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1. Introduction

1.1. Preliminaries. One of the methods the author developed in his research
works is presented here. This method has been inspired by S.N. Šimanov’s paper [9]
and is based on the use of Cauchy integrals. Another method, not presented here, is

based on the Fourier transform.
1.2. Notation and definitions. We denote: �—the set of all positive integers,

�0—the set of all non-negative integers, �—the set of all real numbers (real axis),
�—the set of all complex numbers (complex plane).

If � is a non-void set andm, n are positive integers then �m denotes the Cartesian
product �×� . . . ×� of m factors and �m×n is the set of all matrices of m rows and n

columns, the elements of which belong to � ; �1×1 = �
1 = � . Analogously we could

denote more-dimensional matrices.
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If n ∈ � and m = (m1, . . . , mn) ∈ Nn
0 , m′ = (m′

1, . . . , m
′
n) ∈ Nn

0 then the

inequality m � m′ means the system of inequalities mj � m′
j, j = 1, 2, . . . , n.

If M, N are non-void subsets of � or � and if ω, ξ are complex numbers then
ωM = {ωλ: λ ∈ M}, ξ +N = {ξ + µ: µ ∈ N},M+N = {λ+ µ: λ ∈ M, µ ∈ N},
∅ +N =M+ ∅ = ∅ + ∅ = ∅ and S(M) stands for the smallest additive semigroup
containingM and S(∅) = ∅.
The distance of two setsM,N , of a point z and a setM and of two points z, w

in � or �, respectively, is denoted by dist[M,N ], dist[z,N ] and dist[z, w].

The boundary of a setM is denoted by ∂M.
If α is a positive number then by a strip or an α-strip in the complex plane we

mean the set π(α) = {z ∈ � : |Re z| � α}.
If z0 ∈ � and R ∈ (0,∞) then κ(z0, R), κ(z0, R) andK(z0, R), respectively, denote

an open disc, a closed disc and a circle centred at z0 with its radius R in the complex
plane.

For number vectors or matrices, even more-dimensional, we use the norm |.|, which
is equal to the sum of absolute values of all coordinates of the vector or all elements
of the matrix.

In addition to the usual symbol
k∏

j=1
aj = a1a2 . . . ak for a product we will use the

symbol
1∏

j=k

aj = ak . . . a1 for the product with the reversed order of factors.

For a vector m = (m1, . . . , mM ) ∈ �
M
0 , M ∈ �, we introduce the combinatory

number (|m|
m

)
=

|m|!
(m1!) . . . (mM !)

, where |m| = m1 + . . .+mM .

1.3. Spaces. We will deal with functions f : � → �, where � is one of the spaces

� , �m , �m×n and � = � or � = � .

We denote by C(�), CB(�) and AP (�), respectively, the space of all continuous
functions f : � → �, the space of all functions from C(�) bounded on � and the

space of all almost periodic functions from CB(�). The mean value of a function
f ∈ AP (�) is denoted by M(f) or Mt{f(t)}.
The spaces CB(�) and AP (�) are made Banach spaces (B-spaces) with the norm

defined by |f | = sup{|f(t)| : t ∈ �}. For k = 1 and k = 2 we will denote by Ck(�),
CBk(�) and AP k(�) the space of all functions fromC(�) with continuous derivatives

up to the order k on �, the space of all function from Ck(�) which are bounded on
� and have bounded derivatives up to the order k, and the space of all functions

from CBk(�) which are almost periodic and have almost periodic derivatives up to
the order k.
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The spaces CBk(�) and AP k(�) endowed with the norm

‖f‖ = max{|f |, |ḟ |} if k = 1,

|‖f‖| = max{|f |, |ḟ |, |f̈ |} if k = 2,

become B-spaces.
If all elements of a matrix almost periodic function f ∈ AP (�) are trigonometric

polynomials then f is called a trigonometric polynomial.

������ 1.1. The space AP (�) is the closure of the set of all trigonometric
polynomials from CB(�). Analogously AP k(�) and CBk(�), k = 1, 2.

1.4. Almost periodic functions. Any almost periodic function from AP (�)

has a representation by a Fourier (trigonometric) series which is uniquely determined
up to the order of summation. By Λf we denote the set of all Fourier exponents of

an almost periodic function f and the set iΛf will be called the spectrum of f .
If f is an almost periodic function with the Fourier series

∑
λ

ϕ(λ) exp (iλt), λ ∈ Λf ,

then we denote
∑
(f) =

∑
λ

|ϕ(λ)|, λ ∈ Λf . If the Fourier series of a function f

converges absolutely then
∑
(f) < ∞.

For any function from AP (�) there exists a sequence of the so-called Bochner-

Fejér approximation (trigonometric) polynomials Bm, m = 1, 2, . . . of the function f

with their spectra contained in iΛf and uniformly convergent to f on � and moreover∑
(Bm) �

∑
(f), m = 1, 2, . . ., (see [1], [5], [7], [8]).

1.5. Equations with constant coefficients. The basic problem the author
dealt with in his paper [6], is to solve the differential equations

(1.1) ẋ(t) = a0x(t) + b0x(t − τ) + f(t),

where τ is a positive constant, the so-called time lag, a0, b0 belong to � n×n, where
n ∈ �, f ∈ AP 1(� n×1) and x is an unknown function from C1(� n×1). An im-
portant role is played by the properties of the matrix function Φ(z) = zE − a0 −
b0 exp (−zτ), z ∈ � , where E = En is the unit matrix from �

n×n, and by the proper-

ties of its determinant ∆(z) = detΦ(z). This determinant is called the characteristic
quasipolynomial and the equation ∆(z) = 0 is called the characteristic equation of

the differential equation (1.1).
Under σ(∆(z)) we understand the set of all roots of the characteristic quasipo-

lynomial ∆(z). The quasipolynomial is a transcendent entire function (in general)
of complex variable z and, consequently, the quasipolynomial ∆(z) has an infinite

number of roots without any finite limit point. Each strip π(α), α > 0, contains only
a finite number of roots of the characteristic quasipolynomial ∆(z) because Φ(z)z−1
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is arbitrarily close to the unit matrix E in the strip π(α) for z sufficiently large (in

absolute value). Hence the matrix Φ(z) is a regular one for such z. Consequently,
the positive number α can be chosen so that the finite set π(2α)∩σ(∆(z)) lies on the
imaginary axis of the complex plane. If π(2α) ∩ σ(∆(z)) �= ∅ and this set contains
just the points iξ1, . . . , iξj0 , j0 ∈ �, then we set θ = {ξj − ξk : j, k = 1, . . . , j0}, and
if π(2α) ∩ σ(∆(z)) = ∅, then we set θ = ∅.
1.6. Favard’s theorem. In the sequel we will need

Theorem 1.1. (Favard) If a function f ∈ AP (�m×n), m, n ∈ �, and if Λf ∩
(−d, d) = ∅ where d is a positive number, then the primitive function F (t) =∫ t

0 f(s) ds, t ∈ �, is an almost periodic function, too, and the estimate

(1.2) |F − M(F )| � Md|f |

is valid. Here

M(F ) = lim
T→∞

1
T

∫ T

0
F (s) ds

is the mean value of the almost periodic function F and Md is a positive constant

depending on d only.

The proof of Favard’s theorem was published in [1], [2], [5], [7], [8].

2. Equations with almost periodic coefficients

2.1. Basic equations. In the sequel we study the differential equations

(2.1) ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + f(t)

where τ is a positive constant, a0, b0 ∈ �
n×n, a, b ∈ AP 1(� n×n), for which

∑
(a) <

∞,
∑
(b) < ∞ and f ∈ AP 1(� n×1), n ∈ �. Our aim is to prove the existence and

uniqueness of an almost periodic solution of Equation (2.1) the spectrum of which
is contained in a certain apriori given set iΛ,Λ ⊂ �. Such a solution is called an

almost periodic Λ-solution.
2.2. Formal solutions. First, we solve the given equation in a formal manner.

This means that we are looking for the so-called formal solution xf represented by
a trigonometric series with coefficients from �

n×1 which formally satisfies Equation
(2.1).
For trigonometric series we introduce the so-called formal arithmetic, differential

and integral operations, the formal shift and the formal mean value. The formality
of these operations consists in the fact that they are performed without any regard
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to the convergence of the trigonometric series and without any justification (as con-

cerns the convergence) of the operations performed. Hence, not only the resulting
trigonometric series but also the series entering into the formal operations need not
be convergent. The coefficients of the trigonometric series entering into particular

formal operations are supposed to be elements of normed linear spaces such that the
operations in question can be accomplished.

Given a trigonometric series

(2.2) x(t) ∼
∑

ν

c(ν) exp (iνt), ν ∈ Λ,

where Λ is an at most countable set of real numbers, then iΛ is called the spectrum
of the trigonometric series (2.2). Further, we denote∑

(x) =
∑

ν

|c(ν)|, ν ∈ Λ,

so that the inequality
∑
(x) < ∞ denotes the absolute convergence of the trigono-

metric series x.

In the case Λ = ∅ the associated trigonometric series is equal to zero. If we are
given the trigonometric series (2.2) and Λ ⊂ Λ̃ ⊂ R, where Λ is an at most countable
set, then for x we use also the representation

x(t) ∼
∑

c

c(ν) exp (itν), ν ∈ Λ̃,

in which c(ν) = 0 for ν ∈ Λ̃ \ Λ.

Let two trigonometric series

a(t) ∼
∑

α(λ) exp (iλt), λ ∈ Λ1, b(t) ∼
∑

β(µ) exp (iµt), µ ∈ Λ2,

be given where the sets Λj ⊂ �, j = 1, 2, are at most countable. If α, β are two

complex numbers and s ∈ � then we define formal operations
i) the formal linear combination (formal sum, difference and scalar multiple)

αa(t) + βb(t) ∼
∑
[α.α(ν) + β.β(ν)] exp (iνt), ν ∈ Λ1 ∪ Λ2,

where α(ν) = 0 for ν /∈ Λ1, β(ν) = 0 for ν /∈ Λ2;
ii) the formal product

a(t)b(t) ∼
∑

ν

[ ∑
λ+η=ν

α(λ)β(η)

]
exp (iνt), ν ∈ Λ1 + Λ2, λ ∈ Λ1, η ∈ Λ2;
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iii) the formal derivative (term-by-term differentiation)

ȧ(t) ∼
∑
iλα(λ) exp (iλt), λ ∈ Λ1;

iv) the formal primitive trigonometric series (term-by-term integration)

A(t) =
∫

a(t) dt ∼ A0 +
∑ 1
iλ

α(λ) exp (iλt), λ ∈ Λ1, A0 ∈ �
n×1 ,

under the assumption that 0 /∈ Λ1;
v) the formal shift (for a given real number s)

a(t+ s) ∼
∑
[α(λ) exp (iλs)] exp (iλt), λ ∈ Λ1;

vi) the formal mean value of a trigonometric series defined to be its absolute term.

������ 2.1. Let us note that under the assumption of the appropriate con-

vergence of the trigonometric series entering into the formal operations these formal
operations coincide with the non-formal ones.

In connection with the formal operations we speak about a formal almost peri-
odic solution (Λ-solution) of the almost periodic differential Equation (2.1). The

trigonometric series (2.2) is called a formal almost periodic Λ-solution of Equation
(2.1) if this trigonometric series solves Equation (2.1) formally, i.e. after inserting the

trigonometric series representing a, b, f , x, ẋ into Equation (2.1) and after having
formally performed the indicated operations the right and left sides of the equation

give rise to trigonometric series the spectra of which are contained in iΛ and for every
ν ∈ Λ the coefficients at exp(iνt) on both sides are equal. Clearly, every almost peri-

odic solution (Λ-solution) of Equation (2.1) is also its formal almost periodic solution
(Λ-solution). The contrary is not true.

2.3. Construction of a formal solution. We begin with the case when a, b

and f are trigonometric polynomials.

Theorem 2.1. If in Equation (2.1) a, b and f are trigonometric polynomials and

if (see at the end 1.5. concerning the set θ)

∆ = inf(Λa ∪ Λb) > 0,(2.3)

dθ =

{
dist[θ, S(Λa ∪ Λb)] > 0 for θ �= ∅,
2 for θ = ∅,(2.4)

d = dist[iΛ, σ(∆(z))] > 0,(2.5)
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where Λ = Λf + S(Λa ∪Λb ∪ {0}), then there exists a unique formal almost periodic
Λ-solution xf of Equation (2.1).

�����. Let M ∈ �, N ∈ � and let

a(t) =
M∑

k=1

α(µk) exp (iµkt),

b(t) =
N∑

k=1

β(νk) exp (iνkt),

f(t) =
∑

ϕ(λ) exp (iλt), λ ∈ Λf .

Further, let the sought formal solution xf have the representation

xf (t) ∼
∑

c(σ) exp (iσt), σ ∈ Λ,

so that its formal derivative ẋf has the representation

ẋf (t) ∼
∑
iσc(σ) exp (iσt), σ ∈ Λ.

Substituting formally into Equation (2.1) and equating the corresponding coefficients
of the exponential functions exp(iσt) we get for the coefficients c(σ) a system of

infinitely many linear algebraic equations

(2.6)

Φ(iσ)c(σ) =
∑

µ

α(µ)c(σ − µ) +
∑

ν

β(ν)c(σ − ν) exp (−i(σ − ν)τ)

+
∑

λ

δλσϕ(λ),

where µ ∈ Λa, ν ∈ Λb, σ ∈ Λ, σ−µ ∈ Λ, σ− ν ∈ Λ, λ ∈ Λf , where δλσ = 0 for λ �= σ

and δλσ = 1 for λ = σ. By assumptions (2.3), (2.4), (2.5) the matrix Φ(z) is regular

for z ∈ iΛ so that for every σ ∈ Λ we obtain from (2.6) a unique expression

(2.7)

c(σ) = Φ−1(iσ)
[∑

µ

α(µ)c(σ − µ) +
∑

ν

β(ν)c(σ − ν) exp (−i(σ − ν)τ)

+
∑

λ

δλσϕ(λ)

]
.

Thus, the uniqueness of the formal almost periodic Λ-solution xf is ensured, pro-

vided it exists. To prove its existence we complete the solution of the system (2.7).
Every σ ∈ Λ can be expressed in the form σ = λ+ s̄ω = λ+mµ+nν, where λ ∈ Λf ,

µ =

 µ1
...

µM

 , ν =

 ν1
...

νN

 , ω =

(
µ

ν

)
,
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m = (m1, . . . , mM ) ∈ �
1×M
0 , n = (n1, . . . , nN ) ∈ �

1×N
0 , s̄ = (m, n).

Such an expression for σ ∈ Λ need not be unique, but owing to the fact that the sets
Λa, Λb, Λf are finite the number of such expressions is also only finite. This makes

it possible to solve completely the system (2.7). In the system we shall distinguish
the coefficients c(λ + s̄ω) and c(λ′ + s̄′ω), where λ, λ′ ∈ Λf and s̄, s̄′ ∈ �

1×(M+N)
0 ,

and also the equations for them if λ �= λ′ or s̄ �= s̄′ even if λ+ s̄ω = λ′ + s̄′ω. We say

that σ′ = λ′ + s̄′ω is lower than σ = λ+ s̄ω if λ′ = λ and s̄′ � s̄, s̄′ �= s̄.

For every λ ∈ Λf we formally solve Equation (2.1)—for simplicity and lucidity—

for a “harmonic” ϕ(λ) exp (iλt) separately, i.e. for f(t) = ϕ(λ) exp (iλt), and by xλ

we denote the corresponding formal almost periodic Λ-solution. Their formal sum

for λ ∈ Λf gives then a formal almost periodic Λ-solution xf .

Hence, λ ∈ Λf being fixed we consider the subsystem of the system (2.7) with
σ ∈ λ+ S(Λa ∪Λb ∪ {0}) ⊂ Λ. Let s̄ ∈ �

1×(M+N)
0 be fixed; substituting successively

from the equations for coefficients c(σ′) where σ′ is lower than σ = λ + s̄ω into the
equation for c(λ+ s̄ω) we obtain such an equation for c(λ+ s̄ω) which contains only

c(λ) from all coefficients c(σ′) where σ′ is lower than σ = λ+ s̄ω. The number of all
possible different “descents” from λ+ s̄ω to λ is( |s̄|

s̄

)
=

|s̄|!
(m1!) . . . (mM !)(n1!) . . . (nN !)

.

Every such “descent” is accomplished by a successive substitution and is uniquely

defined by an increasing sequence P = P (s̄) of vectors from �
1×(M+N)
0

0 = P 0 � P 1 � . . . � P |s̄| = s̄,

which satisfies |P j − P j−1| = 1, j = 1, . . . , |s̄|, while P j = (Qj , Rj), Qj ∈ �
1×M
0 ,

Rj ∈ �
1×N
0 , j = 0, 1, . . . , |s̄|. To every such sequence P = P (s̄) for a fixed λ we

can associate in a unique manner a sequence p = p(s̄) of vectors p0, p1, . . . , p|s̄|

from �
1×(M+N)
0 satisfying p0 = 0, |pj | = 1, j = 1, . . . , |s̄|, and P k =

k∑
j=0

pj , k =

0, 1, . . . , |s̄|, while pj = (q̄j , r̄j), q̄j ∈ �
1×M
0 , r̄j ∈ �

1×N
0 , j = 0, 1, . . . , |s̄|. This means

that pj = P j − P j−1, q̄j = Qj − Qj−1, r̄j = Rj − Rj−1, j = 1, . . . , |s̄|. Let us denote
by cP (λ+ s̄ω) the part of the right-hand side of Equation (2.7) for c(λ+ s̄ω) obtained

by the successive substitution using the sequence P = P (s̄). This procedure yields
cP (λ+ s̄ω) = ΦP (iλ)ϕ(λ), where

ΦP (z) =
0∏

j=|s̄|
Φ−1(z + iP jω)γ(pjω),
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γ(0) = 1, γ(pjω) = α(q̄jµ) + β(r̄jν) exp (−iP j−1ωτ), j = 1, . . . , |s̄|, α(0) = 0, β(0) =
0. We obtain then by a formal sum

c(λ+ s̄ω) =
∑
P

cP (λ+ s̄ω) =
∑
P

ΦP (iλ)ϕ(λ)

where the summation is over all mutually different sequences P = P (s̄) with a fixed
λ ∈ Λf and a fixed s̄ ∈ �

1×(M+N)
0 .

Thus, for every “harmonic”ϕ(λ) exp (iλt), λ ∈ Λf , we get a formal almost periodic

Λ-solution

(2.8) xλ(t) ∼
∑
s̄�0

∑
P

ΦP (iλ)ϕ(λ) exp (i(λ+ s̄ω)t),

and the formal sum of these solutions yields a formal almost periodic Λ-solution of
Equation (2.1)

xf (t) =
∑

λ

xλ ∼
∑

λ

∑
s̄�0

∑
P

ΦP (iλ)ϕ(λ) exp (i(λ+ s̄ω)t), λ ∈ Λf .

The proof of Theorem 2.1. is complete. �

3. Almost periodic solutions

3.1. Closed regions Gk, GP . In the sequel we will take up the case θ �= ∅
but the case θ = ∅ when ∆(z) has no purely imaginary roots would be even easier.
Hence, let iξ1, . . . , iξj0 , j0 ∈ �, be all mutually different purely imaginary roots in

� of the quasipolynomial ∆(z) and let �1, . . . , �j0 be their multiplicities. We pick a
positive constant δ = 1

2 min{α,∆, dθ, d, dξ, τ, 2}, where dξ = min{|ξj − ξk| : j �= k;

j, k = 1, . . . , j0} for j0 > 1 and dξ = 2 for j0 = 1 or θ = ∅ and where a positive number
α is chosen so that π(2α)∩σ(∆(z)) = {iξ1, . . . , iξj0} for θ �= ∅ or π(2α)∩σ(∆(z)) = ∅
for θ = ∅.
Further, unless stated otherwise, we assume that we are given a fixed vector s̄ and

a fixed sequence of vectors P = P (s̄). Recall that κ(z, δ) and κ(z, δ) are the open

disc and the closed disc centred at z with their radius δ in the complex plane � . In
� we construct closed regions

Gk = π(α) \
j0⋃

j=1

κ(iξj − iP kω; δ), k = 0, 1, . . . , |s̄|,
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and we denote by GP their intersection, so that

GP =
|s̄|⋂

k=0

Gk = π(α) \
|s̄|⋃

k=0

j0⋃
j=1

κ(iξj − iP kω; δ).

Each of the closed regions Gk is a shift of the region G0 in the complex plane by P kω

units downward, k = 0, 1, . . . , |s̄|. Since the matrix function Φ(z) introduced in 1.5.
is analytic and regular on G0, the matrix function Φ(z+iP kω) is analytic and regular
on Gk and the same property is possessed also by Φ−1(z + iP kω), k = 0, 1, . . . , |s̄|.
It follows that the matrix function ΦP (z) is analytic on the closed region GP .
In the case θ = ∅ the boundary LP = ∂GP of the closed regionGP is formed by two

lines |Re z| = α which form the boundary of the strip π(α). For θ �= ∅ the boundary
LP = ∂GP is formed by two lines |Re z| = α and by a circle Kj,k = K(iξj − iP kω; δ),

j = 1, . . . , j0; k = 0, 1, . . . |s̄|. In virtue of the assumptions of Theorem 2.1 and of
the choice of the positive number δ it is ensured for θ �= ∅ that no point z ∈ Kj,k

belongs to any disc κl,m. Namely, the distance between the point z and the center
w = iξl − iPmω of the open disc κl,m is greater than or equal to the radius δ of this

disc. We have

dist[z, w] = |z − iξl + iPmω|
= |z − iξj + iP kω + i(ξj − ξl + (Pm − P k)ω)|
� |ξj − ξl + (Pm − P k)ω| − |z − iξj + iP kω|.

Since |z − iξj + iP kω| = δ we have for (Pm − P k)ω �= 0 the inequality dist[z, w] �
dθ − δ � δ and for j �= l and (P k − Pm)ω = 0 the inequality dist[z, w] � dξ − δ � δ

and for j = l and (P k − Pm)ω = 0 the equality dist[z, w] = |z − iξj + iP kω| = δ

because of w = iξj − iP kω, j, l = 1, . . . , j0; k, m = 0, 1, . . . |s̄|.
3.2. Outline of further investigation. We attempt to prove that the obtained

formal Λ-solution is a Λ-solution of Equation (2.1). The approach could be the

following: first, to prove the absolute and consequently also uniform convergence of
the trigonometric series xλ on � for every λ ∈ Λf , see (2.8). After inserting into

Equation (2.1) to prove the same for the trigonometric series ẋλ which is the formal
derivative of xλ. The formal solution xλ then becomes an almost periodic Λ-solution

of Equation (2.1) for f(t) = ϕ(λ) exp (iλt), t ∈ �. It follows that xf =
∑
λ

xλ, λ ∈ Λf ,

is an almost periodic Λ-solution of Equation (2.1), (Λf is a finite set).
Instead of this, for better economy, we shall prove directly a certain absolute and

uniform convergence on � of the trigonometric series

(3.1)
∑
s̄�0

[∑
P

∑
λ

ΦP (iλ)ϕ(λ) exp (iλt)

]
exp (is̄ωt),
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which arises by a rearrangement of the trigonometric series xf . Namely, the conver-

gence of the series

(3.2)
∑
s̄�0

∑
P

∣∣∣∣∑
λ

ΦP (iλ)ϕ(λ) exp (iλt)

∣∣∣∣
will be considered in the sequel. In the case of the one-point spectrum for f(t) =

ϕ(λ) exp(iλt), t ∈ � when xf and xλ coincide and xλ coincides with (3.1), the
convergence of the series (3.2) ensures the absolute and uniform convergence of xλ.

Eventually, with the use of passing to limits we proceed to the case when a, b and

f are not trigonometric polynomials.

3.3. Integral representation. For a given vector s̄ we can choose a sufficiently
large positive number R such that all circles Kj,l, j = 1, . . . , j0; l = 0, . . . , |s̄| belong
to the interior of the closed region π(α) ∩ κ(0;R) the boundary of which we denote
by LR.

Now, we use the Cauchy integral for the expression inside the norm in the series
(3.2). If we denote by LR(P ) the boundary of the closed region GP ∩ κ(0;R) then

(3.3)

∑
λ

Φp(iλ)ϕ(λ) exp (iλt) =
1
2�i

∮
LR(P )

ΦP (z)F (t, z) dz

=
1
2�i

∮
LR

ΦP (z)F (t, z) dz

−
|s̄|∑

k=0

j0∑
j=0

1
2�i

∮
Kj,k

ΦP (z)F (t, z) dz, λ ∈ Λf ,

where

(3.4) F (t, z) =
∑

λ

exp (iλt)
z − iλ ϕ(λ), λ ∈ Λf , t ∈ �.

The function F has the following properties:

i)

(3.5) lim
|z|→∞

|F (t, z)| = 0

uniformly with respect to t ∈ �. This implies the existence of a constant R′

such that the inequality

(3.6) |F (t, z)| � 1
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holds uniformly with respect to t ∈ � for all z ∈ � , |z| � R′.
ii) Denoting ‖f‖ = max{|f |, |ḟ |} the estimate

(3.7) |F (t, z)| � 1 + α

α|z| ‖f‖

holds uniformly with respect to t ∈ � for all z ∈ � for which |Re z| = α. Indeed,

for |Re z| �= 0 the equalities

exp (iλt)
z − iλ = exp (zt)

∫ ∞Re z

t

exp ((iλ − z)s) ds

= exp (iλt)
∫ ∞Re z

0
exp ((iλ − z)s) ds,

F (t, z) =
∫ ∞Re z

0
f(t+ s) exp (−zs) ds

=
1
z

[
f(t) +

∫ ∞Re z

0
ḟ(t+ s) exp (−zs) ds

]
are valid.

3.4. Estimates. Assume that θ �= ∅. Owing to the choice of positive numbers
α, δ and to the properties of the matrix Φ(z) and the quasipolynomial ∆(z) there
exists a positive constant C1 such that the inequalities

(3.8)
|Φ−1(z)| � C1 for z ∈ G0

|Φ−1(z)| � C1|z|−1 for z ∈ G0 \ {0}

are valid. If we pass to the limit for R → ∞ on the right-hand side of the equality
(3.3) we get the equality

(3.9)

∑
λ

Φp(iλ)ϕ(λ) exp (iλt) =
1
2�i

(
−
∫ −α+i∞

−α−i∞
+
∫ α+i∞

α−i∞

)
ΦP (z)F (t, z) dz

−
j0∑

j=1

|s̄|∑
k=0

1
2�i

∮
Kj,k

ΦP (z)F (t, z) dz, λ ∈ Λf .

This can be seen by taking into account the estimates (3.6) and (3.7) which imply
the absolute convergence of the improper integrals on the right-hand side in (3.9)

and the convergence to zero uniformly with respect to t ∈ � for R → ∞ of integrals
over the arcs of the circle K(0;R) lying in the α-strip.

The quasipolynomial ∆(z) may be expressed in the form ∆(z) = (z − iξj)�j∆j(z)
where ∆j(z) �= 0 for z ∈ κ(iξj ; δ), j = 1, . . . , j0. Hence, the inverse matrix Φ−1 may
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be expressed in the form Φ−1(z) = (z − iξj)−�jΓj(z), where Γj(z) = ∆
−1
j (z)Φ̃(z),

j = 1, . . . , j0, and where Φ̃(z) is the matrix whose elements with subscripts k, l are
equal to the algebraic complements of Φ(z) with subscripts l, k : k, l = 1, . . . , n. The
matrix Γj is analytic in the closed disc κ(iξj ; δ), j = 1, . . . , j0. According to this

decomposition and in view of

Φ′(z) =
d
dz
Φ(z) = E − (−τ)b0 exp (−zτ),

Φ(h)(z) =
dh

dzh
Φ(z) = −(−τ)hb0 exp (−zτ), h = 2, 3, . . .

it is possible to choose the already defined constant C1 large enough so that besides
the estimates (3.7) also the following ones are true:

(3.10)

|(Φ−1(z))(h)| � C1 for z ∈ G0,

|(Φ−1(z))(h)| � C1|z|−1 for z ∈ G0 \ {0},
|Γ(h)j (iξj)| � C1

for j = 1, . . . , j0; h = 0, 1, . . . , �, where � = max{�1, . . . , �j0}.

Lemma 3.1. The magnitudes of the integrals

Ij,l(p) = − 1
2�i

∮
Kj,l

ΦP (z)F (t, z) dz

are estimated by

|Ij,l(P )| � C1
|s̄|!

(|s̄|
s̄

)[ M∏
k=1

2�(L+ 1)C1|α(µk)|
2δ

]

×
[ N∏

k=1

2�(L+ 1)C1|β(νk)|
2δ

] �∑
k=1

(2Md)k‖f‖,

j = 1, . . . j0; l = 0, 1, . . . , |s̄|, where positive constants L, Md do not depend on s̄ and

P (s̄), either.

�����. Notice that the development

1
z − iλ =

−1
iλ+ iP lω − iξj

∞∑
h=0

( z + iP lω − iξj

iλ+ iP lω − iξj

)h
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is valid for arbitrary λ ∈ Λf and z ∈ Kj,l because (see (2.5))

dist[iλ+ iP lω ; iξj ] = |iλ+ iP lω − iξj | � d > δ = |z + iP lω − iξj |,
j = 1, . . . , j0 ; l = 0, 1, . . . , |s̄|.

Next, let us recall the already verified fact that the discs κj,l do not intersect, j =

1, . . . j0; l = 0, 1, . . . , |s̄|. For economy in writing we will use the notation

ΦP,j,l(z) =
0∏

k=|s̄|
Ψk,j,l(z)γ(pkω), where

Ψk,j,l(z) =
(
Φ−1(z + iP kω)

)1−δkl
(
Γj(z + iP lω)

)δkl

(δkl = 0 for k �= l and δkl = 1 for k = l) so that

ΦP (z) = (z + iP lω − iξj)−�jΦP,j,l(z), j = 1, . . . , j0; k, l = 0, 1, . . . , |s̄|.

(The function ΦP,j,l(z) is analytic in the closed ring κj,l.) We employ this expression

when evaluating the integrals

Ij,l(P ) = − 1
2�i

∮
Kj,l

ΦP (z)F (t, z) dz

= −
∑

λ

1
2�i

∮
Kj,l

ΦP,j,l(z) dz
(z + iP lω − iξj)�j (z − iλ)ϕ(λ) exp (iλt)

=
∑

λ

∞∑
h=0

1
2�i

∮
Kj,l

(z + iP lω − iξj)hΦP,j,l(z) dz

(iλ+ iP lω − iξj)h+1(z + iP lω − iξj)�j
ϕ(λ) exp (iλt)

=
�j−1∑
h=0

Φ(�j−h−1)
P,j,l (iξj − iP lω)

(�j − h − 1)!
∑

λ

exp (iλt)
(iλ+ iP lω − ξj)h+1

ϕ(λ)

= exp (i(ξj − P lω)t)
�j∑

h=1

Φ(�j−h)
P,j,l (iξj − iP lω)

(�j − h)!
gj,l,h(t), λ ∈ Λf ,

where

gj,l,h(t) =
∑

λ

exp (i(λ+ P lω − ξj)t)
(iλ+ iP lω − iξj)h

ϕ(λ), λ ∈ Λf ,

and l = 0, 1, . . . , |s̄|; h = 0, 1, . . . , �j ; j = 1, . . . , j0.
The almost periodic function gj,l,h (being a trigonometric polynomial) is a primi-

tive function to the almost periodic function gj,l,h−1 while their spectra have positive
distance from the origin in the complex plane since the assumption (2.5) ensures
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|λ+ P lω − ξj | � d > 0. Using repeatedly the estimate from the Favard theorem we

obtain inequalities

|gj,l,h| � Mh
d |gj,l,0| =Mh

d |f | � Mh
d ‖f‖,

h = 1, . . . , �j; j = 1, . . . , j0; l = 0, 1 . . . , |s̄|. Denoting by L the smallest non-negative

integer satisfying the system of inequalities (for θ �= ∅, otherwise we set L = 0)

L∆− |ξj | � 0, j = 1, . . . , j0,

and using the estimates (3.10) we get the inequalities

|Ψ(h)k,j,l(iξj − iP lω)| = |Γ(h)j (iξj)| � C1 for k = l,

|Ψ(h)k,j,l(iξj − iP lω)| =
∣∣∣(Φ−1(iξj − iP lω + iP kω

))(h)∣∣∣ � C1

=
|k − l|
|k − l|C1 <

L+ 1
|k − l|δC1 for 0 < |k − l| � L,

∣∣Ψ(h)k,j,l(iξj − iP lω)
∣∣ = ∣∣∣(Φ−1(iξj − iP lω + iP kω

))(h)∣∣∣
� C1

|ξj + (P k − P l)ω| � C1
|(P k − P l)ω| − L∆+ (L∆− |ξj |)

� C1
|k − l|∆− L∆

� L+ 1
|k − l|∆C1 � L+ 1

|k − l|2δC1

for |k − l| > L, h = 0, . . . , �j ; j = 1, . . . , j0; k, l = 0, 1, . . . , |s̄|.
Let us consider vectors h = (h0, h1, . . . , h|s̄|) ∈ �

1×(|s̄|+1)
0 and let h be a non-

negative integer. We have

|Φ(h)P,j,l(iξj − iP lω)| �
∑
|h|=h

|s̄|∏
k=0

|Ψ(hk)
k,j,l(iξj − iP lω)| · |γ(pkω)|

� 2h|s̄|C1
l!(|s̄| − l)!

|s̄|∏
k=1

(L+ 1)C1|γ(pkω)|
2δ

=
C1
|s̄|!

(|s̄|
l

) |s̄|∏
k=1

2h(L+ 1)C1|γ(pkω)|
2δ

,

h = 0, 1, . . . , �j ; j = 1, . . . , j0; k, l = 0, 1, . . ., |s̄|, since
∑
|h|=h

(|h|
h

)
= (|s̄|+ 1)h � 2h|s̄|.
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Setting � = max{�1, . . . , �j0} we get the estimates

|Ij,l(P )| �
�j∑

h=1

1
(�j − h)!

|Φ(h)P,j,l(iξj − iP lω)| · |gj,l,h|

� C1
|s̄|!

(|s̄|
l

) �j∑
h=1

(2Md)h‖f‖
|s̄|∏

k=1

1
2δ
2h(L+ 1)C1|γ(pkω)|

� C1
|s̄|!2|s̄|

(|s̄|
l

) �∑
h=1

(2Md)
h‖f‖

|s̄|∏
k=1

1
δ
2�(L+ 1)C1|γ(pkω)|.

Since

(3.11)
|s̄|∏

k=1

|γ(pkω)| =
[ M∏

k=1

(|α(µk)|)mk

] N∏
k=1

(|β(νk)|)nk ,

where s̄ = (m, n), m = (m1, . . . , mM ), n = (n1, . . . , nN ), Lemma 3.1 is proved. �

Lemma 3.2. The improper integrals

I−(P ) + I+(P ) =
1
2�i

(
−
∫ −α+i∞

−α−i∞
+
∫ α+i∞

α−i∞

)
ΦP (z)F (t, z) dz

converge absolutely and the following estimate is valid:

|I−(P ) + I+(P )| � 1 + α

α2
C1

[ M∏
k=1

(√2C1|αk|
δ

)mk
][ N∏

k=1

(√2C1|βk|
δ

)nk
]‖f‖
|s̄|! ,

|s̄| = 0, 1, . . . ; αk = α(µk), k = 1, . . . , M ; βk = β(νk), k = 1, . . . , N.

�����. We distinguish two cases: |s̄| = 0 and |s̄| > 0. First, we consider |s̄| = 0
when (I− = I−(0), I+ = I+(0))

|I− + I+| � |I−|+ |I+| � 1 + α

2�α
C1

∫ ∞

−∞

( 1
|α − iv|2 +

1
|α+ iv|2

)
dv · ‖f‖

=
1 + α

α2
C1‖f‖.

Now, let us consider |s̄| > 0. It suffices to estimate the magnitude of the improper
integral I+(P ) since the estimate for the magnitude of I−(P ) can be obtained anal-
ogously with the same result:

|I+(P )| = 12�
∣∣∣∣ ∫ α+i∞

α−i∞
ΦP (z)F (t, z) dz

∣∣∣∣ � 1 + α

2�α2

∫ ∞

−∞
|ΦP (α+ iv)| dv · ‖f‖.
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The inequality |α + iv| � (α + |v|)/√2 holds true clearly for every v ∈ � so that

according to the estimate (3.8) we get the inequality

|ΦP (α + iv)| �
|s̄|∏

j=0

|Φ−1 (α+ i (v + P jω
)) ||γ (pjω) |

�
√
2C1

[ |s̄|∏
j=1

√
2C1|γ(pjω)|

] |s̄|∏
j=0

1
α+ |v + P jω| .

We split the improper integral into the sum of three integrals∫ ∞

−∞
=
∫ −s̄ω

−∞
+
∫ 0
−s̄ω

+
∫ ∞

0

and estimate the magnitude of each term separately. In virtue of the choice of the

positive constant δ (see at the beginning of 3.1.) one easily finds that

∫ ∞

0

( |s̄|∏
j=0

(
α+ P jω + v

))−1
dv � 1

(2δ)|s̄|

∫ ∞

0

( |s̄|∏
j=0

(j + 1 + v)

)−1
dv

� 1
|s̄|!(2δ)|s̄|

and similarly

∫ −s̄ω

−∞

( |s̄|∏
j=0

(
α+ |P jω + v|) )−1

dv =
∫ ∞

0

( |s̄|∏
j=0

(
α+

(
s̄ − P j

)
ω + v

))−1
dv

� 1
|s̄|!(2δ)|s̄| .

Let us note that the expression wj,l = α+ |(P j − P l)ω + v| satisfies the relations

(3.12)

wj,l = α+ (P l − P j)ω − v � (l − j)2δ for 0 � j < l − 1,
wj,l = α+ plω − v for j = l − 1,
wj,l = α+ v for j = l,

wj,l = α+ (P j − P l)ω + v � (j − l + 1)2δ for j > l,

for 0 � v � plω; j, l = 0, 1, . . . , |s̄|. Further, let us note that

(3.13)
∫ plω

0

2δ dv
(α + v)(α+ plω − v)

� 2δplω

α(α+ plω)
<
2δ
α

� 1
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since (α + v)(α + plω − v) � α(α + plω) for 0 � v � plω for l = 0, 1, . . . , |s̄|. Using
(3.12) and (3.13) we obtain the desired estimate

∫ 0
−s̄ω

( |s̄|∏
j=0

wj,0

)−1
dv =

|s̄|∑
l=1

∫ −P l−1ω

−P lω

( |s̄|∏
j=0

wj,0

)−1
dv

=
|s̄|∑
l=1

∫ plω

0

( |s̄|∏
j=0

wj,l

)−1
dv

�
|s̄|∑
l=1

1

l̄!(|s̄| − l+ 1)!(2δ)|s̄|

∫ plω

0

2δ dv
(α + v)(α+ plω − v)

� 1
(|s̄|+ 1)!(2δ)|s̄|

|s̄|∑
l=1

(|s̄|+ 1
l

)
=

2|s̄|+1 − 2
(|s̄|+ 1)!(2δ)|s̄| .

Summing up the above estimates we get the inequality

∫ ∞

−∞

( |s̄|∏
j=0

(
α+ |P jω + v|) )−1

dv � 2(|s̄|+ 1) + 2
|s̄|+1

(|s̄|+ 1)!(2δ)|s̄| � 2
|s̄|!δ|s̄| ,

so that

|I+(P )| � 2C1
1 + α

�α2
‖f‖
|s̄|!

|s̄|∏
j=1

√
2C1|γ(pjω)|

δ
, |s̄| = 1, 2, . . . .

The same estimate is valid for |I−(P )|. Because of the inequality 2
√
2/� < 1 and

owing to (3.11) the validity of the inequality in Lemma 3.2 is established. �

3.5. Almost periodic solutions. Now we show that the obtained formal solu-
tion is an almost periodic solution of Equation (2.1).

Theorem 3.3. The formal almost periodic Λ-solution xf from Theorem 2.1, is
an almost periodic Λ-solution of Equation (2.1). Moreover, it is unique and satisfies

the estimate

(3.14) ‖xf‖ � A‖f‖

where the positive constant A depends only on a0, b0, d, dθ, ∆, τ , S, T where

S =
∑ |α(µ)| =∑(a), µ ∈ Λa; T =

∑ |β(ν)| =∑(b), ν ∈ Λb.

�����. With the aid of the estimates from Lemmas 3.1 and 3.2 for the magni-
tudes of the integrals Ij,l, I−(P ), I+(P ) we shall prove the convergence of the series
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(3.2), which yields the absolute and uniform convergence with respect to t ∈ � of

the trigonometric series xf :

∣∣∣∣∑
λ

cP (λ+ s̄ω) exp (iλt)

∣∣∣∣ � |I−(P ) + I+(P )|+
j0∑

j=1

|s̄|∑
l=0

|Ij,l(P )|

� C1
|s̄| ‖f‖

[
1 + α

α2

|s̄|∏
j=1

2�(L+ 1)C1|γj |
δ

+ j0

�∑
h=1

(2Md)
h

|s̄|∏
j=1

2�(L+ 1)C1|γj |
δ

]

� C1C2
|s̄|! ‖f‖

|s̄|∏
j=1

2�(L + 1)C1|γj |
δ

,

where γj = γ(pjω), j = 1, . . . , |s̄|; C2 = 1+α
α2 +j0

�∑
h=1
(2Md)h and the positive constant

Md depends only on d and is defined by Theorem 1.1. This implies

∑
P

∣∣∣∣∑
λ

cP (λ+ s̄ω) exp (iλt)

∣∣∣∣ �
(|s̄|

s̄

)
C1C2
|s̄|! ‖f‖

|s̄|∏
j=1

2�(L + 1)C1|γj |
δ

� C1C2‖f‖
[ M∏

k=1

1
mk!

(2�(L+ 1)C1|αk|
δ

)mk
]

×
N∏

k=1

1
nk!

(2�(L+ 1)C1|βk|
δ

)nk

and the convergence of the series (3.2) follows since

∑
s̄�0

∑
P

∣∣∣∣∑
λ

cP (λ+ s̄ω) exp (i (λ+ s̄ω) t)

∣∣∣∣
=
∑
s̄�0

∑
P

∣∣∣∣∑
λ

cP (λ+ s̄ω) exp(iλt)

∣∣∣∣
� C1C2‖f‖

∑
s̄�0

[ M∏
k=1

1
mk!

(2�(L+ 1)C1|αk|
δ

)mk
]

×
N∏

k=1

1
nk!

(2�(L+ 1)C1|βk|
δ

)nk

= C1C2‖f‖ exp (2�(L + 1)C1(S + T )/δ).
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If we denote Ã = C1C2 exp (2�(L + 1)C1(S + T )/δ) then |xf | � Ã‖f‖. Inserting into
Equation (2.1) we get

|ẋf | � (|a0|+ |b0|+ |a|+ |b|)|xf |+ |f | � [(|a0|+ |b0|+ S + T )Ã+ 1]‖f‖.

Setting A = (|a0|+ |b0|+S+T )Ã+1 we conclude that the estimate (3.14) holds. �

Corollary 3.4. Let Λ1, Λ2 be two non-void sets of real numbers and let S, T be

two positive constants. If a, b, f from Equation (2.1) are trigonometric polynomials

with Λf ⊂ Λ1, Λa ⊂ Λ2, Λb ⊂ Λ2 and
∑
(a) � S,

∑
(b) � T and if

∆′ = inf Λ2 > 0,(3.15)

d′θ =

{
dist[θ, S(Λ2)] > 0 for θ �= ∅,
2 for θ = ∅,(3.16)

d′ = dist
[
iΛ′;σ(∆(z))

]
> 0,(3.17)

where Λ′ = Λ1+S(Λ2∪{0}), then there exists exactly one almost periodic Λ′-solution
xf of Equation (2.1). This solution satisfies the estimate (3.14) where the positive

constant A depends only on a0, b0, ∆′, d′θ, d
′, τ , S, T .

�����. The existence of an almost periodic Λ′-solution xf follows from Theorem

3.3 which ensures the existence of an almost periodic Λ-solution where Λ = Λf +
S(Λa ∪Λb ∪{0}), so that Λ ⊂ Λ′ and an almost periodic Λ-solution is also an almost
periodic Λ′-solution.
The uniqueness of an almost periodic Λ′-solution follows from the fact that the

system (2.7) for coefficients c(σ) for σ ∈ Λ′ coincides with the system (2.7) for σ ∈ Λ
since α(µ) = 0 for µ ∈ Λ2 \ Λa and β(ν) = 0 for ν ∈ Λ2 \ Λb and ϕ(λ) = 0 for

λ ∈ Λ1 \ Λf .
The construction of the constant A is the same as before with the only exception

that the constants ∆, dθ, d are replaced by the constants ∆′, d′θ, d
′, respectively, for

which it is apparent that ∆′ � ∆, d′θ � dθ, d′ � d so that the constant A could at

worst increase. �

������ 3.5. Corollary 3.4 ensures the validity of the estimate (3.14) with a
constant A common for all almost periodic Λ′-solutions xf of Equation (2.1) of the

whole class of trigonometric polynomials a, b, f from Corollary 3.4.

3.6. Limit passages. The conclusions obtained under the assumption that a, b,

f are trigonometric polynomials remain valid even under more general assumptions.

Theorem 3.6. If in Equation (2.1) a, b are trigonometric polynomials and f is an

almost periodic function with an almost periodic derivative ḟ and if the conditions
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(2.3), (2.4), (2.5) from Theorem 2.1 are fulfilled then Equation (2.1) has exactly one

almost periodic Λ-solution xf and this solution satisfies the estimate (3.14).

������ 3.7. Equation (2.1) may admit infinitely many almost periodic solu-
tions but only one of them has its spectrum contained in iΛ (hence is an almost

periodic Λ-solution).

����� �� 	
����� 3.6. There exists a sequence of Bochner-Fejér approx-

imation polynomials Bm, m = 1, 2, . . . of the function f (with spectra contained
in iΛf ) uniformly convergent to f on � such that the sequence of derivatives Ḃm,

m = 1, 2, . . . forms a sequence of Bochner-Fejér approximation polynomials of the
almost periodic function ḟ which converges uniformly on � to ḟ .

If we choose Λ1 = Λf , Λ2 = Λa ∪ Λb then Λ′ = Λ and for Equation (2.1) with
f = Bm we have satisfied the assumptions from Corollary 3.4 which coincide in this
case with the assumptions (2.3), (2.4), (2.5), m = 1, 2, . . .. The equation ẋ(t) =

a0x(t) + b0x(t− τ) + a(t)x(t) + b(t)x(t− τ) +Bm(t) has exactly one almost periodic
Λ-solution xm and this solution satisfies the estimate ‖xm‖ � A‖Bm‖, m = 1, 2, . . ..
Since the spectrum of the trigonometric polynomial Bm+k −Bm is contained in iΛf ,
the equation ẋ(t) = a0x(t)+b0x(t−τ)+a(t)x(t)+b(t)x(t−τ)+Bm+k(t)−Bm(t) has

also exactly one almost periodic Λ-solution, namely xm+k − xm, and the estimate
‖xm+k − xm‖ � A‖Bm+k − Bm‖ holds ; m, k = 1, 2, . . .. In virtue of the uniform

convergence of the sequences of trigonometric polynomials Bm and Ḃm to the almost
periodic functions f and ḟ , respectively, it is readily seen that the sequences of almost

periodic functions {xm}, {ẋm} converge uniformly on � and the limit functions
xf = limxm, ẋf = lim ẋm satisfy Equation (2.1). Thus, xf is an almost periodic

Λ-solution of Equation (2.1) and the validity of the estimate (3.14) can be verified
by using the limit passage for m → ∞ in the estimates for the magnitude of xm,

m = 1, 2, . . ..

It remains to check the uniqueness which could be damaged by the limit passage.
So, let us suppose the existence of an almost periodic Λ-solution y of Equation (2.1).

Taking into account that a, b, f have almost periodic derivatives of the first order,
the almost periodic function y has besides the first also the second almost periodic

derivative ÿ. In such a case there exists a sequence ym, m = 1, 2, . . . of Bochner-Fejér
approximation polynomials of the almost periodic function y to which they converge

uniformly on � and their derivatives ẏm and ÿm, m = 1, 2, . . ., form sequences of
Bochner-Fejér approximation polynomials of the almost periodic functions ẏ and ÿ,

respectively, to which they converge uniformly on �. It is easy to verify that the
sequences of trigonometric polynomials fm(t) = ẏm(t) − a0ym(t) − b0ym(t − τ) −
a(t)ym(t)− b(t)ym(t − τ) and ḟm(t) = ÿm(t)− a0ẏm(t)− b0ẏm(t − τ) − a(t)ẏm(t) −
b(t)ẏm(t−τ)− ȧ(t)ym(t)− ḃ(t)ym(t−τ), m = 1, 2, . . ., converge uniformly on � to the
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almost periodic functions f and ḟ , respectively. Denoting Λ1 = Λ = Λf+S(Λa∪Λb∪
{0}), Λ2 = Λa ∪ Λb then Λ′ = Λ1 + S(Λ2 ∪ {0}) and the assumptions (3.15), (3.16),
(3.17) are satisfied which coincide here with the assumptions (2.3), (2.4), (2.5). The
spectra of the trigonometric polynomials fm and consequently also the spectra of

the trigonometric polynomials Bm − fm are contained in iΛ, m = 1, 2, . . ., so that
by Corollary 3.4 the equation ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) +

Bm(t) − fm(t) has exactly one almost periodic Λ-solution, namely wm = xm − ym,
which satisfies the estimate ‖wm‖ = ‖xm − ym‖ � A‖Bm − fm‖, m = 1, 2, . . ..

However, ‖xf − y‖ = lim ‖xm − ym‖ = 0 and hence xf = y. �

Corollary 3.8. Let Λ1, Λ2 be two non-void sets of real numbers and let S, T be

two positive constants. If the assumptions (3.15), (3.16), (3.17) are satisfied and if f
is an almost periodic function with its spectrum contained in iΛ1 having the almost

periodic derivative ḟ and if a, b are trigonometric polynomials with their spectra

contained in iΛ2 for which
∑
(a) � S,

∑
(b) � T , then Equation (2.1) has exactly

one almost periodic Λ′-solution xf where Λ′ = Λ1 + S(Λ2 ∪ {0}) and this solution
satisfies the estimate (3.14) where the positive constant A depends only on a0, b0,

d′θ, d
′, ∆′, τ , S, T .

�����. The validity of Corollary 3.8 can be verified by passing to the limit

analogously as in the proof of Theorem 3.3. �

������ 3.9. Corollary 3.8 ensures the validity of the estimate (3.14) with a

constant A common for all almost periodic Λ′-solutions xf of Equation (2.1) of the
whole class of trigonometric polynomials a, b and an almost periodic function f from

Corollary 3.8.

Now, we abandon the assumptions that a, b are trigonometric polynomials.

Theorem 3.10. If a and b are almost periodic functions with absolutely conver-

gent Fourier series having almost periodic first derivatives and f is the function from

Theorem 3.6. and if the assumptions (2.3), (2.4), (2.5) are satisfied, then Equation

(2.1) has exactly one almost periodic Λ-solution xf , where Λ = Λf+S(Λa∪Λb∪{0}),
and this solution satisfies the estimate (3.14) in which the positive constant A de-

pends only on a0, b0, ∆, dθ, d, τ , S =
∑
(a), T =

∑
(b).

�����. As a consequence of the fact that the almost periodic functions a and

b have almost periodic derivatives ȧ and ḃ, respectively, there exist sequences am

and bm, m = 1, 2, . . ., of Bochner-Fejér approximation polynomials of the almost

periodic functions a and b, respectively, to which they converge uniformly on �,
the derivatives ȧm and ḃm of which form sequences of Bochner-Fejér approximation
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polynomials of the almost periodic functions ȧ and ḃ, respectively, to which they

converge uniformly on �.

If we denote Λ2 = Λa∪Λb, Λ1 = Λf+S(Λ2∪{0}) then Λ′ = Λ1+S(Λ2∪{0}) = Λ,
Λam ⊂ Λ2, Λbm ⊂ Λ2, m = 1, 2, . . .; Λf ⊂ Λ1. Moreover,

∑
(am) � S,

∑
(bm) � T ,

m = 1, 2, . . .. According to the choice of Λ1, Λ2 the assumptions of Corollary 3.8 are
satisfied for the equation ẋ(t) = a0x(t)+b0x(t−τ)+am(t)x(t)+bm(t)x(t−τ)+f(t).

Therefore, this equation has exactly one almost periodic Λ-solution xm and for this
solution we have the estimate ‖xm‖ � A‖f‖, m = 1, 2, . . .. Corollary 3.8 implies that
the equation ẋ(t) = a0x(t) + b0x(t− τ) + am(t)x(t) + bm(t)x(t− τ) + fm,k(t), where
fm,k(t) = (am+k(t)−am(t))xm+k(t)+(bm+k(t)− bm(t))xm+k(t− τ), has exactly one

almost periodic Λ-solution. It is evident that this solution is xm+k −xm and for this
solution the estimate ‖xm+k − xm‖ � A‖fm,k‖ holds true, m = 1, 2, . . ..
Since any two almost periodic functions u, v with almost periodic derivatives u̇, v̇

satisfy ‖uv‖ � 2‖u‖ ‖v‖ we get the inequality

‖xm+k − xm‖ � A‖fm,k‖ � 2A(‖am+k − am‖+ ‖bm+k − bm‖)‖xm+k‖
� 2A2(‖am+k − am‖+ ‖bm+k − bm‖)‖f‖; m, k = 1, 2, . . . .

But this means that lim ‖xm+k − xm‖ = 0 for m → ∞ uniformly with respect to
k = 1, 2, . . ., so that the almost periodic function xf = limxm is an almost periodic

Λ-solution of Equation (2.1) and satisfies the estimate (3.14).

Again, it is necessary to verify the uniqueness of this solution which could be lost

by the passage to the limit. Let y be also an almost periodic Λ-solution of Equation
(2.1). Then the almost periodic function w = xf − y is a unique almost periodic

Λ-solution of the equation ẋ(t) = a0x(t)+b0x(t−τ)+am(t)x(t)+bm(t)x(t−τ)+F (t)
where F (t) = (a(t) − am(t))w(t) + (b(t) − bm(t))w(t − τ) and this solution satisfies

the estimate ‖w‖ = ‖xf − y‖ � A‖F‖ � 2A(‖a− am‖+ ‖b− bm‖)‖w‖, m = 1, 2, . . ..
The right-hand side converges to zero for m → ∞, so that y = xf . �

Corollary 3.11. Let Λ1, Λ2 be two non-void sets of real numbers and let S, T be

two positive constants. If the assumptions (3.15), (3.16), (3.17) are satisfied and if f

is an almost periodic function with its spectrum contained in iΛ1 having the almost
periodic derivative ḟ and if a, b are almost periodic functions with their spectra

contained in iΛ2 satisfying
∑
(a) � S,

∑
(b) � T , then Equation (2.1) has exactly

one almost periodic Λ′-solution xf where Λ′ = Λ1 + S(Λ2 ∪ {0}) and this solution
satisfies the estimate (3.14) where the positive constant A depends only on a0, b0,

∆′, d′θ, d
′, τ , S, T .

�����. Analogous reasoning as in the proof of Theorem 3.10. �
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������ 3.12. Corollary 3.11 ensures the validity of the estimate (3.14) with a

constant A common for all almost periodic Λ′-solutions xf of Equation (2.1) of the
whole class of almost periodic functions a, b, f from Corollary 3.11.

4. Quasilinear equations

4.1. Functions of several variables. Let g = g(t, x) be a continuous function

g : � × D → �
p×q , where D ⊂ �

m×n is a non-void set. The function g is said to be

a) almost periodic in the variable t on � × D if g(t, x) is almost periodic as a

function of t for any fixed x ∈ D;

b) uniformly almost periodic in the variable t on �×D if g(t, x) is almost periodic
in t on � × D and for any ε > 0 there exists a set {τ} ⊂ � relatively dense in

� such that |g(t+ τ, x)− g(t, x)| < ε for every τ ∈ {τ}, t ∈ �, x ∈ D;

c) locally uniformly almost periodic in the variable t on � ×D if for any compact
set K ⊂ D the restriction gK of the function g on � × K is uniformly almost

periodic in the variable t on � × K.

Lemma. Let g : � × D → �
p×q be a function almost periodic in t on � × D. A

necessary and sufficient condition for g to be locally uniformly almost periodic in t

is that g be continuous in x uniformly with respect to t ∈ � on � × D.

In the proof it is sufficient to take p = q = 1. To prove the sufficiency, let
K ⊂ D be a compact set and ε > 0. The restriction gK is uniformly continuous in

x uniformly with respect to t ∈ � on � × K. Hence, there exists δ = δ(ε/3) such
that for any x, y ∈ K and t ∈ � it holds |gK(t, x) − gK(t, y)| < ε/3 in the case

|x − y| < δ. Further, there exists a finite δ-net for K, namely, x1, . . . , xN ∈ K such
that min{|x − xj | : j = 1, . . . , N} < δ for any x ∈ K.

Since the functions hj(t) = g(t, xj), j = 1, . . . , N , are almost periodic, there exists

a set {τ} ⊂ � of ε/3-almost periods common for the functions h1, . . . , hN which
is relatively dense in �, i.e. |hj(t + τ) − hj(t)| < ε/3 for any t ∈ �, τ ∈ {τ} and
j = 1, . . . , N . Now, let τ ∈ {τ}, t ∈ �, x ∈ K. Choose j so that |x − xj | < δ. Then

|gK(t+ τ, x) − gK(t, x)| � |gK(t+ τ, x)− gK(t+ τ, xj)|
+ |gK(t+ τ, xj)− gK(t, xj)|+ |gK(t, xj)− gK(t, x)| < ε.

Thus, g is locally uniformly almost periodic in t on � × D and the sufficiency is

proved. Let us remark that, on the same vein, the function gK may be shown to be
uniformly continuous on � × K.
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On the other hand, to prove the necessity we take an arbitrary compact setK ⊂ D

and ε > 0 and use the uniform continuity of gK on [0, l] × K where l = l(ε/3)
is an inclusion length of the relative density of the set {τ} of ε/3-almost periods.
For any x, y ∈ K and t, s ∈ [0, l] we have |gK(t, x) − gK(s, y)| < ε/3 in the case

|t− s|+ |x− y| < δ. For any t ∈ � there exist τ = τ(t) ∈ {τ} such that t+ τ ∈ [0, l].
Consequently, for any x, y ∈ K, |x − y| < δ and t ∈ � we get

|gK(t, x)− gK(t, y)| � |gK(t, x)− gK(t+ τ, x)|
+ |gK(t+ τ, x)− gK(t+ τ, y)|+ |gK(t+ τ, y)− gK(t, y)| < ε

and the assertion follows.

In the sequel we deal with the cases in which the conditions for the locally uniform

almost periodicity of introduced function are fulfilled.

4.2. Harmonic analysis. Let g : � × D → �
p×q be a function almost periodic

in t on � × D. For any x ∈ D there exists the Bohr transformation

a(λ, x) = a(λ, x, g) = lim
T→∞

1
T

∫ s+T

s

g(t, x) exp(−iλt) dt

for each λ ∈ � uniformly with respect to s ∈ �. If a(λ, x) is non-zero for a given

λ ∈ � for at least one point x ∈ D, i.e. a(λ, x) �≡ 0, x ∈ D, then λ is called the
Fourier exponent and a(λ, x), x ∈ D, is called the Fourier coefficient of the function

g. The set of all Fourier exponents of the function g is denoted by Λg. If D is
a compact set, then the set Λg is at most countable. Due to the compactness of

D there exists a countable set {xj} ⊂ D, which is dense in D, i.e. the equality
infj |x − xj | = 0 holds for each x ∈ D. If a(λ, xj) = 0, j = 1, 2, . . ., for some λ ∈ �,

then |a(λ, x)| = |a(λ, x − xj)| � inf
j
sup

t
|g(t, x)− g(t, xj)| = 0. Thus a(λ, x) �≡ 0 only

for λ ∈ ⋃
j

Λj = Λg, where Λj is the set of all Fourier exponents of the almost periodic

function g(t, xj), t ∈ �, so that Λj is an at most countable set, j = 1, 2, . . ., and thus
also Λg is an at most countable set.

If the set D is a region (open connected non-void set), then there exists a monoto-
nous sequence of compact sets K1 ⊂ K2 ⊂ . . . ⊂ Km ⊂ . . . ⊂ D for which

limKm = D. In such a case the equality Λg =
⋃
m
Λm holds, where Λm is the set

of all Fourier exponents of the restriction of the function g on �×Km , m = 1, 2, . . .,

and thus Λg is an at most countable set.

If g is locally uniformly almost periodic in the variable t on � × D and D is a
region, then the Fourier series g(t, x) ∼ ∑

λ

a(λ, x) exp(iλt), λ ∈ Λg, can be uniquely

determined except for its order of summation. If the function g is also analytic in
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the variable x on a closed ball lying in D and containing the set �f of all values of

the almost periodic function f , then ΛF ⊂ Λg +S(Λf ∪{0}) is valid for the function
F (t) = g(t, f(t)), t ∈ �.

4.3 Derivatives. Now we will deal with a function g = g(t, u, v, ε) : � × D =

� × �
n×1 × �

n×1 × κ0 → Cn×1, where κ0 ⊂ � . In order to avoid complicated
expressions, we will use the symbolic records of Jacobi matrices, as for example

gt =
∂g

∂t
=

∂(g1, . . . , gn)
∂t

=


∂g1
∂t
...

∂gn

∂t

 ,

gu =
∂g

∂u
=

∂(g1, . . . , gn)
∂(u1, . . . , un)

=


∂g1
∂u1

. . . ∂g1
∂un

...
. . .

...
∂gn

∂u1
. . . ∂gn

∂un

 = ( ∂gj

∂uk

)
j,k=1,...,n

,

gtu =
∂2g

∂t∂u
=

∂(g1t, . . . , gnt)
∂(u1, . . . , un)

=
( ∂2gj

∂t∂uk

)
j,k=1,...,n

,

guv =
∂2g

∂u∂v
=
( ∂2gj

∂uk∂vl

)
j,k,l=1,...,n,

where the last matrix is three dimensional. Analogously, gv, gtv, guu, gvv can be

expressed. These Jacobi matrices will be called the derivatives of the function g.
The norm of a matrix is the sum of absolute values of all its elements, for example

|guv| =
∑
j

∑
k

∑
l

| ∂2gj

∂uk∂vl
|.

4.4. Quasilinear equations. Using the Banach contraction principle we shall
deal with following quasilinear (weakly nonlinear) system

ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + f(t)(4.1)

+ εg(t, x(t), x(t − τ), ε),

where ε is a small complex parameter. For ε = 0 we get the generating equation

(2.1) with its conditions for a0, b0, a, b, f . Assume that the function g = g(t, u, v, ε)
together with its derivative gt are locally uniformly almost periodic in the variable t

on � ×D, where D = �
n×1 × �

n×1 × κ0 and κ0 = κ(0, δ0), δ0 > 0, and g is analytic
in the variables u, v, ε.

Put Λ = S(Λf ∪ Λg + S(Λa ∪ Λb ∪ {0})). If Λξ ⊂ Λ for a function ξ ∈ AP (� n×1 ),
then the composite function F (t) = F (t, ξ) = g(t, ξ(t), ξ(t − τ), ε), t ∈ �, is an

almost periodic function whose spectrum is contained in iΛ for each ε ∈ κ0, as
ΛF ⊂ Λg+S(Λf ∪{0}) ⊂ Λf ∪Λg +S(Λ∪{0}) ⊂ Λ is valid due to the analyticity of
the function g in the variables u, v. Thus the “spectrum” iΛ is wide enough in order
to allow the existence of an almost periodic Λ-solution of Equation (4.1).
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If a positive number R is given then the norm ‖g‖R is the maximum value

among the least upper bounds of magnitudes of function g and its derivatives
gt, gu, gv, gtu, gtv, guu, guv, gvv on the (metric) space ΩR = � × �

n×1
R × �

n×1
R × κ0,

where � n×1
R = {w ∈ �

n×1 : |w| � R}. For any given two points U = [t, u, v, ε],

Ũ = [t, ũ, ṽ, ε] from the space ΩR the inequality

max{|g(U)− g(Ũ)|, |gt(U)− gt(Ũ)|, |gu(U)− gu(Ũ)|, |gv(U)− gv(Ũ)|}
� ‖g‖R|U − Ũ | = ‖g‖R(|u − ũ|+ |v − ṽ|)

holds.

Theorem 4.1. If the conditions (3.15), (3.16), (3.17) are fulfilled for

Λ = S(Λf ∪ Λg + S(Λa ∪ Λb ∪ {0})),

then for each positive number R > A‖f‖, where A is from the estimate (3.14),
there exists such a positive number ε(R) that the equation (4.1) has a unique almost

periodic Λ-solution xε with the norm ‖xε‖ � R for each ε ∈ κ0 for which |ε| < ε(R)
holds.

�����. Let us consider the Banach space H(Λ) = {ξ ∈ AP 1(� n×1 ) : Λξ ⊂ Λ}
with the norm ‖.‖. If a non-negative number R is given, then we define the metric

closed subspace HR(Λ) = {ξ ∈ H(Λ): ‖ξ‖ � R} of the space H(Λ).
If ξ ∈ H(Λ), R � ‖ξ‖ and ε ∈ κ0, then the function

γ(t) = γ(t, ε) = g(t, ξ(t), ξ(t − τ), ε), t ∈ �,

is almost periodic and belongs again to H(Λ) and

|γ| � ‖g‖R, |γ̇| = |gt + guξ̇(t) + gv ξ̇(t − τ)| � (1 + 2R)‖g‖R.

Thus ‖γ‖ � (1 + 2R)‖g‖R.

Define an operator A = A(ε) on the Banach space H(Λ) for each ε ∈ κ0 such that

the operator A maps any function ξ ∈ H(Λ) onto the function Aξ ∈ H(Λ), which is
the unique almost periodic Λ-solution of the equation

ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + f(t)

+ εg(t, ξ(t), ξ(t − τ), ε)

(uniqueness is guaranteed by Theorem 3.10) and which satisfies the estimate (3.14),
i.e. ‖Aξ‖ � A‖f + εγ‖. Due to Corollary 3.11 the constant A is common for all
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functions from H(Λ) for Λ1 = Λ, Λ2 = Λa ∪ Λb as Λ′ = Λ. Thus the final estimate
is ‖Aξ‖ � A[‖f‖+ ε(1 + 2R)‖g‖R].

If a positive number R is chosen such that R > A‖f‖, then the operator A = A(ε)
maps the space HR(Λ) into itself for any ε ∈ κ0 for which |ε| � (R − A‖f‖)/((1 +
2R)A‖g‖R).

Further, it is necessary to find out for which ε ∈ κ0 the operator A = A(ε) is
contractive. If two functions ξ, η belong to HR(Λ) and ε ∈ κ0 is given, then we put

γξ(t) = g(t, ξ(t), ξ(t − τ), ε) and γη(t) = g(t, η(t), η(t − τ), ε), t ∈ �.

The function w = Aξ−Aη is the unique almost periodic Λ-solution of the equation

ẋ(t) = a0x(t) + b0x(t − τ) + a(t)x(t) + b(t)x(t − τ) + ε(γξ(t)− γη(t))

and satisfies the inequality

‖w‖ = ‖Aξ −Aη‖ � |ε|A‖γξ − γη‖ � |ε|4(1 +R)A‖g‖R‖ξ − η‖,

as

|γξ − γη| � 2‖g‖R‖ξ − η‖, |γ̇ξ − γ̇η| � 4(1 +R)‖g‖R‖ξ − η‖.

In order to get a contractive operator A on HR(Λ) it is sufficient to put |ε| <

1/(4(1 +R)A‖g‖R).

The operator A maps the space HR(Λ) into itself and turns out to be a contraction

on HR(Λ) for |ε| < ε(R), where

ε(R) = min
{

δ0,
R − A‖f‖

(1 + 2R)A‖g‖R
,

1
4(1 +R)A‖g‖R

}
.

Consequently, there exists a unique function xε from HR(Λ) for |ε| < ε(R), R >

A‖f‖, such that Axε = xε, i.e. there exists a unique almost periodic Λ-solution

xε of Equation (4.1) for each ε ∈ κ0 if |ε| < ε(R). This completes the proof of
Theorem 4.2. �

Conclusion. The method developed in this paper for the construction of almost
periodic solutions of almost periodic systems of differential equations can be used
also for finding an approximative solution of this problem.
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