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n-INNER PRODUCT SPACES AND PROJECTIONS
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Abstract. This paper is a continuation of investigations of n-inner product spaces given
in [5, 6, 7] and an extension of results given in [3] to arbitrary natural n. It concerns families
of projections of a given linear space L onto its n-dimensional subspaces and shows that
between these families and n-inner products there exist interesting close relations.
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1. n-INNER PRODUCTS AND n-NORMS

1.1. Let n be a natural number (n # 0), L a linear space with dim L > n and let
(,+]+-..,") be areal function on L" ™t = L x ... x L.
—_——

n—+1 times
In the case n = 1, we also write (-, -) instead of (-,-|-,...,:) and (a,b|ag,...,an)

is to be understood as the expression (a,b). Let us assume the following conditions:

1. (a,blag,...,a,) =0,

(a,alaz,...,a,) =0 if and only if a, ay, ..., a, are linearly dependent,

2. (a,blag,...,an) = (b,alaz,...,a,),

3. (a,b|ag,...,an) = (a,b] asy,...,a;,) for every permutation (ig,...,%,) of
(2,....n),

4. if n > 1, then (a,a | az,as,...,an) = (az,a2 | a,as, ..., a,),

5. (aa,blag,...,a,) =a(a,b|as,...,a,) for every real «,

6. (a+b,claz,...,an) = (a,c|az,...,an) + (b,c|ag,...,an).

Then (-,-|-,...,-) is called an n-inner product on L (see [5]) and (L, (-, |-...,"))

is called an n-inner product space. The concept of an n-inner product space is a
generalization of the concepts of an inner product space (n = 1) and of a 2-inner
product space (see [1]).
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1.2. Let n > 1. An n-inner product space L and its n-inner product (-,-|-,...,")
are called simple if there exists an inner product (-,-) on L such that the relation

(av b) (a7 a2) ce (av an)
(az,b) (az,a2) ... (a2,an)
(a,b]az, ... an) = ) ) i
(an,b) (an,a2) ... (an,an)
holds. The inner product (-,-) is said to generate the n-inner product (-, |-,...,-).

An element a € L is said to be orthogonal to a non-empty subset S of L if
(a,e1|e2,...,en) = 0 for arbitrary eq, ..., e, € S. A subset S of L is said to be
orthogonal if it is linearly independent, contains at least n elements and if every
e € S is orthogonal to S\ {e}.

1.3. Ann-norm on L is a real function ||-, ..., || on L™ which satisfies the following
conditions:

1. ||la1,...,an]| = 0 if and only if a4, ..., a, are linearly dependent,

2. |la1, ..., an|| = llaiy, - - -, a;, || for every permutation (iq,...,i,) of (1,...,n),

3. |laar,ag, ..., an| = |a|||a1,az, ..., ay]| for every real number a,

4. |la+b,ag,...,a,n] < |la,az,...,an|| + ||b,az, ..., an]-

L equipped with an n-norm ||-,...,| is called an n-normed space. The concept

of an n-normed space is a generalization of the concepts of a normed (n = 1) and a
2-normed space (see [2]).

Theorem 1. (Theorem 7 of [5]) For every n-inner product (-,-|,...,-) on L,

(1) Hal,ag,...,anH:\/(al,a1|a2,...,an)

defines an n-norm on L for which

(2) (a,baz,...,an) = 2(la+b,as,....an]" = la = b,az,...,an]?)
and
(3) lla+b,as,...,anl*+lla=b,az,...,anl]* = 2([la, az, ..., anl* + b, a2, .. ., an|*)
are true.
Conversely, for every n-norm ||, ...,-|| on L with the property (3), (2) defines an

n-inner product on L for which (1) is true.

For every n-inner product (-, |, ...,-) on L the n-norm given by (1) is said to be
associated to (+,- |+, ...,-). If in connection with an n-inner product on L an n-norm
is used, then |-, ..., || always will be the n-norm associated to (-,-|-,...,").
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2. PROJECTIONS IN n-INNER PRODUCT SPACES

2.1. Let (L, GO IRV )) be an m-inner product space. For arbitrary linearly
independent points ay, ..., an € L, let pr,, . be the mapping of L into L given by
(c,a1 | az,... an) (c,an a1, ..., an—1)
PTay,...,an\C) = ay+...+ a
el = T e o

(see [3], where n = 2). We often use the notion

(c,ak\al,...,c’z\k,...,an): (c,ak\al,...,ak_l,ak+1,...,an)
and
(cyap | a1,y ..., a4k, ... an)
r c) =
p a1,...,a7k,...,an( ) ||a1’ . -aan”Q
Then we have
" (c,ar | a ay an)
_ , Uk 1y---50ky...,0Un
pral,...,an(c) - Z Ha1,~~~,anH2 ag

>
Il
—

M=

pra1:~~~7a_k7~~~;an(c) Ak -

=~
I

1

Theorem 2. pr, , isa projection of L onto L({a1,...,a,}), the linear space
generated by the set {ay,...,a,}.

Proof. Obviously pr,, ., islinear. Since pr,, , (ax) = ay for arbitrary k €
{1,...,n}, pr,, ., maps L onto L ({a,...,an}). Moreover,

pr2 (C) _ i (prah...,an(c)? ag ‘ ai, ... ,d\k, RN an)
Q1 yeeeyQp

ag
2 Jon,—anlP
from which by virtue of
(prahm}an(c),ak |a1,. .., Ak, ..., an)
ay, ... an?
_ i(c,al|a1,...,c?l,...,an)(al,ak\al,...,c?k,...,an)
2 o .- anll

_ (c,ap | a1y ... QK ... an)

||a17"'7anH2
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we get
Do, a,(€) = Pla, _a, ().
]

Theorem 3. pr,, . Iis independent of the special choice of ai, ..., a, in
L({a1,...,an}); this means, for arbitrary linearly independent points aj; = S Qi k G,
k=1
i=1, ..., n, we have

pra’l,...,a’ = pral,...,an .

n

Proof. Let linearly independent points a; = Xn: ajpak, t =1, ..., n be given.
Then =
a1l ... Qg
£ 0.
Qn, 1 Qn,n

For arbitrary c € L,

<C7 > Ok Qg ‘ DOk Qky v vy DO kAR -y 3 Ok ak)
1 k=1 k=1 k=1

k=
aj.

n
Pfa;,...,a;(c) = Z Q1

i,1=1

n

2
n
>0k AQky vy 2 Ok ak”
k=1 k=1

Using the notion Z', which means that summation is taken only with respect to

different indices, formula (8) in Theorem 6 of [6] implies that

—

n n n n n

g Qi (07 DGk | D Ok Gk, ey D Qikaky ey D Onk ak)

P k=1 k=1 k=1 k=1
1 0 o 0 Qg g Ozi,k.2 o e Qi ke,
0 a1,k2 oo Q1 ky (A a1,k2 A1, ky

/

= E (7N E 0 ai—1,ky v+ Qiclkp || ®i-1, Qi—l,kg -++ Oi—1,ky,
=1 0 Qit1ky -+ Qitlkp || Qi+l Qitlkg -« Qitl kg,

G ka<...<kn
(.) Qn, kg cee Qniky, Qn,j ko cee Qniky,
X (C,Clj | akg,...,akn)
) a1 A ky --- OOk, 1,5 Olky -+ A1k,
= > | e s (e ek, ak,)
I k2 <o Unl Op ko - Qp kg, | | Qn j Opn ks - Ok,
Q11 ... O1p 2
= (c,al|a1,...,al,...,an)

ap1 ... Qpn

)
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and

2
n n Q11 ... O1n ,
ZaLkak,...,Zan,kak = ||a1,...,anH
k=1 k=1 Qn1 ... Qpn
This yields that
" (c,ar|a a an)
l 1y dly...,Un
pr C:Z ’ a1 = Play,..an\C
a17 ) — ||a1,...7an||2 ay, ,a ( )
which proves the theorem. O

Theorem 4. For arbitrary c€ L, c—pr,, ., (c) is orthogonal to L({ax,...,an}).

Proof. For arbitrary a; = > e ag, i = 1, ..., n, by means of (8) in Theorem 6
k=1
(see [6]) we get

n n n
(C - pra1,...,an(c)v E a1,k E Qg Ak, - - -, § Qnp,k ak)
k=1 k=1 k=1
n n n
& § a1k Gk g Q2 Qky - v -y § Qn, i Ak
k=1 k=1 k=1

n
(cyap | a1,y ..., @k, ... an)
E 2 ak»E a1,k A E a2kak7~'~7§ Qn | Gf
|a1a an” k=1

1 0 o e 0 O(Lj a17k2 o e aLkn
|0 gk, oo ok, || Q2 Q2K --. Q2k,
= o . . o o (eai | any, - an,)
Goka<.<kn | * : : : : : : :
0 any - Qug, llOnj Qpks oo Qpg,
(c,a1laz,...,an) ... (caplar,..,an—1) || Q1,1 ... Q1p
Q21 N a2 n Q21 e Qo
Qnp 1 N Qnon Qp1 ... QOpn
=0.
This was to be proved. O
2.2. From Theorem 2 of [7] we know the following: if (-,-|-,...,-) is a simple
n-inner product on L and (-,-) generates (-,-|-,...,-), then for arbitrary a € L and
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arbitrary S C L which generates a linear subspace of L of dimension > n, a is

orthogonal to S relative to (-, | +,...,-) if and only if a is orthogonal to S relative to
(+,+). From this and Theorem 4 it follows that if (-, |-,...,-) is simple and (-, ) is an
inner product on L generating (-, |-,...,), then for arbitrary c€ L, c—pr,, , (c)

is orthogonal to L ({ay, ..., a,}) relative to (-, ).

2.3. From Theorem 3 of [6] we know that if S is an orthogonal set in L, for every
e € S, distinct eq, ..., e, € S\ {e}, distinct €, ..., e}, € S\ {e} and every ¢ from
the linear space generated by S, we have

(c,el|ea, ... en) _ (c,e|ehy ... el)
llesea, ..., enll? lleseh, ... eh|l?”’

which implies pr, ., . (c) = Precr e (c). This means that under the above con-

ditions the coordinate pr, ., . (c) of pr. ., . (c) is independent of es, ..., €.
For every n-dimensional linear subspace L’ of L let S, be the set of all subsets
{a1,...,a,} of L' such that |lay,...,a,|| = 1. Then for arbitrary {ai,...,an},
n
{da},...,al,} € Sy wehave a}, = > a;rak,i=1, ..., n with
k=1
aq1 oo O1p
=+1.
ap1 ... Qpn
S is maximal in the sense that if {aj,...,a,} € S/, then for arbitrary points a} =
n
E ozi,kak,i: 1, ..., n with
k=1
Q1,1 Q1,n
=+1
Q1 s Onop
we have {af,...,a),} € Sp.

From the proof of Theorem 4 we know that

n n n
(C, E aq .k Ak E Q2 | Ay v v vy E Qn k ak)
k=1 k=1 k=1

Pra; .. an(C) Pray,..,an(€) | | 1,1 a1n
Q21 . Qa2 n Q21 .. O2p
Qn 1 e Qn.n Qn 1 oo Opon

5
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whenever ¢ € L and {ay,...,a,} € Sp/.

Theorem 5. Let L' and LT be n-dimensional linear subspaces of L such that
dim (L'NLY) = n—1 and let {d,as,...,a,} € Sp and {a™,a2,...,a,} € Sp+.
Then

prﬂyaﬂyuwan(a/) = pri/ya27~~~,arz(a+) :

Proof. Evident. O

3. GENERATION OF m-INNER PRODUCTS BY MEANS OF FAMILIES OF PROJECTIONS

3.1. Let L be an arbitrary linear space of dimension > n. For every n-dimensional

linear subspace L’ of L let Sr, be a maximal set of subsets {a1,...,a,} of linearly
independent points of L’ such that for arbitrary {a1,...,a.}, {a},...,a,} € Sp. we
n
have a} = Qg ag, =1, ..., n with
k=1
1.1 Q1n
= 4+1.
Qnp 1 Qn.n

Moreover, let us assume the following:

1. For every n-dimensional linear subspace L’ of L there is a projection pry, of L
onto L’ for which for every {ai,...,a,} € Sr- we also will use the notation

n
Pla,,...a, = E :pra1,---,a_k7~~~,anak'
k=1

2. If L, Lt are n-dimensional linear subspaces of L such that dim (L' N L) =n—1

and if {a’,az,...,an} € Sy and {a™,as,...,a,} € Sp+ then
(4) prﬂvaﬂvnwan(a/) = prl/7a2y~~~7an(a+)'
n
Every n points af, ..., al, of L can be written in the form o} => a; pag, i =1,...,n,
=1

by means of {aj,...,a,} € Sr with a suitable L’. Let us define

prﬂ,...,an(c) e pral,___ﬂn(c) a1l ... Qip
) (c, ol a;l) _ a2'71 ) 042'771 Q21 ... Qag
Qn 1 . Qnon Qpi .- Qun
Theorem 6. (c,a} | dj,...,a},) given by (5) is independent of the special choice
of {ay,...,an}.
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n
Proof. Let {a1,...,an}, {a1,...,an} € Sppand ap = > ap a;, k=1, ..., n.

=1
Then
&171 &Ln
==+1
Qpi  --. Qng
n n
and a, = > aypar = Y, qp0a,i=1,...,n From

k=1 k=1

n n
Z Pral ,...,@,,...,an(c) al = Z pral,...,aik,...,an(c) ag
=1 k=1

n
= Z pral,...,%,...,an(c) &k»l al

k=1
n
we get pra, g a.(6) = X Pra,..ap..a.(€) Gk, =1, ..., n, and consequently
k=1 -
n n
Pral,...,an(c) Pral,...,an(c) > Q1 k01 Y a1 kQkn
- - k=1 k=1
n n n n
> oo RQE1 .. YL 02Ok || Y. 020k 1 > 0o kOkn
k=1 k=1 k=1 k=1
n n n n
> KOkl - D O kO || D Qn kO > kO
k=1 k=1 k=1 h=1
pra_l,...,an(c) s pra17...,a_n(c) a1 ... Qinp
Q21 N Qa2 n Q21 .. O2p
Qn 1 N Qn.n Qp1 ... Opn
By virtue of (5) the last equation proves the theorem. O
Theorem 7. (-,-|-,...,-) given by (5) is an n-inner product on L where for
every n-dimensional linear subspace L' of L and arbitrary {ai,...,an,} € Sp we
have |lay,...,a,|| = 1.
Proof. Let ay, ..., a, be arbitrary in L, let L' be an n-dimensional linear sub-
n
space of L containing as, ..., a, and let {a/,...,a,} € Sz.. Then a; = > o a},
k=1

94



i=1, ..., n. Hence we get

n n n n
_ / / / /
(6) (al,al |a2,...,an) = ( g 01, Qs E QK ay g Qo Ay - - - s E amkak)
k=1 k=1 k=1 k=1

Pr s . ol ( Z a17ka;€) e Pror oot ( Z a17ka;€> CV]_’l “ee aLn 2
L A\ R=1 U\ k=1 a1 ... Q1
Q21 N Qa2 n Q21 ... Q2 p
= = 5
Qp1 ... Qpn
Qnp 1 N Qn.n Qp1 ... Qpn
which implies that (a1, a1 | as, ..., a,) = 0 and moreover that (ai,a1 | ag,...,a,) =0
if and only if ay, ..., a, are linearly dependent.

Now we shall show that for arbitrary a’,a™, as, ..., a, we have (a,a™|as,...,a,)=
(a*,d'| ag,...,a,). If d; as,y ..., a, or at,as,...,a, are linearly dependent, then
(a,a™|ag,...,a,) and (a™,a’'| ag,...,a,) both are 0. Hence we may restrict our
considerations to the case that a’,as,...,a, and a™,as,...,a, are linearly indepen-
dent. Let L, LT denote the linear subspaces of L generated by o, as,...,a, or
at, as,...,a,, respectively. There exist reals o/, o™ different from 0 such that

{dd’;ag,...,an} € S and {aTat,as,...,an} € Sp+. This together with (4)
and (5) yields

1

1
(a’, at|as,..., an) = — (a’,a+a+ | az,. .., an) = pra+a+’a2w,an(a'a')
1
e M0 = (0 0, )

Using (5) we see that (a,b]asg,...,a,) = (a,b] aiy, ..., a;,) for every permutation
(i2y...,1n) of (2,...,n). And (6) shows that if n > 1, then (a,a|az,as,...,an) =
(ag,az2 | a,as,...,a,). Also the linearity of (a,b|as,...,a,) with respect to a is
evident. From (5) we immediately see that, moreover, for every {ay,...,an} € Sp
we have ||a1,...,a,| = 1. O

3.2. If dim L = n, then in Assumption 2 of 3.1 we necessarily have L' = LT,

n
hence a™ = +a’ + > ay ag, and pr
k=1
From this we see that in this case, equation (4) becomes trivial. We can choose Sr-

a+.az,...an = Pla’ as.... a, 1S the identical mapping.

arbitrarily and the corresponding n-inner products differ only by a factor.

Let now dim L > n. Then obviously (4) contains restrictions to the projections
pry. if the sets Sp. are fixed, and conversely for fixed projections pr;, it contains
restrictions to the sets Sp-.
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4. n-NORM OF PROJECTIONS

4.1. Concerning the problem of the relations between norms Hbl, .. .,an and
IPra, .0 (B1), .- Pra, 4. (bn)|| We have the following results.
Theorem 8. Let (L, (-,-|,...,-)) be an n-inner product space which in the case

n > 1 is simple. Then
(7) Hbl’ R an > Hprahm’an(bl), . ’pral,...,an(bn)H )

Proof. In the case n = 1 the assertion of the theorem is well known. For fur-

ther considerations let n > 1. Let (-,-) be an inner product generating (-,- |-, ...,").
Because of Theorem 3 we may restrict our considerations to the case that (a,a;) =
Ok for k, 1 € {1,...,n}. Ifpr, . (b1), ..., Pry, ., (bn) are linearly depen-
dent, then obviously (7) is true. Therefore, in what follows we may assume that
Prayan(b1),- . ,PTy, 4 (bn) are linearly independent. Since for arbitrary points
€1,...,cn € L and arbitrary reals v, 1, [, k € {1,...,n}, we have
2
n n 2 Y11 - Vin
. ) . 2
Zvl,kcka"wz’}/n,kck = : . : Hcla"'van )
=1 =1 Tl oo Ynn
we can see that, moreover, the restriction to the case pr,, . (bx) =ar, k=1,...,n
is possible. Then we have (by,a; | a1,...,a,...,a,) = o5 for k, 1 € {1,...,n} and
because of
(bk,al |a1,...,51, ...,an)
(bk,al) (bk,al) .. (bk,al_l) (bk,aH_l) .. (bk,an)
(a1,a1) (a1,a1) ... (a1,a1-1) (a1,a141) ... (a1,an)
= |(a-1,a1) (@-1,01) ... (ar—1,¢1-1) (@-1,a141) «.. (@1-1,an)
(ar+1,a1) (ar41,01) .. (a41,ai-1) (ar41,a141) -« (ai41,an)
(anyal) (arual) o (anyal—l) (arual+1) o (aruan)

= (bw, a1)
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we get (bg,a;) = 0y for k, I € {1,...,n}. In view of this we see that for arbitrary
ke{l,...,n},

(ak,bk — Ak | ai, .. .,akfl,bk+1, . ,bn)
(ak,br—ar) (ag,a1) ... (ak,ap—1) (ak,br+1) -+ (ak,bn)
(a1,bx—ax) (a1,a1) ... (a1,ax_1) (a1,bk41)  -.. (a1,bn)
= | (ap—1,bx—ar) (ax—1,a1) ... (ar—1,ak—1) (ar—1,bp41) ... (@r—1,bn)
(bky1,bk—ag)  (brg1,a1) .. (beyi,ak—1) (braa,brt1) -« (bey1,bn)
(bnybkfak) (bnyal) e (bnyak—l) (bnybk-kl) e (bnybn)
=0.

This yields

Hbl,...,an2 = Hal,bg,...,anz —+ Hbl —al,bg,...,an2 +2(a1,b1 — ay | bg,...,bn)

> ||as, ba, - . ba)?
Z .
> o ann
= Pray o (1) Py (B0
hence the theorem is proved. O

In the case n > 1, (7) need not always be true as is shown by an example (with
n = 2) given in [3].
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