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1. Introduction

Professor Jan Mařík, whose death in January of 1994 ended an outstanding career,

made significant contributions to several areas of mathematics including extensions
of differentiable functions. (See [3].) For his enormous contributions to analysis and

for our genuine affection for him, we dedicate this paper to his memory.
This paper is motivated by the following question. Assume that H ⊂ � is perfect

and for a function f : H → � both the kth ordinary derivative, f (k), and the kth
Peano derivative, fk, exist at all points of H . How large can the set Ek of those

points x in H be where f (k)(x) and fk(x) are different?
For k = 1 the ordinary and Peano derivatives are the same. It follows from

Theorem 2 of this paper that for a given perfect set H the set E2 is countable.
Theorem 3 implies that if, in addition, we assume that the third ordinary and Peano

derivatives exist on H , then E2 is scattered. On the other hand Example 2 shows
that for n � 3, En = H is also possible for some perfect sets H .

*This author was supported by Grants FKFP B-07/1997 and Hungarian National Foun-
dation for Scientific Research Grant No. T 016094
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In our Theorems for higher values of k we must impose coincidence assumptions

about lower order Peano derivatives of the ordinary derivatives of f in order to
obtain results. Actually the non-coincidence sets we consider are non-coincidence
sets of “exact order” k, while the non-coincidence set Ek considered in the original

question is of “order” less or equal k. (We give more explanation of this heuristic
background in a remark following Theorem 6.)

In Section 4 the concept of γ-gap porosity is introduced. In Theorem 5 it is proved
that if the set H is γn-gap porous at the points xn ∈ H , then there is a k � 2 times
ordinary and Peano differentiable function such that xn ∈ Ek for all n. Theorem 6
shows that γ-gap porosity, in a certain sense, is also a necessary condition.

2. Definitions and other preliminaries

Throughout this paper H will denote a perfect subset of �, k will be a fixed

element of �, i and j will denote nonnegative integers and f : H → �. The usual
or iterative kth derivative of f will be denoted by f (k). For example if x ∈ H , then

f ′(x) = lim
y→x
y∈H

f(y)− f(x)
y − x

. Next the corresponding Peano derivative is defined.

Definition 1. Let f : B ⊂ � → � let k ∈ � and let x ∈ B. Then f is k times
Peano differentiable at x means that there are numbers fj(x) for j = 1, 2, . . . k and

there is a function ε : B → � such that lim
y→x
y∈B

ε(y) = 0, and for each y ∈ B

f(y) = f(x) +
k∑

j=1

fj(x)
j!
(y − x)j + ε(y)(y − x)k.

If x is an isolated point of B, then the numbers f1(x), f2(x), . . . , fk(x) are com-
pletely arbitrary. Otherwise they are unique if they exist. Examining the above sum

it is obvious that setting f(x) = f0(x) will be useful as will f(x) = f (0)(x). The
reader unfamiliar with the notion of Peano derivatives is directed to [4]. The major

conditions imposed on the sets studied in this paper are motivated by the work done
in [1]. The specific theorem is as follows. (See page 395 of [1].)

Theorem 1. Let H ⊂ � be closed, let k ∈ � and let f : H → � be k times

differentiable in both the usual sense and in the Peano sense on H . Suppose for each

i, j ∈ � ∪ {0} with i + j � k we have that f (i) is j times Peano differentiable on

H and that
(
f (i)

)
j
= f (i+j) on H . Then there is a function F : � → � which is k

times Peano differentiable on � such that Fj = fj on H for each j = 0, 1, 2, . . . , k.
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Simply stated, the purpose of this paper is to investigate the equality
(
f (i)

)
j
=

f (i+j) where f is defined on a nowhere dense set, H . If H is an interval, then the
existence of f (i) implies the existence of fi and the equality f (i) = fi. Consequently

the equality under study holds. However for a nowhere dense set it is possible for
fk(x) and f (k)(x) to both exist but to be different.
Since the hypotheses of Theorem 1 are used often in this paper, we introduce the

following useful notation. Let

PDk(H) = {f : H → � ; f is k times differentiable in both the usual sense

and in the Peano sense}

and

NPDk(H) =
{
f ∈ PDk(H) ; i+ j � k and x ∈ H imply

(
f (i)

)
j
(x) exists

}
.

From Theorem 2 it follows that if the condition
(
f (i)

)
j
= f (i+j) holds on H for all

i + j � k, with the exception i = 0, j = k, and k is even, then the set fk �= f (k)

is countable. If we have the additional information that f ∈ PDk+1(H), then in
Theorem 3 we show that the previous exceptional set is scattered. However, for odd

k’s in Example 2 it is shown that there are non-empty perfect sets, H and functions,
f which satisfy the assumptions of Theorem 2 and f (k) �= fk everywhere on H .

3. Non-coincidence sets

We begin with a very simple but illustrative example.

������� 1. Let P = {p1, p2, . . .} be a countable set in � with no isolated
points, let {kn} be a sequence in � with kn � 2 for each n ∈ � and let {αn} be a
sequence in �. Then there is a function f : P → � which is infinitely differentiable

in the usual sense and in the Peano sense on P such that f (k) ≡ 0 on P for all k ∈ �

and for each n ∈ � we have fk(pn) = 0 if k �= kn while fkn(pn) = αn.

Let f(p1) = 0 and set g1(x) = f(p1) +
α1
k1!
(x − p1)k1 . Let a1 = −∞ and b1 = +∞.

Let n ∈ � with n � 2 and suppose for j = 1, 2, . . . , n−1, f(pj) has been defined and

set gj(x) = f(pj) +
αj

kj !
(x − pj)kj . Also suppose that for j = 1, 2, . . . , n− 1 numbers

aj , bj /∈ P have been selected so that pj ∈ (aj , bj) and for i = 1, 2, . . . , (j − 1) either
(aj , bj) ∩ (ai, bi) = ∅, or (aj , bj) ⊂ (ai, bi) and in the latter case; i.e., pj ∈ (ai, bi),

|gi(x)−gj(x)| < exp
(
− 1
|x − pi|

)
. To define f(pn), let jn = max{j ∈ {1, 2, . . . , n−1} ;
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pn ∈ (aj , bj)}. (Since (a1, b1) = (−∞,∞), jn is defined.) Set f(pn) = gjn(pn) and

then let gn(x) = f(pn) +
αn

kn!
(x − pn)kn . To define an and bn first select a closed

subinterval I of (ajn , bjn) with pn in its interior. Let i < jn with pn ∈ (ai, bi). By

the induction hypotheses, (ajn , bjn) ⊂ (ai, bi) and |gi(x)− gjn(x)| < exp
(
− 1
|x − pi|

)
for x ∈ (ajn , bjn). It follows that there is an ε > 0 such that for all i < jn with

pn ∈ (ai, bi) and for all x ∈ I we have ε � exp
(
− 1
|x − pi|

)
− |gi(x) − gjn(x)|.

Because each gj is continuous and since gn(pn) − gjn(pn) = 0, it is not difficult to

see that there are an, bn /∈ P with pn ∈ (an, bn) ⊂ I such that

|gjn(x)− gn(x)| < exp
(
− 1
|x − pjn |

)
and |gn(x) − gjn(x)| < ε.

To complete the induction step we need only consider the case i < n with pn ∈ (ai, bi).

By definition i � jn. If i = jn, then for x ∈ (an, bn) we have |gjn(x) − g(x)| <

exp
(
− 1
|x − pjn |

)
. If i < jn, then

|gi(x)− gn(x)| � |gi(x)− gjn(x)| + |gjn(x)− gn(x)|
< |gi(x)− gjn(x)| + ε

< |gi(x)− gjn(x)| + exp
(
− 1
|x − pjn |

)
− |gi(x) − gjn(x)|.

To show that the function f has the desired properties, fix i ∈ � and let n ∈ �

with n > i and pn ∈ (ai, bi). Then jn � i and by definition f(pn) = gjn(pn). Thus

|f(pn)− gi(pn)| = |gjn(pn)− gi(pn)| < exp
(
− 1
|x − pjn |

)
.

By the definition of gi and since ki � 2, this estimate proves that f ′(pi) = f1(pi) = 0
(and hence that f (k) ≡ 0 on P ) and that fk(pi) = 0 if k �= ki while fki(pi) = αi. �
The next example shows that for some perfect sets H for any integer larger than 2

the corresponding usual and Peano derivatives may exist and be different everywhere

on H .

������� 2. There is a perfect set H and, for each m ∈ � with m � 3, a
function f ∈ NPDk(H) for all k ∈ � such that for all k ∈ � with k � 2 we have
f (k) = 0 on H and fk = 0 on H except for k = m while fm = m! on H .

�����	 1. If m is odd then in the above Example we have f ′ = f1 = 0 on H

which implies that (f (i))j = f (i+j) holds except for i = 0 and j = m. When m is

even (f (i))j = f (i+j) is always satisfied when i � 2, if i = 0, or 1 it is satisfied for all
j’s with the exception of j = m − i.
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Set �0 = 1 and for each n ∈ � let �n = 10−nn

. In fact, any sequence satisfying the

following three properties can be chosen for our construction.

(i) �n−1 − 2�n > 1
2�n−1 holds for n = 2, 3, . . ..

(ii) For m, n0 ∈ �, m � 3 letting σn0 =
∞∑

n=n0+1
�m−1
n−1 � σ′

n0 =
∞∑

n=n0+1
�m
n−1 we have

lim
n0→∞ �−n

n0−1σn0 = 0 for all n ∈ �.

(iii)
�n

�n−1
< �n−1

n−1 for n = 2, 3, . . ..

Observe that the �n’s we chose satisfy properties (i)–(iii).

Set I0,1 = [0, 1], I1,1 = [0, �1], and I1,2 = [1 − �1, 1]. Suppose In,j = [a, b] has been

defined for n ∈ � and for j ∈ Nn = {1, 2, . . . , 2n}. Then In+1,2j−1 = [a, a + �n+1]

and In+1,2j = [b − �n+1, b] defines In+1,j for j ∈ Nn+1. Let H =
⋂

n∈�

2n⋃
j=1

In,j . For

each x ∈ H and for each n ∈ � let jn,x be that integer in Nn such that x ∈ In,j . For
each n ∈ � and for each j ∈ Nn let pn,j(x) = αn,j(x − an,j) + βn,j where an,j is the

left endpoint of In,j and the constants αn,j and βn,j will be defined later depending
on whether m is odd or even in a way that they will satisfy

(1) |αn,j | � �m−1
n−1 and |βn,j | � �m

n−1.

For x ∈ H set f(x) =
∑

n∈�
pn,jn,x(x).

Note that for x, y ∈ [0, 1]

(2) pn,jn,y(y)− pn,jn,x(x) = pn,jn,y(y)− pn,jn,x(y) + αn,jn,x(y − x).

For x, y ∈ H with x �= y let n0(x, y) = min{n ∈ � ; jn,x �= jn,y}. Consequently, for
x, y ∈ H with x �= y (denoting n0(x, y) by n0) from (2) it follows that

f(y)− f(x)
y − x

=
∑

n<n0

αn,jn,x +

∑
n�n0

pn,jn,y(y)− pn,jn,x(x)

y − x
.

Thus using (1) we have |pn,jn,x(x)| � 2�m
n−1. Since |y − x| > �n0−1 − 2�n0 > �n0−1/2

by (i) and (ii) it follows that the second term above tends to 0 as y → x (The term

n = n0 must be dealt with separately, but clearly it is no more than 8�
m−1
n0−1 which

tends to 0 because m � 3.) and hence f ′(x) =
∑

n∈�
αn,jn,x .
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Similarly for x, y ∈ H with x �= y

f(y)− f(x)− f ′(x)(y − x)− (y − x)m

=
( ∑

n�n0

pn,jn,y(y)− pn,jn,x(y)
)
− (y − x)m

=
(
pn0,jn0,y(y)− pn0,jn0,x(y)− (y − x)m

)
+

∑
n>n0

pn,jn,y(y)− pn,jn,x(y)

= T (x, y) + S(x, y).

Since |y − x| > �n0−1 − 2�n0 , and n0 = n0(x, y) → ∞ as y → x, conditions (i) and
(ii) imply that lim

y→x

S(x,y)
|y−x|n = 0 for all n > m.

First let m be odd. Then put αn,j = 0 and βn,j =

{
0 if j is odd

�m
n−1 if j is even.

Let

x, y ∈ H with x �= y. If x < y, then x ∈ In0,2j−1 and y ∈ In0,2j . Thus T (x, y) =
�m
n0−1 − (y − x)m. Since �n0−1 − 2�n0 < y − x < �n0−1, by condition (iii)

0 < �m
n0−1 − (y − x)m < �m

n0−1 − (�n0−1 − 2�n0)
m = �m

n0−1
[
1−

(
1− 2 �n0

�n0−1

)m]

< �m
n0−1

[
1−

(
1− m · 2 �n0

�n0−1

)]
< �m

n0−1
(
2m�n0−1

n0−1
)

= 2m�m+n0−1
n0−1 .

So by condition (i) for n > m

lim
y→x+

|T (x, y)|
|y − x|n � lim

y→x+
2n
2m�

m+n0(x,y)−1
n0(x,y)−1

�n
n0(x,y)−1

= 0.

If y < x, then y ∈ In0,2j−1 and x ∈ In0,2j. Thus, since m is odd, T (x, y) =
−�m

n0−1 + (x − y)m. Now as above

0 > (x − y)m − �m
n0−1 > (�n0−1 − 2�n0)

m − �m
n0−1

and hence |T (x, y)| < �m
n0−1 − (�n0−1 − 2�n0)

m. So by the same argument as above,

lim
y→x−

|T (x, y)|
|y − x|n = 0 for n > m.

Now, let m be even. Then put βn,j = 0 and αn,j =

{
0 if j is odd

�m−1
n−1 if j is even.

If x < y, then x ∈ In0,2j−1 and y ∈ In0,2j . Thus

|T (x, y)| = |�m−1
n0−1(y−an,jn0,y)− (y−x)m| < |�m−1

n0−1�n0− (y−x)m| < �m
n0−1− (y−x)m
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and proceeding as in the first part of the previous case yields lim
y→x+

|T (x, y)|
|y − x|n = 0. If

y < x, then y ∈ In0,2j−1 and x ∈ In0,2j . Thus since m is even,

|T (x, y)|= | − �m−1
n0−1(y − an0,jn0,x)−(y − x)m|= |�m−1

n0−1(an0,jn0,x − y)− (x − y)m|
< |(�n0−1 − 2�n0)

m − �m
n0−1|

= �m
n0−1 − (�n0−1 − 2�n0)

m

and proceeding as in the second part of the first case yields lim
y→x−

|T (x, y)|
|y − x|n = 0.

Therefore in all cases if n > m, then

lim
y→x

f(y)− f(x)− (y − x)f ′(x) − (y − x)m

(y − x)n
= 0.

Consequently if m is odd and m � 3, then f ′(x) = 0 (because each αn,j = 0) for all
x ∈ H and hence f (k) = 0 on H for all k � 1. Moreover fj(x) = 0 if j �= m while

fm(x) = m! for all x ∈ H .

On the other hand if m � 4 is even, then m′ = m − 1 � 3 is odd and letting
β′

n,j = αn,j we have f ′(x) =
∑

n∈�
β′

n,jn,x
; that is, our earlier argument for odd m’s

shows that (f ′)′(x) = f (2)(x) = 0 for all x ∈ H and hence f (k+1)(x) = 0 for all

k � 1. Therefore f ′′(x) = 0 on H and hence f (k) = 0 on H for all k � 2. Moreover,
as above, fj(x) = 0 if j �= m while fm(x) = m! and we also have (f ′)j(x) = 0 if
j �= m − 1, while (f ′)m−1(x) = (m − 1)! for all x ∈ H .

The preceding example shows in particular that for n � 3 the nth ordinary and
the nth Peano derivatives can both exist and be different everywhere on H for some

perfect sets, H . The case n = 2 proves to be quite different as the next theorem
demonstrates. For example it shows that the second ordinary and the second Peano

derivatives can differ only on a countable set.

Theorem 2. Let H ⊂ � be perfect, let k ∈ � with k � 2 and let f ∈ PDk(H).

Suppose 0 � i < k with k − i even and put

Ei =
{
x ∈ H ; if i′ + j′ < k or if i′ + j′ = k and i′ > i, then(

f (i
′))

j′ (x) exists and = f (i
′+j′)(x) and(

f (i)
)
k−i
(x) �= f (k)(x)

}
.

Then Ei is countable.
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����. For rational numbers α and β with α > β and for n ∈ � let

Eα,β
n,i =

{
x ∈ H ;

(
f (i

′))
j′ (x) = f (i

′+j′)(x) for i′ + j′ < k,(
f (i

′))
k−i′ (x) = f (k)(x) for i < i′ < k,

∣∣∣f (i)(y)− k−i∑
j=0

(
f (i)

)
j
(x)

j!
(y − x)j

∣∣∣ <
α − β

2(k − i)!
|y − x|k−i

for y ∈ H, |y − x| < 1
n , and f (k)(x) > α > β >

(
f (i)

)
k−i
(x)

}
.

The theorem will be proved if it can be shown that Eα,β
n,i is an isolated set. So

suppose to the contrary that x is a non-isolated point of Eα,β
n,i . Let ε > 0 and select

y ∈ Eα,β
n,i with |y − x| < 1

n such that for i < i′ < k

(3)
∣∣∣f (i′)(y)− k−i′∑

j=0

(
f (i

′)
)
j
(x)

j!
(y − x)j

∣∣∣ < ε|y − x|k−i′ .

Since both x and y belong to Eα,β
n,i ,

∣∣∣f (i)(y)− k−i∑
j=0

(
f (i)

)
j
(x)

j!
(y − x)j

∣∣∣ <
α − β

2(k − i)!
|y − x|k−i(4)

and

∣∣∣f (i)(x)− k−i∑
j=0

(
f (i)

)
j
(y)

j!
(x − y)j

∣∣∣ <
α − β

2(k − i)!
|y − x|k−i.(5)

For u ∈ H put

g(u) = f(u)−
k∑

j=0

f (j)(x)
j!

(u − x)j = f(u)− h(u)

where h is a polynomial of degree no more than k. Then g(j)(x) = 0 for j = 0, 1, . . . , k

and for 0 � i′ < k

g(i
′)(u) = f (i

′)(u)−
k−i′∑
j=0

f (i
′+j)(x)
j!

(u − x)j .

Using the assumptions in the definition of Eα,β
n,i and (3) for i < i′ < k we have

(6) |g(i′)(y)| < ε|y − x|k−i′ .
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Again using the definition of Eα,β
n,i and (4) we infer

(7)
∣∣∣g(i)(y) + f (k)(x) − (

f (i)
)
k−i
(x)

(k − i)!
(y − x)k−i

∣∣∣ <
α − β

2(k − i)!
|y − x|k−i.

Since h is a polynomial of degree no more than k, by (5) we have

α − β

2(k − i)!
|y − x|k−i >

∣∣∣∣g(i)(x) + h(i)(x) −
k−i∑
j=0

(
g(i)

)
j
(y) +

(
h(i)

)
j
(y)

j!
(x − y)j

∣∣∣∣
=

∣∣∣∣g(i)(x) −
k−i∑
j=0

(
g(i)

)
j
(y)

j!
(x − y)j

∣∣∣∣
(using (6) and that

(
g(i)

)
j
(y) = g(i+j)(y) for 1 < j < k − i)

>

∣∣∣∣0− g(i)(y)−
(
g(i)

)
k−i
(y)

(k − i)!
(x − y)k−i

∣∣∣∣
− ε

k−i−1∑
j=1

|y − x|k−i−j

j!
|x − y|j

>

∣∣∣∣ − g(i)(y)−
(
g(i)

)
k−i
(y)

(k − i)!
(x − y)k−i

∣∣∣∣ − ε(k − i)|x − y|k−i.

Since
(
g(i)

)
k−i
(y) =

(
f (i)

)
k−i
(y)− f (k)(x), we obtain

α − β

2(k − i)!
|y − x|k−i + ε(k − i)|x − y|k−i

>

∣∣∣∣−g(i)(y)−
(
f (i)

)
k−i
(y)− f (k)(x)

(k − i)!
(x − y)k−i

∣∣∣∣.
Using (7) we have

α − β

2(k − i)!
|y − x|k−i >

∣∣∣∣g(i)(y)−
(
f (i)

)
k−i
(x)− f (k)(x)

(k − i)!
(y − x)k−i

∣∣∣∣.
Adding the two preceding inequalities together, canceling and keeping in mind that

k − i is even we obtain

(8) (α − β) + ε(k − i)(k − i)! >
∣∣2f (k)(x)− (

f (i)
)

k−i
(y)− (

f (i)
)
k−i
(x)

∣∣ = A.

On the other hand x, y ∈ Eα,β
n,i implies

f (k)(x) > α > β >
(
f (i)

)
k−i
(x) and β >

(
f (i)

)
k−i
(y).
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Hence A > 2(α−β) and this contradicts (8) when ε is small. Thus Eα,β
n,i is countable.

In a similar fashion the set resulting from Eα,β
n,i by reversing the inequality between

α and β in the definition is also clearly countable. This observation concludes the
proof. �

The next theorem shows that if i = 0 the set defined in Theorem 2, besides being
countable, is scattered when f is k + 1 times differentiable in both senses.

Theorem 3. Let k ∈ � be even and let f ∈ PDk+1(H). Set

E =
{
x ∈ H ; if i+ j < k or if i+ j = k and 0 < i, then

(
f (i)

)
j
(x) exists and

= f (i+j)(x) and fk(x) �= f (k)(x)
}
.

Then E is nowhere dense in each ∅ �= F ⊂ H with F perfect.


����. By Theorem 2, E is countable. Let ∅ �= F ⊂ H be perfect. Suppose

there is an interval I1 such that F ∩ I1 �= ∅ and F ∩E is dense in I1 ∩F. Since fk+1

is a Baire one function, there is an interval I2 ⊂ I1 and an M ∈ (0,∞) such that
I2 ∩ F �= ∅ and |fk+1(x)| � M for each x ∈ I2 ∩ F . By the Baire Category Theorem
there is a δ > 0 such that

Kδ =

{
x ∈ I2 ∩ F ; y ∈ H and |x − y| < δ implies

∣∣∣∣f(y)−
k+1∑
j=0

fj(x)
j!
(y − x)j

∣∣∣∣ < |y − x|k+1
}

is of the second category in I2 ∩F . Also there is an interval I3 ⊂ I2 with I3 ∩F �= ∅
such that Kδ is of the second category in every subportion of I3 ∩ F. Since F ∩ E is

dense in I3 ∩ F , we may select x ∈ I3 ∩ F ∩ E. Let ε > 0. For y ∈ E, y sufficiently
close to x

(9)

∣∣∣∣f(y)−
k∑

j=0

fj(x)
j!
(y − x)j

∣∣∣∣ < ε|y − x|k

and for 0 < i < k

(10)

∣∣∣∣f (i)(y)−
k−i∑
j=0

(
f (i)

)
j
(x)

j!
(y − x)j

∣∣∣∣ < ε|y − x|k−i.

Since y ∈ E, (10) may be rewritten as

(11)

∣∣∣∣f (i)(y)−
k−i∑
j=0

f (i+j)(x)
j!

(y − x)j
∣∣∣∣ < ε|y − x|k−i.
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As in the proof of Theorem 2 for u ∈ H let

g(u) = f(u)−
k∑

j=0

f (j)(x)
j!
(u − x)j .

Then g(j)(x) = 0 for j = 0, 1, . . . , k. Since x ∈ E, (9) implies for y ∈ E sufficiently

close to x

(12)
∣∣∣g(y) + f (k)(x)− fk(x)

k!
(x − y)k

∣∣∣ < ε|y − x|k.

Moreover for 0 < i � k

g(i)(y) = f (i)(y)−
k−i∑
j=0

f (i+j)(x)
j!

(y − x)j .

So (11) and the assumption that x ∈ E imply |g(i)(y)| < ε|y−x|k−i. Also |g(k)(y)| =
|f (k)(y) − f (k)(x)| < ε for y sufficiently close to x since f (k+1)(x) exists. Because
g − f is a polynomial of degree at most k, for y ∈ Kδ sufficiently close to x we have

∣∣∣∣g(x)−
k+1∑
j=0

g(j)(y)
j!
(x − y)j

∣∣∣∣ =
∣∣∣∣f(x)−

k+1∑
j=0

f (j)(y)
j!
(x − y)j

∣∣∣∣ < |x − y|k+1.

Thus by (12)

|x − y|k+1 >

∣∣∣∣g(x)−
k+1∑
j=0

g(j)(y)
j!
(x − y)j

∣∣∣∣
�

∣∣∣f (k)(x)− fk(x)
k!

(x − y)k
∣∣∣ − ∣∣∣g(y) + f (k)(x) − fk(x)

k!
(x − y)k

∣∣∣
−

k∑
j=1

|g(j)(y)|
j!

|x − y|j −
∣∣∣f (k+1)(y)
(k + 1)!

∣∣∣|x − y|k+1

�
∣∣∣f (k)(x)− fk(x)

k!

∣∣∣|x − y|k − ε|x − y|k − ε|x − y|k
k∑

j=0

1
j!

− M

(k + 1)!
|x − y|k+1.

Dividing by |x− y|k, using that y can be chosen arbitrarily close to x and that ε was

arbitrary we obtain an inequality which contradicts fk(x) �= f (k)(x). �
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4. A Porosity condition

In this section we introduce a condition on the set H sufficient for the existence
of a function in NPDk(H) for which f (k) = fk fails to hold on a dense subset of H .

We show that in some sense the condition is necessary.

Definition 2. Let H ⊂ �, let 0 < γ < 1 and let x ∈ H. Then H is γ-gap porous
at x means there exist sequences a1 < a2 < . . . < a� < . . . < x < . . . < b� < . . . <

b2 < b1 such that [a2�+1, a2�+2] ∩ H = ∅, [b2�+2, b2�+1] ∩ H = ∅, for � ∈ � ∪ {0}

γ|x − a2�+1| � |a2�+2 − a2�+1|, γ|b2�+1 − x| � |b2�+1 − b2�+2|

and

lim
�→∞

|a2�+1 − a2�|
|a2�+2 − a2�+1| = 0, lim

�→∞
|b2� − b2�+1|

|b2�+1 − b2�+2| = 0.

The first condition asserts that [a2�+1, a2�+2] is at least a fixed portion of the
interval [a2�+1, x] while the second condition can be shown to be equivalent to stating

that the length of [a2�, a2�+1] divided by the length of [a2�, x] tends to 0. Analogous
statement can be made concerning the sequence {b�}. These remarks are expressed
in a very useful way in the following proposition.

Proposition 4. Let H ⊂ � be perfect, let 0 < γ < 1 and let x ∈ H. The set

H is γ-gap porous at x if and only if for each ε > 0 there is a δ > 0 such that if
y1, y2 ∈ H with |yi − x| < δ and either y1 < y2 < x or x < y2 < y1, then we have
|y2 − y1|
|x − y1| � γ or

|y2 − y1|
|x − y1| � ε.

The proof of the proposition is standard and hence is omitted.

Theorem 5. Let H be a perfect set, let k ∈ � with k � 2 and for each n ∈ �

let xn ∈ H . Suppose for each n ∈ � there is a γn ∈ (0, 1) such that H is γn-gap

porous at xn. Then there is an f ∈ NPDk(H) such that for each n ∈ � we have

f (k)(xn) �= fk(xn). In addition, for all n we can also insist that i + j < k implies

(f (i))j(xn) = f (i+j)(xn) and 0 < i < k implies (f (i))k−i(xn) = f (k)(xn).

Before proving this theorem we remark that given a γ ∈ (0, 1) it is easy to construct
a perfect set H and a dense subset {xn ; n ∈ �} of H such that H is γ-porous at

each xn. Then Theorem 5 provides a function, f , which is in NPDk(H). Since
{xn ; n ∈ �} is not scattered, by Theorem 3 f cannot belong to PDk+1(H).
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����. For each n ∈ � let an,� ↗ xn, bn,� ↘ xn such that for each � ∈ � we

have

γn|xn − an,2�+1| � |an,2�+2 − an,2�+1|,
γn|bn,2�+1 − xn| � |bn,2�+1 − bn,2�+2|

and

lim
�→∞

|an,2�+1 − an,2�|
|an,2�+2 − an,2�+1| = 0,

lim
�→∞

|bn,2� − bn,2�+1|
|bn,2�+1 − bn,2�+2| = 0.

Further assume, as we may, that |xn − an,1| � 1 and |bn,1 − xn| � 1 for each
n ∈ �. For � ∈ � ∪ {0} set Ia,n,� = [an,2�+1, an,2�+2], Ib,n,� = [bn,2�+2, bn,2�+1],

Ja,n,0 = (−∞, an,1), Jb,n,0 = (bn,1,∞) and for � ∈ � set Ja,n,� = (an,2�, an,2�+1) and
Jb,n,� = (bn,2�+1, bn,2�). SinceH is γn-gap porous at xn, for � ∈ �∪{0}, Ia,n,�∩H = ∅,
Ib,n,� ∩ H = ∅, γn|xn − an,2�+1| � |Ia,n,�|, γn|bn,2�+1 − xn| � |Ib,n,�|, and

lim
�→∞

|Ja,n,�|
|Ia,n,�| +

|Jb,n,�|
|Ib,n,�| = 0.

For each n ∈ � let αn =
γk

n

2n
. Then

∑
n∈�

αn

γk
n

< ∞. Fix n ∈ �. We define f(n) : � →
� as follows. First put f(n)(xn) = 0. For � ∈ � ∪ {0} the function f(n) is constant
on Ja,n,� and on Jb,n,� and is linear on Ia,n,� and on Ib,n,�. In addition

f(n)(an,2�+2)− f(n)(an,2�+1) = αn

(
(an,2�+2 − xn)k − (an,2�+1 − xn)k

)
and

f(n)(bn,2�+1)− f(n)(bn,2�+2) = αn

(
(bn,2�+1 − xn)k − (bn,2�+2 − xn)k

)
.

Finally assume that f(n) is continuous at xn. Hence f(n) is continuous everywhere.
Since |xn − an,2�+1| � |Ia,n,�|/γn and since |bn,2�+1 − xn| � |Ib,n,�|/γn,

|f(n)(an,2�+2)− f(n)(an,2�+1)| � αn|xn − an,2�+1|k � αn

γk
n

|Ia,n,�|k

and

|f(n)(bn,2�+1)− f(n)(bn,2�+2)| � αn|bn,2�+1 − xn|k � αn

γk
n

|Ib,n,�|k.
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Let x, y ∈ ⋃
�∈�∪{0}

(Ja,n,� ∪ Jb,n,�) with x < y. Let h = y − x and let {Li =

[ci, di] ; i ∈ N} denote the set of intervals Ia,n,� and Ib,n,� contained in (x, y) where

N ⊂ �. Put hi = |Li|. Then
∑

i∈N

hi

h
� 1 and since 0 � hi

h
� 1 implies 0 � hk

i

hk
� hi

h
,

we have
∑

i∈N

(
hi

h

)k � 1; that is,
∑

i∈N
hk

i � hk. Because f(n) is continuous at xn and

constant on each Ja,n,� and on each Jb,n,�,

(13) |f(n)(y)− f(n)(x)| � αn

γk
n

(y − x)k.

Since H ⊂ ⋃
�∈�∪{0}

(Ja,n,� ∪ Jb,n,�), the above inequality holds for x, y ∈ H.

For x ∈ H put f(x) =
∑

n∈�
f(n)(x). Since f(n) is constant on Ja,n,� and on Jb,n,�

and since |xn−an,1| � 1 and |bn,1−xn| � 1, from (13) it follows that |f(n)(x)| � αn

γk
n

for all x ∈ H . Hence the sum defining f converges for all x ∈ H .
Let x ∈ H \ {xn ; n ∈ �}. Then for each n ∈ � there is an �n ∈ � ∪ {0} such

that x ∈ Ja,n,�n ∪ Jb,n,�n . Let N0 ∈ �. Since f(n) is constant on Ja,n,� and on
Jb,n,�, there is an open interval U such that x ∈ U and f(n) is constant on U for

n ∈ {1, 2, . . . , N0 − 1}. Then for y ∈ U by (13) we have

|f(y)− f(x)| =
∣∣∣∣ ∑

n�N0

(
f(n)(x) − f(n)(y)

)∣∣∣∣ �
∑

n�N0

αn

γk
n

|y − x|k.

Since
∑

n∈�

αn

γk
n

< ∞, by definition it follows that f is k times Peano differentiable

at x and that fj(x) = 0 for all 1 � j � k. In particular since k � 2, we have
f ′(x) = f1(x) = 0.

To complete the proof it suffices to show that for each n ∈ �, f is k times Peano
differentiable at xn with fj(xn) = 0 for 1 � j < k and fk(xn) = αnk! because then

f ′ = 0 on H and hence f (k) = 0 on H while fk(xn) = αnk! �= 0. First we show that
for each n ∈ � if f(n) is k times Peano differentiable at xn, then so is f and indeed

with the same Peano derivatives. To this end fix n0 ∈ � and choose N0 > n0. Then
there is an open interval U such that xn0 ∈ U and f(n) is constant on U for all

n � N0 − 1 with n �= n0. Then for y ∈ U

f(y)− f(xn0) = f(n0)(y)− f(n0)(xn0) +
∑

n�N0

(
f(n)(y)− f(n)(xn0)

)
.

Thus

|f(y)− f(xn0)−
(
f(n0)(y)− f(n0)(xn0)

)| �
∑

n�N0

αn

γk
n

|y − xn0 |k.
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Therefore f ′(xn0) = f ′(n0)(xn0 ) and for 1 � j � k we have fj(xn0 ) = fj(n0)(xn0 )

whenever the right-hand side exists.
Finally it will be shown that for each n ∈ �, f(n) is k times Peano differentiable

at xn with f(n)j(xn) = 0 for 1 � j < k and f(n)k(xn) = αnk!. Now fix n ∈ � and

let ε > 0. Because 0 < γn < 1, there is K ∈ � such that (1 − γn)K < ε and there
exists �0 ∈ � such that � � �0 implies

|Ja,n,�| < |Ia,n,�| ε
K and |Jb,n,�| < |Ib,n,�| ε

K

Let x < xn with x ∈ H so close to xn that if x ∈ Ja,n,�′ , then �′ � �0. Set

t = |xn − an,2�′+1|; the distance between xn and the right endpoint of Ja,n,�′ . Since
|Ja,n,�′ | < |Ia,n,�′ | ε

K < t ε
K , we conclude that t < |xn −x| � |Ja,n,�′ |+ t < |Ia,n,�′ | ε

K +

t < t
(
1 + ε

K

)
. Since |xn − an,2�′+1| � |Ia,n,�′ |/γn, we have

|xn − an,2�′+2| = |xn − an,2�′+1 − (an,2�′+2 − an,2�′+1)| < t − γnt = (1− γn)t.

Moreover

|xn − an,2�′+4| � (1 − γn)|xn − an,2�′+3| < (1− γn)|xn − an,2�′+2| < (1− γn)
2t

and in general
|xn − an,2(�′+K)| � (1− γn)K t < εt.

In the interval (an,2�′+1, an,2(�′+K)) there are K intervals Ia,n,�; namely Ia,n,�′ ,
Ia,n,�′+1, . . . , Ia,n,�′+K−1. Since |Ja,n,�| < |Ia,n,�| ε

K for all � = �′ + 1, �′ + 2, . . . , �′ +
K − 1, and since for these same values of � we have |Ia,n,�| < t, it follows that
|Ja,n,�| < ε

K t and consequently

�′+K−1∑
�=�′+1

|Ja,n,�| < (K − 1) ε
K t < εt.

The function f(n) changes by αn

(
(an,2�+2 − xn)k − (an,2�+1 − xn)k

)
on Ia,n,� =

[an,2�+1, an,2�+2], later it will also be useful to keep in mind that the sign of this

change equals that of (−1)k+1. From |xn − an,2(�′+K)| < εt and
�′+K−1∑
�=�′+1

|Ja,n,�| < εt

it is easy to see that (Recall that t = |xn − an,2�′+1|.)

αntk > (−1)k+1(f(n)(an,2(�′+K))− f(n)(an,2�′+1))

= (−1)k+1
�′+K−1∑

�=�′
f(n)(an,2�+2)− f(n)(an,2�+1)

= (−1)k
�′+K−1∑

�=�′
αn((an,2�+1 − xn)k − (an,2�+2 − xn)k) > αn((1 − 2ε)t)k.
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From (13) and from the continuity of f(n) it follows that

|f(n)(an,2(�′+K))− f(n)(xn)| � αn

γk
n

|an,2(�′+K) − xn|k � αn

γk
n

εktk.

Since f(n) is constant on Ja,n,�′ , we have f(n)(x) = f(n)(an,2�′+1); hence

αntk +
αn

γk
n

εktk > (−1)k(
f(n)(x)− f(n)(xn)

)
> αn(1 − 2ε)ktk − αn

γk
n

εktk.

Using the above inequality, t < |xn − x| < (1 + ε
K )t, and the fact that the above

argument is valid for any ε > 0 one can easily verify that

f(n)(x) − f(n)(xn)
(x − xn)k

→ αn as x → xn, x < xn, and x ∈ H.

A similar argument is valid when x > xn. This implies fj(n)(xn) = 0 for 0 �
j < k and fk(n)(xn) = αnk! �= 0. Therefore for each n0 ∈ � we have f ′(xn0) =

f ′(n0)(xn0 ) = 0, fj(xn0) = fj(n0)(xn0) = 0 for 1 � j < k, and fk(xn0) =
fk(n0)(xn0) = αn0k! �= 0 = f (k)(xn0 ). �

Theorem 6. Let H be a non empty perfect set and let f ∈ NPDk(H). Assume
that fj = f (j) on H for all 2 � j � k − 1 and let

E =
{
x ∈ H ; if i+ j < k, or if i+ j = k and i > 0, then(

f (i)
)
j
(x) = f (i+j)(x) and fk(x) �= f (k)(x)

}
.

Suppose E is dense in H . Then there is a (non empty) portion I ∩H of H such that

for each x ∈ I ∩ E there is a γ ∈ (0, 1) such that H is γ-gap porous at x.

The above theorem seems to be too restrictive, but if E is not dense in H , then we

can still obtain some information about its size. It is clear that the union of dense
in itself sets is dense in itself. Let E0 denote a maximal dense in itself subset of E

and H0 be the closure of E0. Then E \ H0 is a scattered set, and our theorem is
applicable to H0. Here we also point out that the assumptions in the definition of the

set E are not unnatural either. If fk(x) �= f (k)(x) and x �∈ E, then there is a k′ < k

and 0 < i < k such that for g = f (i) the point x belongs to a set of non-coincidence,

E′, which is defined analogously to E by using g and k′. This means that one should
think of E as an “exact” non-coincidence set of order k.

Theorems 5 and 6 imply that E2 can be dense in H if and only if the set of gap
porosity points is dense in H . Furthermore the set {f (k) �= fk} can be dense in H

for some f ∈ NPDk(H) if and only if the set of gap porosity points of H is dense in
H .
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����. By Baire Category Theorem there is a portion I ∩ H , a δ0 > 0, an

M ′ ∈ (0,∞) and a set F ⊂ I ∩ H dense in I ∩ H such that for each x ∈ I ∩ H we
have |fk(x)| � M ′ and for each x ∈ F and each y ∈ H with |y − x| < δ0

(14)

∣∣∣∣f(y)−
k∑

j=0

fj(x)
j!
(y − x)j

∣∣∣∣ � |y − x|k.

Let p ∈ I ∩ E. As in the proof of Theorem 2 for x ∈ H we let

g(x) = f(x)−
k∑

j=0

f (j)(p)
j!
(x − p)j .

Then g(j)(p) = gj(p) = 0 for all j = 0, 1, . . . , k − 1, g(k)(p) = 0 and gk(p) =
fk(p) − f (k)(p) �= 0. In general for each y ∈ H we have gk(y) = fk(y) − f (k)(p) and

hence |gk(y)| � M ′ + |f (k)(p)| = M for all y ∈ I ∩ H . Moreover since g − f is a
polynomial of degree no more than k, for x, y ∈ H

g(y)−
k∑

j=0

gj(x)
j!
(y − x)j = f(y)−

k∑
j=0

fj(x)
j!
(y − x)j .

Thus by (14) for x ∈ F and y ∈ H with |y − x| < δ0

(15)

∣∣∣∣g(y)−
k∑

j=0

gj(x)
j!
(y − x)j

∣∣∣∣ < |y − x|k.

Let A =
( |gk(p)|
2(M + k!)

) 1
k−1
and set γ = A

1+A . We will now show that H is γ-gap

porous at p using Proposition 4.

Let ε > 0. By hypothesis, gj(x) = g(j)(x) for each x ∈ H and 1 � j < k and since
p ∈ E, if i+ j < k or if i+ j = k and i > 0, then

(
g(i)

)
j
(p) = g(i+j)(p). Thus there

is a 0 < δ1 < δ0 such that y ∈ H , |y − p| < δ1 and 1 � i < k imply

∣∣∣∣gi(y)−
k−i∑
j=0

g(i+j)(p)
j!

(y − p)j
∣∣∣∣ < εi|y − p|k−i

where εi =
i!|gk(p)|

k!

(
1−γ

γ

)i−1
. Since g(j)(p) = 0, for j = 0, 1, . . . , k and |y − p| < δ1

we obtain

(16) |gi(y)| < εi|y − p|k−i.
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Since gj(p) = 0 for j = 0, 1, . . . , k − 1, there is a 0 < δ2 < δ1 such that y ∈ H and

|y − p| < δ2 implies

(17)
∣∣∣g(y)− gk(p)

k!
(y − p)k

∣∣∣ < εk|y − p|k

where εk =
ε(1− γ)k−1|gk(p)|(
1 + (1− γ)k−1

)
2k!
. Let x, y ∈ H with |p − y| < δ2. Further suppose

y < x < p. (The argument for p < x < y is similar.) In addition assume that x ∈ F .
By (15), (16) and (17)

∣∣∣gk(p)
k!

∣∣∣|(y − p)k − (x − p)k|

�
∣∣∣gk(p)

k!
(y − p)k − g(y)

∣∣∣+ |g(y)− g(x)|+
∣∣∣g(x)− gk(p)

k!
(x − p)k

∣∣∣
< εk|y − p|k +

∣∣∣∣g(y)−
k∑

j=0

gj(x)
j!
(y − x)j

∣∣∣∣+
k∑

j=1

|gj(x)|
j!

|y − x|j + εk|x − p|k

< εk(p − y)k + |y − x|k +
k−1∑
j=1

εj |x − p|k−j |y − x|j
j!

+
M

k!
|y − x|k + εk(p − x)k.

Since

|(y − p)k − (x − p)k| = |y − x|
∣∣∣∣

k∑
j=1

(y − p)k−j(x − p)j−1
∣∣∣∣

= (x − y)
k∑

j=1

(p − y)k−j(p − x)j−1,

(18)

∣∣∣gk(p)
k!

∣∣∣(x − y)
k∑

j=1

(p − y)k−j(p − x)j−1

< εk

(
(p − y)k + (p − x)k

)
+

k−1∑
j=1

εj(p − x)k−j(x − y)j

j!
+

(M + k!
k!

)
(x − y)k.

Suppose ε < x−y
p−y < γ. Since p− y = p−x+x− y < p−x+γ(p− y), (1−γ)(p− y) <

(p − x). So for j = 1, 2, . . . , k − 1

(19)

εj(p − x)k−j(x − y)j < εj(x − y)(p − y)k−j(p − y)j−1γj−1

< εj(x − y)(p − y)k−j(p − x)j−1
( γ

1− γ

)j−1

=
|gk(p)|

k!
j!(x − y)(p − y)k−j(p − x)j−1.
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Also

εk

(
(p − y)k + (p − x)k

)
+

(M + k!
k!

)
(x − y)k

< εk(x − y)
( (p − x)k−1

ε(1− γ)k−1
+
(p − x)k−1

ε

)

+ (x − y)
(M + k!

k!

)( γ

1− γ

)k−1
(p − x)k−1

=
|gk(p)|
2k!

(x − y)(p − x)k−1 +
|gk(p)|
2k!

(x − y)(p − x)k−1

=
|gk(p)|

k!
(x − y)(p − x)k−1.

Summing inequality (19) multiplied by 1/j! for j = 1, 2, . . . , k − 1, and adding to it
the above estimate contradicts inequality (18). Thus x−y

p−y � ε or x−y
p−y � γ. Since F

is dense in I ∩ H , we may assume that x ∈ I ∩ H . So by Proposition 4 the set H is
γ-gap porous at p. �
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