=1$, A_{1} and B_{1} are independent of p functions.
Then the problem (3.1), (3.2) has a solution.
Proof. Let f_{ε} be an approximated function as in Section 2, where $a=a^{*}=0$, $b=b^{*}=1$ and $k=2$, that is

$$
f_{\varepsilon}(t, u, p) u=\frac{1}{\varepsilon} \int_{0}^{1} \varphi\left(\frac{t-\eta}{\varepsilon}\right) f(\eta, u, p) \mathrm{d} \eta
$$

and let $V: C_{n}^{1}([0,1]) \rightarrow \mathbb{R}^{2 n}$ be a continuous operator of boundary conditions $V(x)=$ $(x(0)-x(a), x(b)-x(1))$. Then

1) for $\forall \varepsilon \in(0,1)$, for $\forall t \in[0,1], \forall u \in \mathbb{R}^{n},\|u\|>M$ and $\forall p \in \mathbb{R}^{n}, p u=0$ we have

$$
\begin{gathered}
f_{\varepsilon}(t, u, p) u=\left(\frac{1}{\varepsilon} \int_{0}^{1} \varphi\left(\frac{t-\eta}{\varepsilon}\right) f(\eta, u, p) \mathrm{d} \eta\right) u= \\
\quad=\frac{1}{\varepsilon} \int_{0}^{1} \varphi\left(\frac{t-\eta}{\varepsilon}\right)(f(\eta, u, p) u) \mathrm{d} \eta \geqslant 0
\end{gathered}
$$

by the assumption (i) of this theorem.
2) Let $j \in\{1,2, \ldots, n\}, u \in \mathbb{R}^{n}, p \in \mathbb{R}^{n}, p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$,

$$
\mathcal{A}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right)=\underset{t \in[0,1]}{\operatorname{ess} \sup }\left\{A_{j}\left(t, u, p_{1}, p_{2}, \ldots, p_{j-1}\right)\right\}
$$

and

$$
\mathcal{B}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right)=\underset{t \in[0,1]}{\operatorname{ess} \sup }\left\{B_{j}\left(t, u, p_{1}, p_{2}, \ldots, p_{j-1}\right)\right\} .
$$

Since A_{j}, B_{j} are L^{∞}-Carathéodory functions, $\mathcal{A}_{j}, \mathcal{B}_{j}$ are obviously continuous.
Now we have

$$
\begin{aligned}
& \left|f_{\varepsilon_{j}}(t, u, p)\right|=\left|\int_{-1}^{1} \overline{f_{j}}(t-\varepsilon \eta, u, p) \varphi(\eta) \mathrm{d} \eta\right| \leqslant \int_{-1}^{1}\left|\overline{f_{j}}(t-\varepsilon \eta, u, p)\right| \varphi(\eta) \mathrm{d} \eta \\
& \quad \leqslant \int_{-1}^{1}\left(\mathcal{A}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right) p_{j}^{2}+\mathcal{B}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right)\right) \varphi(\eta) \mathrm{d} \eta \\
& \quad \leqslant \int_{-1}^{1} \mathcal{A}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right) p_{j}^{2} \varphi(\eta) \mathrm{d} \eta+\int_{-1}^{1} \mathcal{B}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right) \varphi(\eta) \mathrm{d} \eta \\
& \quad=\mathcal{A}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right) p_{j}^{2}+\mathcal{B}_{j}\left(u, p_{1}, p_{2}, \ldots, p_{j-1}\right) .
\end{aligned}
$$

By Theorem 3.1 and Remark 3.1, for any $\varepsilon>0$ there exists a solution x_{ε} to the approximated problem

$$
x^{\prime \prime}=f_{\varepsilon}\left(t, x, x^{\prime}\right)
$$

where x satisfies boundary conditions (3.2) such that $\left\|x_{\varepsilon}\right\|_{1} \leqslant \mathfrak{M}$.
Now all assumptions of Theorem 2.1 are fullfiled and therefore there exists a solution to the problem (1.1), (3.1).

References

[1] P. Calábek: A four-point problem for second-order differential systems. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 114, 7-15.
[2] P. Calábek: Second-order differential systems and a regularization operator. Ann. Math. Sil. 10, 67-78.
[3] S. Fučík, O. John, A. Kufner: Function Spaces. Academia, Prague, 1977.
[4] K. Yosida: Functional Analysis. 6-th edition, Springer-Verlag, Berlin, 1980.
[5] A. Granas, R. Guenther, J. Lee: Some existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures Appl. 70 (1991), 153-196.
[6] I. T. Kiguradze: Boundary value problems for systems of ordinary differential equations. Itogi nauki i tehniki, ser. Sovr. problemy matematiki. Nov. dostizhenija. t. 30, VINITI, Moskva, 1987, pp. 3-103. (In Russian.)

Author's address: Pavel Calábek, Department of Algebra and Geometry, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: calabek@risc.upol.cz.

