n-INNER PRODUCT SPACES AND PROJECTIONS

ALEKSANDER MISIAK, ALICJA RYŻ, Szczecin

(Received October 29, 1997)

Abstract. This paper is a continuation of investigations of n-inner product spaces given in [5, 6, 7] and an extension of results given in [3] to arbitrary natural n. It concerns families of projections of a given linear space L onto its n-dimensional subspaces and shows that between these families and n-inner products there exist interesting close relations.

Keywords: n-inner product space, n-normed space, n-norm of projection

MSC 2000: 46C05, 46C50

1. n-inner products and n-norms

1.1. Let n be a natural number $(n \neq 0)$, L a linear space with dim $L \geqslant n$ and let $(\cdot, \cdot \mid \cdot, \dots, \cdot)$ be a real function on $L^{n+1} = \underbrace{L \times \dots \times L}_{n+1 \text{ times}}$.

In the case n = 1, we also write (\cdot, \cdot) instead of $(\cdot, \cdot | \cdot, \dots, \cdot)$ and $(a, b | a_2, \dots, a_n)$ is to be understood as the expression (a, b). Let us assume the following conditions:

- 1. $(a, b \mid a_2, \dots, a_n) \ge 0$, $(a, a \mid a_2, \dots, a_n) = 0$ if and only if a, a_2, \dots, a_n are linearly dependent,
- 2. $(a, b \mid a_2, \dots, a_n) = (b, a \mid a_2, \dots, a_n),$
- 3. $(a, b | a_2, ..., a_n) = (a, b | a_{i_2}, ..., a_{i_n})$ for every permutation $(i_2, ..., i_n)$ of (2, ..., n),
- 4. if n > 1, then $(a, a \mid a_2, a_3, \dots, a_n) = (a_2, a_2 \mid a, a_3, \dots, a_n)$,
- 5. $(\alpha a, b \mid a_2, \dots, a_n) = \alpha (a, b \mid a_2, \dots, a_n)$ for every real α ,
- 6. $(a+b,c \mid a_2,\ldots,a_n) = (a,c \mid a_2,\ldots,a_n) + (b,c \mid a_2,\ldots,a_n).$

Then $(\cdot, \cdot | \cdot, \ldots, \cdot)$ is called an *n-inner product* on L (see [5]) and $(L, (\cdot, \cdot | \cdot, \ldots, \cdot))$ is called an *n-inner product space*. The concept of an *n*-inner product space is a generalization of the concepts of an inner product space (n = 1) and of a 2-inner product space (see [1]).

1.2. Let n > 1. An *n*-inner product space L and its *n*-inner product $(\cdot, \cdot \mid \cdot, \dots, \cdot)$ are called *simple* if there exists an inner product (\cdot, \cdot) on L such that the relation

$$(a, b \mid a_2, \dots, a_n) = \begin{vmatrix} (a, b) & (a, a_2) & \dots & (a, a_n) \\ (a_2, b) & (a_2, a_2) & \dots & (a_2, a_n) \\ \vdots & \vdots & \ddots & \vdots \\ (a_n, b) & (a_n, a_2) & \dots & (a_n, a_n) \end{vmatrix}$$

holds. The inner product (\cdot, \cdot) is said to generate the *n*-inner product $(\cdot, \cdot \mid \cdot, \dots, \cdot)$.

An element $a \in L$ is said to be orthogonal to a non-empty subset S of L if $(a, e_1 | e_2, \ldots, e_n) = 0$ for arbitrary $e_1, \ldots, e_n \in S$. A subset S of L is said to be orthogonal if it is linearly independent, contains at least n elements and if every $e \in S$ is orthogonal to $S \setminus \{e\}$.

- **1.3.** An *n*-norm on L is a real function $\|\cdot, \dots, \cdot\|$ on L^n which satisfies the following conditions:
 - 1. $||a_1, \ldots, a_n|| = 0$ if and only if a_1, \ldots, a_n are linearly dependent,
 - 2. $||a_1, \ldots, a_n|| = ||a_{i_1}, \ldots, a_{i_n}||$ for every permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$,
 - 3. $\|\alpha a_1, a_2, \dots, a_n\| = |\alpha| \|a_1, a_2, \dots, a_n\|$ for every real number α ,
 - 4. $||a+b, a_2, \dots, a_n|| \le ||a, a_2, \dots, a_n|| + ||b, a_2, \dots, a_n||$.

L equipped with an n-norm $\|\cdot, \dots, \cdot\|$ is called an n-normed space. The concept of an n-normed space is a generalization of the concepts of a normed (n = 1) and a 2-normed space (see [2]).

Theorem 1. (Theorem 7 of [5]) For every n-inner product $(\cdot, \cdot | \cdot, \dots, \cdot)$ on L,

(1)
$$||a_1, a_2, \dots, a_n|| = \sqrt{(a_1, a_1 \mid a_2, \dots, a_n)}$$

defines an n-norm on L for which

(2)
$$(a,b \mid a_2,\ldots,a_n) = \frac{1}{4}(\|a+b,a_2,\ldots,a_n\|^2 - \|a-b,a_2,\ldots,a_n\|^2)$$

and

(3)
$$\|a+b, a_2, \dots, a_n\|^2 + \|a-b, a_2, \dots, a_n\|^2 = 2(\|a, a_2, \dots, a_n\|^2 + \|b, a_2, \dots, a_n\|^2)$$
 are true.

Conversely, for every n-norm $\|\cdot, \dots, \cdot\|$ on L with the property (3), (2) defines an n-inner product on L for which (1) is true.

For every *n*-inner product $(\cdot, \cdot | \cdot, \ldots, \cdot)$ on *L* the *n*-norm given by (1) is said to be associated to $(\cdot, \cdot | \cdot, \ldots, \cdot)$. If in connection with an *n*-inner product on *L* an *n*-norm is used, then $\|\cdot, \ldots, \cdot\|$ always will be the *n*-norm associated to $(\cdot, \cdot | \cdot, \ldots, \cdot)$.

2. Projections in *n*-inner product spaces

2.1. Let $(L, (\cdot, \cdot | \cdot, \ldots, \cdot))$ be an *n*-inner product space. For arbitrary linearly independent points $a_1, \ldots, a_n \in L$, let $\operatorname{pr}_{a_1, \ldots, a_n}$ be the mapping of L into L given by

$$\operatorname{pr}_{a_1,\dots,a_n}(c) = \frac{(c, a_1 \mid a_2,\dots,a_n)}{\|a_1,\dots,a_n\|^2} a_1 + \dots + \frac{(c, a_n \mid a_1,\dots,a_{n-1})}{\|a_1,\dots,a_n\|^2} a_n$$

(see [3], where n=2). We often use the notion

$$(c, a_k \mid a_1, \dots, \widehat{a_k}, \dots, a_n) = (c, a_k \mid a_1, \dots, a_{k-1}, a_{k+1}, \dots, a_n)$$

and

$$\operatorname{pr}_{a_1,\dots,\underline{a_k},\dots,a_n}(c) = \frac{(c, a_k \mid a_1,\dots,\widehat{a_k},\dots,a_n)}{\|a_1,\dots,a_n\|^2}.$$

Then we have

$$\operatorname{pr}_{a_1,\dots,a_n}(c) = \sum_{k=1}^n \frac{(c, a_k \mid a_1, \dots, \widehat{a_k}, \dots, a_n)}{\|a_1, \dots, a_n\|^2} a_k$$
$$= \sum_{k=1}^n \operatorname{pr}_{a_1,\dots,\underline{a_k},\dots,a_n}(c) a_k.$$

Theorem 2. $\operatorname{pr}_{a_1,\ldots,a_n}$ is a projection of L onto $L(\{a_1,\ldots,a_n\})$, the linear space generated by the set $\{a_1,\ldots,a_n\}$.

Proof. Obviously $\operatorname{pr}_{a_1,\ldots,a_n}$ is linear. Since $\operatorname{pr}_{a_1,\ldots,a_n}(a_k)=a_k$ for arbitrary $k\in\{1,\ldots,n\}$, $\operatorname{pr}_{a_1,\ldots,a_n}$ maps L onto $L(\{a_1,\ldots,a_n\})$. Moreover,

$$\operatorname{pr}_{a_1,\dots,a_n}^2(c) = \sum_{k=1}^n \frac{(\operatorname{pr}_{a_1,\dots,a_n}(c), a_k \mid a_1,\dots,\widehat{a_k},\dots,a_n)}{\|a_1,\dots,a_n\|^2} a_k$$

from which by virtue of

$$\frac{(\operatorname{pr}_{a_1,\dots,a_n}(c), a_k \mid a_1, \dots, \widehat{a_k}, \dots, a_n)}{\|a_1, \dots, a_n\|^2} \\
= \sum_{l=1}^n \frac{(c, a_l \mid a_1, \dots, \widehat{a_l}, \dots, a_n) (a_l, a_k \mid a_1, \dots, \widehat{a_k}, \dots, a_n)}{\|a_1, \dots, a_n\|^4} \\
= \frac{(c, a_k \mid a_1, \dots, \widehat{a_k}, \dots, a_n)}{\|a_1, \dots, a_n\|^2}$$

we get

$$\operatorname{pr}_{a_1,...,a_n}^2(c) = \operatorname{pr}_{a_1,...,a_n}(c).$$

Theorem 3. $\operatorname{pr}_{a_1,\ldots,a_n}$ is independent of the special choice of a_1,\ldots,a_n in $L(\{a_1,\ldots,a_n\})$; this means, for arbitrary linearly independent points $a_i' = \sum_{k=1}^n \alpha_{i,k} a_k$, $i=1,\ldots,n$, we have

$$\operatorname{pr}_{a'_1,\dots,a'_n} = \operatorname{pr}_{a_1,\dots,a_n}$$

Proof. Let linearly independent points $a'_i = \sum_{k=1}^n \alpha_{i,k} a_k$, $i = 1, \ldots, n$ be given.

Then

$$\begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} \neq 0.$$

For arbitrary $c \in L$,

$$\operatorname{pr}_{a'_{1},...,a'_{n}}(c) = \sum_{i,\,l=1}^{n} \alpha_{i,l} \frac{\left(c, \sum_{k=1}^{n} \alpha_{i,k} \, a_{k} \, \Big| \, \sum_{k=1}^{n} \alpha_{1,k} \, a_{k}, \dots, \sum_{k=1}^{n} \alpha_{i,k} a_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} \, a_{k}\right)}{\left\|\sum_{k=1}^{n} \alpha_{1,k} \, a_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} \, a_{k}\right\|^{2}} a_{l}.$$

Using the notion \sum' , which means that summation is taken only with respect to different indices, formula (8) in Theorem 6 of [6] implies that

90

and

$$\left\| \sum_{k=1}^{n} \alpha_{1,k} a_k, \dots, \sum_{k=1}^{n} \alpha_{n,k} a_k \right\|^2 = \left\| \begin{array}{ccc} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{array} \right\|^2 \|a_1, \dots, a_n\|^2.$$

This yields that

$$\operatorname{pr}_{a'_{1},...,a'_{n}}(c) = \sum_{l=1}^{n} \frac{(c, a_{l} \mid a_{1},...,\widehat{a}_{l},...,a_{n})}{\|a_{1},...,a_{n}\|^{2}} a_{l} = \operatorname{pr}_{a_{1},...,a_{n}}(c)$$

which proves the theorem.

Theorem 4. For arbitrary $c \in L$, $c - \operatorname{pr}_{a_1, \dots, a_n}(c)$ is orthogonal to $L(\{a_1, \dots, a_n\})$.

Proof. For arbitrary $a_i' = \sum_{k=1}^n \alpha_{i,k} a_k$, i = 1, ..., n, by means of (8) in Theorem 6 (see [6]) we get

$$\begin{pmatrix}
c - \operatorname{pr}_{a_{1}, \dots, a_{n}}(c), \sum_{k=1}^{n} \alpha_{1,k} \, a_{k} \mid \sum_{k=1}^{n} \alpha_{2,k} \, a_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} \, a_{k} \end{pmatrix} \\
= \begin{pmatrix}
c, \sum_{k=1}^{n} \alpha_{1,k} \, a_{k} \mid \sum_{k=1}^{n} \alpha_{2,k} \, a_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} \, a_{k} \end{pmatrix} \\
- \begin{pmatrix}
\sum_{k=1}^{n} \frac{(c, a_{k} \mid a_{1}, \dots, \widehat{a_{k}}, \dots, a_{n})}{\|a_{1}, \dots, a_{n}\|^{2}} \, a_{k}, \sum_{k=1}^{n} \alpha_{1,k} \, a_{k} \mid \sum_{k=1}^{n} \alpha_{2,k} \, a_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} \, a_{k} \end{pmatrix} \\
= \sum_{j,k_{2} < \dots < k_{n}} \begin{pmatrix}
1 & 0 & \dots & 0 \\
0 & \alpha_{2,k_{2}} & \dots & \alpha_{2,k_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \alpha_{n,k_{2}} & \dots & \alpha_{n,k_{n}} \end{pmatrix} \begin{pmatrix}
\alpha_{1,j} & \alpha_{1,k_{2}} & \dots & \alpha_{1,k_{n}} \\
\alpha_{2,j} & \alpha_{2,k_{2}} & \dots & \alpha_{2,k_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{n,j} & \alpha_{n,k_{2}} & \dots & \alpha_{n,k_{n}} \end{pmatrix} \begin{pmatrix}
c, a_{j} \mid a_{k_{2}}, \dots, a_{k_{n}} \\
\alpha_{2,1} & \dots & \alpha_{2,n} \\
\vdots & \ddots & \vdots \\
\alpha_{n,1} & \dots & \alpha_{n,n} \end{pmatrix} \begin{pmatrix}
\alpha_{1,1} & \dots & \alpha_{1,n} \\
\alpha_{2,1} & \dots & \alpha_{2,n} \\
\vdots & \ddots & \vdots \\
\alpha_{n,1} & \dots & \alpha_{n,n} \end{pmatrix} \begin{pmatrix}
\alpha_{1,1} & \dots & \alpha_{1,n} \\
\alpha_{2,1} & \dots & \alpha_{2,n} \\
\vdots & \ddots & \vdots \\
\alpha_{n,1} & \dots & \alpha_{n,n} \end{pmatrix} = 0.$$

This was to be proved.

2.2. From Theorem 2 of [7] we know the following: if $(\cdot, \cdot | \cdot, \dots, \cdot)$ is a simple n-inner product on L and (\cdot, \cdot) generates $(\cdot, \cdot | \cdot, \dots, \cdot)$, then for arbitrary $a \in L$ and

arbitrary $S \subset L$ which generates a linear subspace of L of dimension $\geqslant n, a$ is orthogonal to S relative to $(\cdot, \cdot \mid \cdot, \ldots, \cdot)$ if and only if a is orthogonal to S relative to (\cdot, \cdot) . From this and Theorem 4 it follows that if $(\cdot, \cdot \mid \cdot, \ldots, \cdot)$ is simple and (\cdot, \cdot) is an inner product on L generating $(\cdot, \cdot \mid \cdot, \ldots, \cdot)$, then for arbitrary $c \in L$, $c - \operatorname{pr}_{a_1, \ldots, a_n}(c)$ is orthogonal to $L(\{a_1, \ldots, a_n\})$ relative to (\cdot, \cdot) .

2.3. From Theorem 3 of [6] we know that if S is an orthogonal set in L, for every $e \in S$, distinct $e_2, \ldots, e_n \in S \setminus \{e\}$, distinct $e'_2, \ldots, e'_n \in S \setminus \{e\}$ and every c from the linear space generated by S, we have

$$\frac{(c, e \mid e_2, \dots, e_n)}{\|e, e_2, \dots, e_n\|^2} = \frac{(c, e \mid e'_2, \dots, e'_n)}{\|e, e'_2, \dots, e'_n\|^2},$$

which implies $\operatorname{pr}_{\underline{e},e_2,\dots,e_n}(c) = \operatorname{pr}_{\underline{e},e'_2,\dots,e'_n}(c)$. This means that under the above conditions the coordinate $\operatorname{pr}_{\underline{e},e_2,\dots,e_n}(c)$ of $\operatorname{pr}_{e,e_2,\dots,e_n}(c)$ is independent of e_2,\dots,e_n .

For every *n*-dimensional linear subspace L' of L let $S_{L'}$ be the set of all subsets $\{a_1, \ldots, a_n\}$ of L' such that $\|a_1, \ldots, a_n\| = 1$. Then for arbitrary $\{a_1, \ldots, a_n\}$, $\{a'_1, \ldots, a'_n\} \in S_{L'}$ we have $a'_i = \sum_{k=1}^n \alpha_{i,k} a_k$, $i = 1, \ldots, n$ with

$$\begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} = \pm 1.$$

S is maximal in the sense that if $\{a_1, \ldots, a_n\} \in S_{L'}$, then for arbitrary points $a'_i = \sum_{k=1}^n \alpha_{i,k} a_k$, $i = 1, \ldots, n$ with

$$\begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} = \pm 1$$

we have $\{a'_1, ..., a'_n\} \in S_{L'}$.

From the proof of Theorem 4 we know that

$$\left(c, \sum_{k=1}^{n} \alpha_{1,k} a_{k} \mid \sum_{k=1}^{n} \alpha_{2,k} a_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} a_{k}\right) = \begin{vmatrix} \operatorname{pr}_{\underline{a_{1},\dots,a_{n}}(c)} & \dots & \operatorname{pr}_{a_{1},\dots,\underline{a_{n}}(c)} \\ \overline{\alpha_{2,1}} & \dots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} \begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & \dots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix}$$

whenever $c \in L$ and $\{a_1, \ldots, a_n\} \in S_{L'}$.

Theorem 5. Let L' and L^+ be n-dimensional linear subspaces of L such that $\dim(L'\cap L^+)=n-1$ and let $\{a',a_2,\ldots,a_n\}\in S_{L'}$ and $\{a^+,a_2,\ldots,a_n\}\in S_{L^+}$. Then

$$\operatorname{pr}_{\underline{a}^+,a_2,\dots,a_n}(a') = \operatorname{pr}_{\underline{a'},a_2,\dots,a_n}(a^+).$$

$$Proof$$
. Evident.

- 3. Generation of n-inner products by means of families of projections
- **3.1.** Let L be an arbitrary linear space of dimension $\geq n$. For every n-dimensional linear subspace L' of L let $S_{L'}$ be a maximal set of subsets $\{a_1, \ldots, a_n\}$ of linearly independent points of L' such that for arbitrary $\{a_1, \ldots, a_n\}$, $\{a'_1, \ldots, a'_n\} \in S_{L'}$ we have $a'_i = \sum_{k=1}^n \alpha_{i,k} a_k$, $i = 1, \ldots, n$ with

$$\begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} = \pm 1$$

Moreover, let us assume the following:

1. For every n-dimensional linear subspace L' of L there is a projection $\operatorname{pr}_{L'}$ of L onto L' for which for every $\{a_1, \ldots, a_n\} \in S_{L'}$ we also will use the notation

$$\operatorname{pr}_{a_1,\dots,a_n} = \sum_{k=1}^n \operatorname{pr}_{a_1,\dots,\underline{a_k},\dots,a_n} a_k.$$

2. If L', L^+ are n-dimensional linear subspaces of L such that dim $(L' \cap L^+) = n-1$ and if $\{a', a_2, \ldots, a_n\} \in S_{L'}$ and $\{a^+, a_2, \ldots, a_n\} \in S_{L^+}$ then

(4)
$$\operatorname{pr}_{\underline{a^+},a_2,\ldots,a_n}(a') = \operatorname{pr}_{\underline{a'},a_2,\ldots,a_n}(a^+).$$

Every n points a'_1, \ldots, a'_n of L can be written in the form $a'_i = \sum_{k=1}^n \alpha_{i,k} a_k$, $i = 1, \ldots, n$, by means of $\{a_1, \ldots, a_n\} \in S_{L'}$ with a suitable L'. Let us define

(5)
$$(c, a'_1 \mid a'_2, \dots, a'_n) = \begin{vmatrix} \operatorname{pr}_{\underline{a_1}, \dots, a_n}(c) & \dots & \operatorname{pr}_{a_1, \dots, \underline{a_n}}(c) \\ \alpha_{2,1} & \dots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} \begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & \dots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix}.$$

Theorem 6. $(c, a'_1 | a'_2, ..., a'_n)$ given by (5) is independent of the special choice of $\{a_1, ..., a_n\}$.

Proof. Let $\{a_1,\ldots,a_n\}$, $\{\widetilde{a}_1,\ldots,\widetilde{a}_n\}\in S_{L'}$ and $a_k=\sum\limits_{l=1}^n\widetilde{\alpha}_{k,l}\,\widetilde{a}_l,\,k=1,\ldots,\,n.$

$$\begin{vmatrix} \widetilde{\alpha}_{1,1} & \dots & \widetilde{\alpha}_{1,n} \\ \vdots & \ddots & \vdots \\ \widetilde{\alpha}_{n,1} & \dots & \widetilde{\alpha}_{n,n} \end{vmatrix} = \pm 1$$

and $a'_i = \sum_{k=1}^n \alpha_{i,k} a_k = \sum_{k,l=1}^n \alpha_{i,k} \widetilde{\alpha}_{k,l} \widetilde{\alpha}_l, i = 1, \ldots, n.$ From

$$\sum_{l=1}^{n} \operatorname{pr}_{\widetilde{a}_{1},\dots,\widetilde{\underline{a}}_{l},\dots,\widetilde{a}_{n}}(c) \widetilde{a}_{l} = \sum_{k=1}^{n} \operatorname{pr}_{a_{1},\dots,\underline{a_{k}},\dots,a_{n}}(c) a_{k}$$

$$= \sum_{k=1}^{n} \operatorname{pr}_{a_{1},\dots,\underline{a_{k}},\dots,a_{n}}(c) \widetilde{\alpha}_{k,l} \widetilde{a}_{l}$$

we get $\operatorname{pr}_{\widetilde{a}_1,\ldots,\underline{\widetilde{a}}_l,\ldots,\widetilde{a}_n}(c) = \sum_{k=1}^n \operatorname{pr}_{a_1,\ldots,\underline{a_k},\ldots,a_n}(c) \widetilde{\alpha}_{k,l}, \ l=1,\ldots,n,$ and consequently

$$\begin{vmatrix} \operatorname{pr}_{\underline{\alpha}_{1},\dots,\widetilde{\alpha}_{n}}(c) & \dots & \operatorname{pr}_{\overline{\alpha}_{1},\dots,\underline{\widetilde{\alpha}_{n}}}(c) \\ \sum_{k=1}^{n} \alpha_{2,k}\widetilde{\alpha}_{k,1} & \dots & \sum_{k=1}^{n} \alpha_{2,k}\widetilde{\alpha}_{k,n} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} \alpha_{n,k}\widetilde{\alpha}_{k,1} & \dots & \sum_{k=1}^{n} \alpha_{n,k}\widetilde{\alpha}_{k,n} \end{vmatrix} \begin{vmatrix} \sum_{k=1}^{n} \alpha_{1,k}\widetilde{\alpha}_{k,1} & \dots & \sum_{k=1}^{n} \alpha_{2,k}\widetilde{\alpha}_{k,n} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} \alpha_{n,k}\widetilde{\alpha}_{k,1} & \dots & \sum_{k=1}^{n} \alpha_{n,k}\widetilde{\alpha}_{k,n} \end{vmatrix} \begin{vmatrix} \sum_{k=1}^{n} \alpha_{2,k}\widetilde{\alpha}_{k,1} & \dots & \sum_{k=1}^{n} \alpha_{2,k}\widetilde{\alpha}_{k,n} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} \alpha_{n,k}\widetilde{\alpha}_{k,1} & \dots & \sum_{k=1}^{n} \alpha_{n,k}\widetilde{\alpha}_{k,n} \end{vmatrix}$$

$$= \begin{vmatrix} \operatorname{pr}_{\underline{\alpha}_{1},\dots,\underline{\alpha}_{n}}(c) & \dots & \operatorname{pr}_{\underline{\alpha}_{1},\dots,\underline{\alpha}_{n}}(c) \\ \alpha_{2,1} & \dots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix} \begin{vmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} \\ \alpha_{2,1} & \dots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \dots & \alpha_{n,n} \end{vmatrix}.$$

By virtue of (5) the last equation proves the theorem.

Theorem 7. $(\cdot, \cdot \mid \cdot, \ldots, \cdot)$ given by (5) is an n-inner product on L where for every n-dimensional linear subspace L' of L and arbitrary $\{a_1, \ldots, a_n\} \in S_{L'}$ we have $||a_1, \ldots, a_n|| = 1$.

Proof. Let a_1, \ldots, a_n be arbitrary in L, let L' be an n-dimensional linear subspace of L containing a_1, \ldots, a_n and let $\{a'_1, \ldots, a'_n\} \in S_{L'}$. Then $a_i = \sum_{k=1}^n \alpha_{i,k} a'_k$,

 $i = 1, \ldots, n$. Hence we get

$$(6) \quad \left(a_{1}, a_{1} \mid a_{2}, \dots, a_{n}\right) = \left(\sum_{k=1}^{n} \alpha_{1,k} a'_{k}, \sum_{k=1}^{n} \alpha_{1,k} a'_{k} \mid \sum_{k=1}^{n} \alpha_{2,k} a'_{k}, \dots, \sum_{k=1}^{n} \alpha_{n,k} a'_{k}\right)$$

$$= \begin{vmatrix} \operatorname{pr}_{\underline{a'_{1}}, \dots, \underline{a'_{n}}} \left(\sum_{k=1}^{n} \alpha_{1,k} a'_{k}\right) & \cdots & \operatorname{pr}_{\underline{a'_{1}}, \dots, \underline{a'_{n}}} \left(\sum_{k=1}^{n} \alpha_{1,k} a'_{k}\right) \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \cdots & \alpha_{n,n} \end{vmatrix} \begin{vmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \alpha_{2,1} & \cdots & \alpha_{2,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \cdots & \alpha_{n,n} \end{vmatrix} = \begin{vmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \vdots & \ddots & \vdots \\ \alpha_{n,1} & \cdots & \alpha_{n,n} \end{vmatrix}^{2},$$

which implies that $(a_1, a_1 | a_2, ..., a_n) \ge 0$ and moreover that $(a_1, a_1 | a_2, ..., a_n) = 0$ if and only if $a_1, ..., a_n$ are linearly dependent.

Now we shall show that for arbitrary $a', a^+, a_2, \ldots, a_n$ we have $(a', a^+|a_2, \ldots, a_n) = (a^+, a'|a_2, \ldots, a_n)$. If a', a_2, \ldots, a_n or a^+, a_2, \ldots, a_n are linearly dependent, then $(a', a^+|a_2, \ldots, a_n)$ and $(a^+, a'|a_2, \ldots, a_n)$ both are 0. Hence we may restrict our considerations to the case that a', a_2, \ldots, a_n and a^+, a_2, \ldots, a_n are linearly independent. Let L', L^+ denote the linear subspaces of L generated by a', a_2, \ldots, a_n or a^+, a_2, \ldots, a_n , respectively. There exist reals α' , α^+ different from 0 such that $\{\alpha'a', a_2, \ldots, a_n\} \in S_{L'}$ and $\{\alpha^+a^+, a_2, \ldots, a_n\} \in S_{L^+}$. This together with (4) and (5) yields

$$(a', a^{+} | a_{2}, \dots, a_{n}) = \frac{1}{\alpha^{+}} (a', \alpha^{+} a^{+} | a_{2}, \dots, a_{n}) = \frac{1}{\alpha' \alpha^{+}} \operatorname{pr}_{\underline{\alpha^{+} a^{+}}, a_{2}, \dots, a_{n}} (\alpha' a')$$
$$= \frac{1}{a' \alpha^{+}} \operatorname{pr}_{\underline{\alpha' a'}, a_{2}, \dots, a_{n}} (\alpha^{+} a^{+}) = (a^{+}, a' | a_{2}, \dots, a_{n}).$$

Using (5) we see that $(a, b \mid a_2, \ldots, a_n) = (a, b \mid a_{i_2}, \ldots, a_{i_n})$ for every permutation (i_2, \ldots, i_n) of $(2, \ldots, n)$. And (6) shows that if n > 1, then $(a, a \mid a_2, a_3, \ldots, a_n) = (a_2, a_2 \mid a, a_3, \ldots, a_n)$. Also the linearity of $(a, b \mid a_2, \ldots, a_n)$ with respect to a is evident. From (5) we immediately see that, moreover, for every $\{a_1, \ldots, a_n\} \in S_{L'}$ we have $\|a_1, \ldots, a_n\| = 1$.

3.2. If dim L=n, then in Assumption 2 of 3.1 we necessarily have $L'=L^+$, hence $a^+=\pm a'+\sum\limits_{k=1}^n\alpha_k\,a_k$, and $\operatorname{pr}_{a^+,a_2,\ldots,a_n}=\operatorname{pr}_{a',a_2,\ldots,a_n}$ is the identical mapping. From this we see that in this case, equation (4) becomes trivial. We can choose $S_{L'}$ arbitrarily and the corresponding n-inner products differ only by a factor.

Let now dim L > n. Then obviously (4) contains restrictions to the projections $\operatorname{pr}_{L'}$ if the sets $S_{L'}$ are fixed, and conversely for fixed projections $\operatorname{pr}_{L'}$ it contains restrictions to the sets $S_{L'}$.

4. n-norm of projections

4.1. Concerning the problem of the relations between norms $||b_1, \ldots, b_n||$ and $||\operatorname{pr}_{a_1, \ldots, a_n}(b_1), \ldots, \operatorname{pr}_{a_1, \ldots, a_n}(b_n)||$ we have the following results.

Theorem 8. Let $(L, (\cdot, \cdot | \cdot, \ldots, \cdot))$ be an *n*-inner product space which in the case n > 1 is simple. Then

(7)
$$||b_1, \dots, b_n|| \ge ||\operatorname{pr}_{a_1, \dots, a_n}(b_1), \dots, \operatorname{pr}_{a_1, \dots, a_n}(b_n)||$$
.

Proof. In the case n=1 the assertion of the theorem is well known. For further considerations let n>1. Let (\cdot,\cdot) be an inner product generating $(\cdot,\cdot|\cdot,\ldots,\cdot)$. Because of Theorem 3 we may restrict our considerations to the case that $(a_k,a_l)=\delta_{k,l}$ for $k,\ l\in\{1,\ldots,n\}$. If $\operatorname{pr}_{a_1,\ldots,a_n}(b_1),\ldots,\operatorname{pr}_{a_1,\ldots,a_n}(b_n)$ are linearly dependent, then obviously (7) is true. Therefore, in what follows we may assume that $\operatorname{pr}_{a_1,\ldots,a_n}(b_1),\ldots,\operatorname{pr}_{a_1,\ldots,a_n}(b_n)$ are linearly independent. Since for arbitrary points $c_1,\ldots,c_n\in L$ and arbitrary reals $\gamma_{l,k},\ l,\ k\in\{1,\ldots,n\}$, we have

$$\left\| \sum_{k=1}^{n} \gamma_{1,k} c_k, \dots, \sum_{k=1}^{n} \gamma_{n,k} c_k \right\|^2 = \begin{vmatrix} \gamma_{1,1} & \dots & \gamma_{1,n} \\ \vdots & \ddots & \vdots \\ \gamma_{n,1} & \dots & \gamma_{n,n} \end{vmatrix}^2 \|c_1, \dots, c_n\|^2,$$

we can see that, moreover, the restriction to the case $\operatorname{pr}_{a_1,\ldots,a_n}(b_k) = a_k, k = 1,\ldots,n$ is possible. Then we have $(b_k, a_l \mid a_1,\ldots,\widehat{a}_l,\ldots,a_n) = \delta_{kl}$ for $k, l \in \{1,\ldots,n\}$ and because of

$$(b_k, a_l \mid a_1, \dots, \widehat{a_l}, \dots, a_n)$$

$$= \begin{pmatrix} (b_k, a_l) & (b_k, a_1) & \dots & (b_k, a_{l-1}) & (b_k, a_{l+1}) & \dots & (b_k, a_n) \\ (a_1, a_l) & (a_1, a_1) & \dots & (a_1, a_{l-1}) & (a_1, a_{l+1}) & \dots & (a_1, a_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (a_{l-1}, a_l) & (a_{l-1}, a_1) & \dots & (a_{l-1}, a_{l-1}) & (a_{l-1}, a_{l+1}) & \dots & (a_{l-1}, a_n) \\ (a_{l+1}, a_l) & (a_{l+1}, a_1) & \dots & (a_{l+1}, a_{l-1}) & (a_{l+1}, a_{l+1}) & \dots & (a_{l+1}, a_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (a_n, a_l) & (a_n, a_1) & \dots & (a_n, a_{l-1}) & (a_n, a_{l+1}) & \dots & (a_n, a_n) \\ \end{pmatrix}$$

$$= (b_k, a_l)$$

we get $(b_k, a_l) = \delta_{kl}$ for $k, l \in \{1, ..., n\}$. In view of this we see that for arbitrary $k \in \{1, ..., n\}$,

$$(a_k, b_k - a_k \mid a_1, \dots, a_{k-1}, b_{k+1}, \dots, b_n)$$

$$= \begin{vmatrix} (a_k, b_k - a_k) & (a_k, a_1) & \dots & (a_k, a_{k-1}) & (a_k, b_{k+1}) & \dots & (a_k, b_n) \\ (a_1, b_k - a_k) & (a_1, a_1) & \dots & (a_1, a_{k-1}) & (a_1, b_{k+1}) & \dots & (a_1, b_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (a_{k-1}, b_k - a_k) & (a_{k-1}, a_1) & \dots & (a_{k-1}, a_{k-1}) & (a_{k-1}, b_{k+1}) & \dots & (a_{k-1}, b_n) \\ (b_{k+1}, b_k - a_k) & (b_{k+1}, a_1) & \dots & (b_{k+1}, a_{k-1}) & (b_{k+1}, b_{k+1}) & \dots & (b_{k+1}, b_n) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (b_n, b_k - a_k) & (b_n, a_1) & \dots & (b_n, a_{k-1}) & (b_n, b_{k+1}) & \dots & (b_n, b_n) \\ = 0.$$

This yields

$$||b_{1},...,b_{n}||^{2} = ||a_{1},b_{2},...,b_{n}||^{2} + ||b_{1}-a_{1},b_{2},...,b_{n}||^{2} + 2(a_{1},b_{1}-a_{1}|b_{2},...,b_{n})$$

$$\geq ||a_{1},b_{2},...,b_{n}||^{2}$$

$$\geq ...$$

$$\geq ||a_{1},...,a_{n}||^{2}$$

$$= ||pr_{a_{1},...,a_{n}}(b_{1}),...,pr_{a_{1},...,a_{n}}(b_{n})||^{2},$$

hence the theorem is proved.

In the case n > 1, (7) need not always be true as is shown by an example (with n = 2) given in [3].

References

- [1] C. Diminnie, S. Gähler, A. White: 2-inner product spaces. Demonstratio Math. 6 (1973), 525–536.
- [2] S. Gähler: Lineare 2-normierte Räume. Math. Nachr. 28 (1965), 1-43.
- [3] S. Gähler, Z. Żekanowski: Tensors, 2-inner products and projections. Demonstratio Math. 19 (1986), 747–766.
- [4] S. Gähler, Z. Żekanowski: Remarks on tensors and families of projections. Math. Nachr. 143 (1989), 277–290.
- [5] A. Misiak: n-inner product spaces. Math. Nachr. 140 (1989), 299–319.
- [6] A. Misiak: Orthogonality and orthonormality in n-inner product spaces. Math. Nachr. 143 (1989), 249–261.
- [7] A. Misiak: Simple n-inner product spaces. Prace Naukowe Politechniki Szczecińskiej 12 (1991), 63–74.
- [8] Z. Żekanowski: On some generalized 2-inner products in the Riemannian manifolds. Demonstratio Math. 12 (1979), 833–836.

Authors' address: Aleksander Misiak, Alicja Ryż, Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, Poland.