CANCELLATION RULE FOR INTERNAL DIRECT PRODUCT DECOMPOSITIONS OF A CONNECTED PARTIALLY ORDERED SET

JÁn Jakubík ${ }^{1}$, MÁria Csontóoví ${ }^{2}$, Košice

(Received December 12, 1997)

Abstract. In this note we deal with two-factor internal direct product decompositions of a connected partially ordered set.

Keywords: internal direct product decomposition, connected partially ordered set, cancellation

MSC 2000: 06A06

Direct product decompositions of a connected partially ordered set have been investigated by Hashimoto [1].

We apply the notion of internal direct product decomposition of a partially ordered set in the same sense as in [2]; the definition is recalled in Section 1 below.

The following cancellation rule has been proved in [2]:
(A) Let L be a directed partially ordered set and $x_{0} \in L$. Let

$$
\begin{aligned}
\varphi^{0}: L & \rightarrow A^{0} \times B^{0}, \\
\psi^{0}: L & \rightarrow A_{1}^{0} \times B_{1}^{0}
\end{aligned}
$$

be internal direct product decompositions of L with the same central element x^{0}. Suppose that $A^{0}=A_{1}^{0}$. Then $B^{0}=B_{1}^{0}$ and $\varphi^{0}(x)=\psi^{0}(x)$ for each $x \in L$.
The aim of the present paper is to generalize (A) to the case when L is a connected partially ordered set.

[^0]
1. Preliminaries

We recall that a partially ordered set is called connected if for any $x, y \in L$ there are elements $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ in L such that
(i) $x=x_{0}, y=x_{n}$;
(ii) if $i \in\{1,2, \ldots, n\}$, then the elements x_{i-1} and x_{i} are comparable.

Let L be a connected partially ordered set. Suppose that we have a direct product decomposition

$$
\begin{equation*}
\varphi: L \rightarrow \prod_{i \in I} L_{i} \tag{1}
\end{equation*}
$$

(i.e., φ is an isomorphism of the partially ordered set L onto the direct product $\left.\prod_{i \in I} L_{i}\right)$. For $x \in L$ let $\varphi(x)=\left(\ldots, x_{i}, \ldots\right)_{i \in I}$. We denote $x_{i}=x\left(L_{i}\right)$. Next we put

$$
L_{i}(x)=\left\{z \in L: z\left(L_{j}\right)=x\left(L_{j}\right) \quad \text { for each } j \in I \backslash\{i\}\right\}
$$

Let x^{0} be a fixed element of L. For each $i \in I$ we denote $L_{i}\left(x^{0}\right)=L_{i}^{0}$.
For each $x \in L$ and each $i \in I$ there is a unique element y_{i} in L_{i}^{0} such that $x\left(L_{i}\right)=y_{i}\left(L_{i}\right)$. Put

$$
\varphi^{0}(x)=\left(\ldots, y_{i}, \ldots\right)_{i \in I}
$$

Then the relation

$$
\begin{equation*}
\varphi^{0}: L \rightarrow \prod_{i \in I} L_{i}^{0} \tag{2}
\end{equation*}
$$

is said to be an internal direct product decomposition of L with the central element x^{0}.

For each $i \in I, L_{i}^{0}$ is isomorphic to L_{i}.

2. Auxiliary results

In this section we suppose that L is a connected partially ordered set.
Assume that we are given a direct product decompostion

$$
\begin{equation*}
\varphi: L \rightarrow A \times B \tag{1}
\end{equation*}
$$

For $x \in L$ we put $\varphi(x)=\left(x_{A}, x_{B}\right)$. Sometimes we write $x(A)$ instead of x_{A}, and similarly for x_{B}.

116

Further, for each $x_{0} \in L$ we put

$$
\begin{aligned}
& A\left(x_{0}\right)=\left\{x \in L: x(B)=x_{0}(B)\right\} \\
& B\left(x_{0}\right)=\left\{x \in L: x(A)=x_{0}(A)\right\}
\end{aligned}
$$

Let $x_{1} \in L, x_{1} \notin A\left(x_{0}\right)$. We put $A\left(x_{0}\right)<A\left(x_{1}\right)$ if there are $x_{0}^{1} \in A\left(x_{0}\right)$ and $x_{1}^{1} \in A\left(x_{1}\right)$ such that $x_{0}^{1}<x_{1}^{1}$.

If $x, y, z \in L$ and $z=\sup \{x, y\}$ in L, then we express this fact by writing $z=x \vee y$. The meaning of $v=x \wedge y$ is analogous.
2.1. Lemma. Let $x_{0}, x_{1} \in L, A\left(x_{0}\right)<A\left(x_{1}\right), x_{2} \in A\left(x_{1}\right)$. Then there exists x_{2}^{0} in $A\left(x_{0}\right)$ such that
(i) $x_{2}^{0}<x_{2}$;
(ii) if $z \in A\left(x_{0}\right)$ and $z<x_{2}$, then $z \leqslant x_{2}^{0}$.

Proof. There exists $x_{2}^{0} \in L\left(x_{0}\right)$ such that

$$
\varphi\left(x_{2}^{0}\right)=\left(x_{2}(A), x_{0}(B)\right)
$$

Then $x_{2}^{0} \in A\left(x_{0}\right)$. We have

$$
x_{0}(B)=x_{0}^{1}(B) \leqslant x_{1}^{1}(B)=x_{2}(B)
$$

where x_{0}^{1} and x_{1}^{1} are as in the definition of the relation $A\left(x_{0}\right)<A\left(x_{1}\right)$. Thus $x_{2}^{0} \leqslant x_{2}$. Since $x_{2} \notin A\left(x_{0}\right)$, we must have $x_{2}^{0}<x_{2}$. Therefore (i) is valid.

Let $z \in A\left(x_{0}\right)$ and $z<x_{2}$. Then $z(B)=x_{0}(B)=x_{2}^{0}(B)$ and $z(A) \leqslant x_{2}(A)$; hence $z \leqslant x_{2}^{0}$. Thus (ii) holds.

It is obvious that the element x_{2}^{0} is uniquely determined if x_{2} and $A\left(x_{0}\right)$ are given and if $A\left(x_{2}\right)>A\left(x_{0}\right)$.
2.2. Lemma. Let x_{0} and x_{1} be as in 2.1. Further, let $x_{3} \in L, x_{3} \geqslant x_{1}$. Then the following conditions are equivalent:
(i) $x_{3} \in A\left(x_{1}\right)$;
(ii) $x_{3}^{0} \vee x_{1}=x_{3}$.

Proof. First we remark that from $x_{3} \geqslant x_{1}$ we infer that $A\left(x_{3}\right)>A\left(x_{0}\right)$, whence in view of 2.1 , the element x_{3}^{0} does exist; moreover, we have

$$
\varphi\left(x_{3}^{0}\right)=\left(x_{3}(A), x_{0}(B)\right)
$$

Further, from the relation $A\left(x_{0}\right)<A\left(x_{1}\right)$ we conclude that whenever $t_{1} \in A\left(x_{0}\right)$ and $t_{2} \in A\left(x_{1}\right)$, then $t_{1}(B)<t_{2}(B)$. In particular, $x_{0}(B)<x_{1}(B)$. Thus $x_{0}(B)<x_{3}(B)$ and $x_{3}^{0}(B)<x_{3}(B)$.

Let (i) be valid. Hence $x_{3}(B)=x_{1}(B)$. From $x_{3} \geqslant x_{1}$ we get $x_{3}(A) \geqslant x_{1}(A)$. Thus

$$
\left(x_{3}(A), x_{0}(B)\right) \vee\left(x_{1}(A), x_{1}(B)\right)=\left(x_{3}(A), x_{3}(B)\right)
$$

Therefore (ii) holds.
Conversely, let (ii) be valid. Then

$$
x_{3}^{0}(B) \vee x_{1}(B)=x_{3}(B)
$$

We already know that $x_{3}^{0}(B) \vee x_{1}(B)=x_{1}(B)$. Thus $x_{1}(B)=x_{3}(B)$. Hence (i) holds.
2.3. Corollary. Let x_{0} and x_{1} be as in 2.1. Then the set $\left\{x \in A\left(x_{1}\right): x \geqslant x_{1}\right\}$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.
2.4. Lemma. Let x_{0} and x_{1} be as in 2.1. Further, let $x_{4} \in L, x_{4} \leqslant x_{1}$. Then x_{4} belongs to $A\left(x_{1}\right)$ if and only if the following conditions are satisfied:
(i) $x_{4} \vee x_{1}^{0}=x_{1}$;
(ii) $x_{4} \notin A\left(x_{0}\right)$;
(iii) there exists $t \in A\left(x_{0}\right)$ with $t<x_{4}$.

Proof. Suppose that x_{4} belongs to $A\left(x_{1}\right)$. Then (ii) is obviously valid. In view of 2.1 , the condition (iii) is satisfied.

For proving that (i) is valid we have to verify the validity of the relation

$$
\begin{equation*}
\left(x_{4}(A), x_{4}(B)\right) \vee\left(x_{1}^{0}(A), x_{1}^{0}(B)\right)=\left(x_{1}(A), x_{1}(B)\right) \tag{*}
\end{equation*}
$$

We have

$$
\left(x_{1}^{0}(A), x_{1}^{0}(B)\right)=\left(x_{1}(A), x_{0}(B)\right)
$$

whence

$$
\begin{equation*}
x_{4}(A) \vee x_{1}^{0}(A)=x_{4}(A) \vee x_{1}(A)=x_{1}(A) \tag{1}
\end{equation*}
$$

Further, in view of (iii), $x_{4}(B) \geqslant t(B)$. Since $t \in A\left(x_{0}\right)$, we get $t(B)=x_{0}(B)$. Thus

$$
\begin{equation*}
x_{4}(B) \vee x_{1}^{0}(B)=x_{4}(B) \vee x_{0}(B)=x_{4}(B)=x_{1}(B) \tag{2}
\end{equation*}
$$

From $\left(*_{1}\right)$ and $\left(*_{2}\right)$ we conclude that $(*)$ is valid.

Conversely, suppose that the conditions (i), (ii) and (iii) are satisfied. From (i) we obtain

$$
x_{4}(B) \vee x_{1}^{0}(B)=x_{1}(B)
$$

Further we have $x_{1}^{0}(B)=t(B) \leqslant x_{4}(B)$, whence

$$
x_{4}(B) \vee x_{1}^{0}(B)=x_{4}(B) \vee t(B)=x_{4}(B)
$$

Then $x_{4}(B)=x_{1}(B)$, therefore $x_{4} \in A\left(x_{1}\right)$.
2.5. Corollary. Let x_{0} and x_{1} be as in 2.1. Then the set $\left\{x \in A\left(x_{1}\right): x \leqslant x_{1}\right\}$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.
2.6. Definition. The interval $[u, v]$ of L is said to have the property (α) if
(i) there exist $u^{0}, v^{0} \in A\left(x_{0}\right)$ such that the relations

$$
u^{0}=\max \left\{x \in A\left(x_{0}\right): x \leqslant u\right\}, \quad v^{0}=\max \left\{x \in A\left(x_{0}\right): x \leqslant v\right\}
$$

are valid;
(ii) $v^{0} \vee u=v$.
2.7. Lemma. Let x_{0} and x_{1} be as in 2.1. Let $z \in L$. The following conditions (a) and (b) are equivalent:
(a) There are elements $z_{0}, z_{1}, z_{2}, \ldots, z_{n}$ in L such that $z_{0}=x_{1}, z_{n}=z$ and for each $i \in\{1,2, \ldots, n\}$ we have
(i) the elements z_{i-1}, z_{i} are comparable;
(ii) if $z_{i-1} \leqslant z_{i}$, then the interval $\left[z_{i-1}, z_{i}\right]$ satisfies the condition (α);
(iii) if $z_{i-1} \geqslant z_{i}$, then the interval $\left[z_{i}, z_{i-1}\right]$ satisfies the condition (α).
(b) $z \in A\left(x_{1}\right)$.

Proof. Assume that (a) is valid. Then in view of 2.2 and 2.4 we obtain $z_{1} \in A\left(x_{1}\right)$. Now it suffices to apply induction with respect to n.

Conversely, assume that (b) is valid. Since L is connected, the partially ordered set A is connected as well. It is obvious that the partially ordered sets A and $A\left(x_{1}\right)$ are isomorphic; hence $A\left(x_{1}\right)$ is connected as well. Thus there are elements $z_{0}, z_{1}, \ldots, z_{n}$ in $A\left(x_{1}\right)$ such that $z_{0}=x_{1}, z_{n}=z$ and for each $i \in\{1,2, \ldots, n\}$ the elements z_{i-1}, z_{i} are comparable. Then by using 2.1, 2.2 and 2.4 we conclude that (a) is valid.
2.8. Corollary. Let x_{0} and x_{1} be as in 2.1. Then the set $A\left(x_{1}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.

By a dual argument we obtain
2.9. Corollary. Let $x_{0}, x_{1} \in L$ be such that $A\left(x_{0}\right)>A\left(x_{1}\right)$. Then the set $A\left(x_{1}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.

From 2.8, 2.9 and from the fact that L is connected we conclude
2.10. Lemma. Let $x_{0}, x_{1} \in L$. Then the set $A\left(x_{1}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.

Let $x_{0}, x_{1} \in L, x_{0} \leqslant x_{1}$. In view of 2.1 there exists $a\left(x_{0}, x_{1}\right) \in L$ such that

$$
a\left(x_{0}, x_{1}\right)=\max \left\{x \in A\left(x_{0}\right): x \leqslant x_{1}\right\} .
$$

Dually, if $x_{0}, x_{1} \in L, x_{0} \geqslant x_{1}$, then there is $b\left(x_{0}, x_{1}\right) \in L$ with

$$
b\left(x_{0}, x_{1}\right)=\min \left\{x \in A\left(x_{0}\right): x \geqslant x_{1}\right\}
$$

2.11. Lemma. Let $x_{0}, x_{1} \in L, x_{0} \leqslant x_{1}$. Then

$$
x_{1} \in B\left(x_{0}\right) \Leftrightarrow a\left(x_{0}, x_{1}\right)=x_{0} .
$$

Proof. Suppose that $a\left(x_{0}, x_{1}\right)=x_{0}$. Hence $x_{0}(A)=x_{1}(A)$ and therefore $x_{1} \in B\left(x_{0}\right)$.

Conversely, suppose that $x_{1} \in B\left(x_{0}\right)$. Then $x_{1}(A)=x_{0}(A)$. From $x_{0} \leqslant x_{1}$ we conclude that $x_{0}(B) \leqslant x_{1}(B)$.

Let $x \in A\left(x_{0}\right), x \leqslant x_{1}$. We get $x(A) \leqslant x_{1}(A)$, whence $x(A) \leqslant x_{0}(A)$. Further, $x(B)=x_{0}(B)$. Therefore $x \leqslant x_{0}$. This yields that $a\left(x_{0}, x_{1}\right)=x_{0}$.

By a dual argument we obtain
2.12. Lemma. Let $x_{0}, x_{1} \in L, x_{0} \geqslant x_{1}$. Then

$$
x_{1} \in B\left(x_{0}\right) \Leftrightarrow b\left(x_{0}, x_{1}\right)=x_{0} .
$$

2.13. Lemma. Let $x_{0}, x \in L$. The following conditions are equivalent:
(a) There exist elements $z_{0}, z_{1}, z_{2}, \ldots, z_{n}$ in L such that $z_{0}=x_{0}, z_{n}=x$, for each $i \in\{1,2, \ldots, n\}$ the elements z_{i-1}, z_{i} are comparable and $z_{i} \in B\left(z_{i-1}\right)$;
(b) $x \in B\left(x_{0}\right)$.

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is obvious. Suppose that (b) is valid. The partially ordered set B is connected, hence so is $B\left(x_{0}\right)$. Thus there exist $z_{0}, z_{1}, \ldots, z_{n} \in$ $B\left(x_{0}\right)$ with the properties as in (a).

From 2.10-2.13 we obtain
2.14. Lemma. Let $x_{0} \in L$. Then the set $B\left(x_{0}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{0}.

In $2.10, A$ can be replaced by B. Hence 2.14 yields
2.15. Corollary. Let $x_{0}, x \in L$. Then the set $B(x)$ is uniquely determined by $A\left(x_{0}\right)$ and x.

3. Cancellation Rule

Suppose that L is a connected partially ordered set and consider direct product decompositions
(1) $\varphi: L \rightarrow A \times B$,
(2) $\varphi_{1}: L \rightarrow A_{1} \times B_{1}$.

Let $x_{0} \in L$. Then from (1) and (2) we can construct internal direct product decompositions
$\left(1^{\prime}\right) \varphi^{0}: L \rightarrow A^{0} \times B^{0}$,
(2') $\varphi_{1}^{0}: L \rightarrow A_{1}^{0} \times B_{1}^{0}$
with the central element x_{0}.
In view of the definition of the internal direct product decomposition we have
(3) $A^{0}=A\left(x_{0}\right), \quad B^{0}=B\left(x_{0}\right)$,
(4) $A_{1}^{0}=A_{1}\left(x_{0}\right), \quad B_{1}^{0}=B_{1}\left(x_{0}\right)$;
further, if $x \in L$ and $\varphi^{0}(x)=\left(x_{1}, x_{2}\right), \varphi_{1}^{0}(x)=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then
(5) $\left\{x_{1}\right\}=A^{0} \cap B(x), \quad\left\{x_{2}\right\}=B^{0} \cap A(x)$,
(6) $\left\{x_{1}^{\prime}\right\}=A_{1}^{0} \cap B_{1}(x), \quad\left\{x_{2}^{\prime}\right\}=B_{1}^{0} \cap A_{1}(x)$.
3.1. Theorem. Let (1^{\prime}) and ($\left.2^{\prime}\right)$ be an internal direct product of a connected partially ordered set L with the central element x_{0}. Suppose that $A^{0}=A_{1}^{0}$. Then $B^{0}=B_{1}^{0}$. Moreover, for each $x \in L$ we have $\varphi^{0}(x)=\varphi_{1}^{0}(x)$.

Proof. The first assertion is a consequence of $2.10,2.15$ and of the relations (3), (4). Then in view of (5) and (6) we infer that $\varphi^{0}(x)=\varphi_{1}^{0}(x)$ for each $x \in L$.

Let us remark that if $\varphi: L \rightarrow A \times B$ and $\psi: L \rightarrow A_{1} \times B_{1}$ are direct product decompositions of a connected partially ordered set L and if A is isomorphic to A_{1}, then B need not be isomorphic to B_{1}.

Example. Let N be the set of all positive integers and let X be a linearly ordered set having more than one element. Put

$$
L=\prod_{n \in N} X_{n}
$$

where $X_{n}=X$ for each $n \in N$. We denote

$$
\begin{aligned}
& A=\prod_{n>1} X_{n}, \quad B=X_{1}, \\
& A_{1}=\prod_{n>2} X_{n}, \quad B_{1}=X_{1} \times X_{2} .
\end{aligned}
$$

Then we have direct product decompositions

$$
\varphi: L \rightarrow A \times B, \quad \psi \rightarrow A_{1} \times B_{1}
$$

A is isomorphic to A_{1}, but B fails to be isomorphic to B_{1}.
Further, the notion of the internal direct product decomposition can be used in group theory (where the central element coincides with the neutral element of the corresponding group); cf., e.g. Kurosh [3], p. 104. The result analogous to 3.1 does not hold, in general, for internal direct product decompositions of a group.

Example. Let X be the additive group of all reals, $Y=X, G=X \times Y$. We put

$$
\begin{aligned}
X^{0} & =\{(x, 0): x \in X\} \\
Y^{0} & =\{(0, y): y \in Y\} \\
Z^{0} & =\{(x, y) \in G: x=y\}
\end{aligned}
$$

Then $Y^{0} \neq Z^{0}$. The group G is the internal direct product of X^{0} and Y^{0}; at the same time, G is the internal direct product of X^{0} and Z_{0}.

We conclude by remarking that the assumption of connectedness of L cannot be omitted in 3.1.

References

[1] J. Hashimoto: On direct product decompositions of partially ordered sets. Ann. of Math. 54 (1951), 315-318.
[2] J. Jakubik, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359-378.
[3] A. G. Kurosh: Group Thoeory. Third Edition, Moskva, 1967. (In Russian.)
Authors' addresses: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@mail.saske.sk, Mária Csontóová, Katedra matematiky, Stavebná fakulta TU, Vysokoškolská 4, 04200 Košice, Slovakia.

[^0]: ${ }^{1}$ Supported by Grant GA SAV 2/5125/98.
 ${ }^{2}$ Supported by Grant 1/4879/97.

