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Abstract. In this note we deal with two-factor internal direct product decompositions of
a connected partially ordered set.
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Direct product decompositions of a connected partially ordered set have been
investigated by Hashimoto [1].

We apply the notion of internal direct product decomposition of a partially ordered
set in the same sense as in [2]; the definition is recalled in Section 1 below.

The following cancellation rule has been proved in [2]:

(A) Let L be a directed partially ordered set and x0 ∈ L. Let

ϕ0 : L→ A0 ×B0,

ψ0 : L→ A01 ×B01

be internal direct product decompositions of L with the same central element

x0. Suppose that A0 = A01. Then B
0 = B01 and ϕ

0(x) = ψ0(x) for each
x ∈ L.

The aim of the present paper is to generalize (A) to the case when L is a connected
partially ordered set.

1 Supported by Grant GA SAV 2/5125/98.
2 Supported by Grant 1/4879/97.
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1. Preliminaries

We recall that a partially ordered set is called connected if for any x, y ∈ L there

are elements x0, x1, x2, . . . , xn in L such that

(i) x = x0, y = xn;
(ii) if i ∈ {1, 2, . . . , n}, then the elements xi−1 and xi are comparable.

Let L be a connected partially ordered set. Suppose that we have a direct product
decomposition

(1) ϕ : L→ ∏

i∈I

Li

(i.e., ϕ is an isomorphism of the partially ordered set L onto the direct product
∏

i∈I

Li). For x ∈ L let ϕ(x) = (. . . , xi, . . .)i∈I . We denote xi = x(Li). Next we put

Li(x) = {z ∈ L : z(Lj) = x(Lj) for each j ∈ I \ {i}}.

Let x0 be a fixed element of L. For each i ∈ I we denote Li(x0) = L0i .

For each x ∈ L and each i ∈ I there is a unique element yi in L0i such that
x(Li) = yi(Li). Put

ϕ0(x) = (. . . , yi, . . .)i∈I .

Then the relation

(2) ϕ0 : L→ ∏

i∈I

L0i

is said to be an internal direct product decomposition of L with the central element

x0.

For each i ∈ I, L0i is isomorphic to Li.

2. Auxiliary results

In this section we suppose that L is a connected partially ordered set.

Assume that we are given a direct product decompostion

(1) ϕ : L→ A×B.

For x ∈ L we put ϕ(x) = (xA, xB). Sometimes we write x(A) instead of xA, and
similarly for xB.
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Further, for each x0 ∈ L we put

A(x0) = {x ∈ L : x(B) = x0(B)},
B(x0) = {x ∈ L : x(A) = x0(A)}.

Let x1 ∈ L, x1 /∈ A(x0). We put A(x0) < A(x1) if there are x10 ∈ A(x0) and

x11 ∈ A(x1) such that x10 < x11.

If x, y, z ∈ L and z = sup{x, y} in L, then we express this fact by writing z = x∨y.
The meaning of v = x ∧ y is analogous.

2.1. Lemma. Let x0, x1 ∈ L, A(x0) < A(x1), x2 ∈ A(x1). Then there exists x02
in A(x0) such that

(i) x02 < x2;

(ii) if z ∈ A(x0) and z < x2, then z � x02.

�����. There exists x02 ∈ L(x0) such that

ϕ(x02) = (x2(A), x0(B)).

Then x02 ∈ A(x0). We have

x0(B) = x10(B) � x11(B) = x2(B),

where x10 and x
1
1 are as in the definition of the relation A(x0) < A(x1). Thus x02 � x2.

Since x2 /∈ A(x0), we must have x02 < x2. Therefore (i) is valid.

Let z ∈ A(x0) and z < x2. Then z(B) = x0(B) = x02(B) and z(A) � x2(A); hence
z � x02. Thus (ii) holds. �

It is obvious that the element x02 is uniquely determined if x2 and A(x0) are given

and if A(x2) > A(x0).

2.2. Lemma. Let x0 and x1 be as in 2.1. Further, let x3 ∈ L, x3 � x1. Then

the following conditions are equivalent:

(i) x3 ∈ A(x1);

(ii) x03 ∨ x1 = x3.

�����. First we remark that from x3 � x1 we infer that A(x3) > A(x0), whence
in view of 2.1, the element x03 does exist; moreover, we have

ϕ(x03) = (x3(A), x0(B)).
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Further, from the relation A(x0) < A(x1) we conclude that whenever t1 ∈ A(x0) and

t2 ∈ A(x1), then t1(B) < t2(B). In particular, x0(B) < x1(B). Thus x0(B) < x3(B)
and x03(B) < x3(B).
Let (i) be valid. Hence x3(B) = x1(B). From x3 � x1 we get x3(A) � x1(A).

Thus
(x3(A), x0(B)) ∨ (x1(A), x1(B)) = (x3(A), x3(B)).

Therefore (ii) holds.
Conversely, let (ii) be valid. Then

x03(B) ∨ x1(B) = x3(B).

We already know that x03(B) ∨ x1(B) = x1(B). Thus x1(B) = x3(B). Hence (i)
holds. �

2.3. Corollary. Let x0 and x1 be as in 2.1. Then the set {x ∈ A(x1) : x � x1}
is uniquely determined by A(x0) and x1.

2.4. Lemma. Let x0 and x1 be as in 2.1. Further, let x4 ∈ L, x4 � x1. Then

x4 belongs to A(x1) if and only if the following conditions are satisfied:

(i) x4 ∨ x01 = x1;
(ii) x4 /∈ A(x0);
(iii) there exists t ∈ A(x0) with t < x4.

�����. Suppose that x4 belongs to A(x1). Then (ii) is obviously valid. In view

of 2.1, the condition (iii) is satisfied.
For proving that (i) is valid we have to verify the validity of the relation

(∗) (x4(A), x4(B)) ∨ (x01(A), x01(B)) = (x1(A), x1(B)).

We have
(x01(A), x

0
1(B)) = (x1(A), x0(B)),

whence

(∗1) x4(A) ∨ x01(A) = x4(A) ∨ x1(A) = x1(A).

Further, in view of (iii), x4(B) � t(B). Since t ∈ A(x0), we get t(B) = x0(B). Thus

(∗2) x4(B) ∨ x01(B) = x4(B) ∨ x0(B) = x4(B) = x1(B).

From (∗1) and (∗2) we conclude that (∗) is valid.
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Conversely, suppose that the conditions (i), (ii) and (iii) are satisfied. From (i) we

obtain

x4(B) ∨ x01(B) = x1(B).
Further we have x01(B) = t(B) � x4(B), whence

x4(B) ∨ x01(B) = x4(B) ∨ t(B) = x4(B).

Then x4(B) = x1(B), therefore x4 ∈ A(x1). �

2.5. Corollary. Let x0 and x1 be as in 2.1. Then the set {x ∈ A(x1) : x � x1}
is uniquely determined by A(x0) and x1.

2.6. Definition. The interval [u, v] of L is said to have the property (α) if

(i) there exist u0, v0 ∈ A(x0) such that the relations

u0 = max{x ∈ A(x0) : x � u}, v0 = max{x ∈ A(x0) : x � v}

are valid;
(ii) v0 ∨ u = v.

2.7. Lemma. Let x0 and x1 be as in 2.1. Let z ∈ L. The following conditions

(a) and (b) are equivalent:

(a) There are elements z0, z1, z2, . . . , zn in L such that z0 = x1, zn = z and for

each i ∈ {1, 2, . . . , n} we have
(i) the elements zi−1, zi are comparable;

(ii) if zi−1 � zi, then the interval [zi−1, zi] satisfies the condition (α);

(iii) if zi−1 � zi, then the interval [zi, zi−1] satisfies the condition (α).
(b) z ∈ A(x1).

�����. Assume that (a) is valid. Then in view of 2.2 and 2.4 we obtain

z1 ∈ A(x1). Now it suffices to apply induction with respect to n.

Conversely, assume that (b) is valid. Since L is connected, the partially ordered set
A is connected as well. It is obvious that the partially ordered sets A and A(x1) are

isomorphic; hence A(x1) is connected as well. Thus there are elements z0, z1, . . . , zn

in A(x1) such that z0 = x1, zn = z and for each i ∈ {1, 2, . . . , n} the elements zi−1, zi

are comparable. Then by using 2.1, 2.2 and 2.4 we conclude that (a) is valid. �

2.8. Corollary. Let x0 and x1 be as in 2.1. Then the set A(x1) is uniquely
determined by A(x0) and x1.
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By a dual argument we obtain

2.9. Corollary. Let x0, x1 ∈ L be such that A(x0) > A(x1). Then the set
A(x1) is uniquely determined by A(x0) and x1.

From 2.8, 2.9 and from the fact that L is connected we conclude

2.10. Lemma. Let x0, x1 ∈ L. Then the set A(x1) is uniquely determined by
A(x0) and x1.

Let x0, x1 ∈ L, x0 � x1. In view of 2.1 there exists a(x0, x1) ∈ L such that

a(x0, x1) = max{x ∈ A(x0) : x � x1}.

Dually, if x0, x1 ∈ L, x0 � x1, then there is b(x0, x1) ∈ L with

b(x0, x1) = min{x ∈ A(x0) : x � x1}.

2.11. Lemma. Let x0, x1 ∈ L, x0 � x1. Then

x1 ∈ B(x0)⇔ a(x0, x1) = x0.

�����. Suppose that a(x0, x1) = x0. Hence x0(A) = x1(A) and therefore

x1 ∈ B(x0).
Conversely, suppose that x1 ∈ B(x0). Then x1(A) = x0(A). From x0 � x1 we

conclude that x0(B) � x1(B).
Let x ∈ A(x0), x � x1. We get x(A) � x1(A), whence x(A) � x0(A). Further,

x(B) = x0(B). Therefore x � x0. This yields that a(x0, x1) = x0. �

By a dual argument we obtain

2.12. Lemma. Let x0, x1 ∈ L, x0 � x1. Then

x1 ∈ B(x0)⇔ b(x0, x1) = x0.

2.13. Lemma. Let x0, x ∈ L. The following conditions are equivalent:

(a) There exist elements z0, z1, z2, . . . , zn in L such that z0 = x0, zn = x, for each
i ∈ {1, 2, . . . , n} the elements zi−1, zi are comparable and zi ∈ B(zi−1);

(b) x ∈ B(x0).

�����. The implication (a)⇒(b) is obvious. Suppose that (b) is valid. The par-
tially ordered set B is connected, hence so is B(x0). Thus there exist z0, z1, . . . , zn ∈
B(x0) with the properties as in (a). �
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From 2.10–2.13 we obtain

2.14. Lemma. Let x0 ∈ L. Then the set B(x0) is uniquely determined by
A(x0) and x0.

In 2.10, A can be replaced by B. Hence 2.14 yields

2.15. Corollary. Let x0, x ∈ L. Then the set B(x) is uniquely determined by

A(x0) and x.

3. Cancellation rule

Suppose that L is a connected partially ordered set and consider direct product

decompositions

(1) ϕ : L→ A×B,

(2) ϕ1 : L→ A1 ×B1.

Let x0 ∈ L. Then from (1) and (2) we can construct internal direct product decom-
positions

(1′) ϕ0 : L→ A0 ×B0,
(2′) ϕ01 : L→ A01 ×B01

with the central element x0.

In view of the definition of the internal direct product decomposition we have

(3) A0 = A(x0), B0 = B(x0),
(4) A01 = A1(x0), B01 = B1(x0);

further, if x ∈ L and ϕ0(x) = (x1, x2), ϕ01(x) = (x
′
1, x

′
2), then

(5) {x1} = A0 ∩B(x), {x2} = B0 ∩A(x),
(6) {x′1} = A01 ∩B1(x), {x′2} = B01 ∩A1(x).

3.1. Theorem. Let (1′) and (2′) be an internal direct product of a connected
partially ordered set L with the central element x0. Suppose that A0 = A01. Then

B0 = B01 . Moreover, for each x ∈ L we have ϕ0(x) = ϕ01(x).

�����. The first assertion is a consequence of 2.10, 2.15 and of the relations

(3), (4). Then in view of (5) and (6) we infer that ϕ0(x) = ϕ01(x) for each x ∈ L. �

Let us remark that if ϕ : L → A × B and ψ : L → A1 × B1 are direct product

decompositions of a connected partially ordered set L and if A is isomorphic to A1,
then B need not be isomorphic to B1.

121



�����	
. Let N be the set of all positive integers and let X be a linearly

ordered set having more than one element. Put

L =
∏

n∈N

Xn,

where Xn = X for each n ∈ N . We denote

A =
∏

n>1
Xn, B = X1,

A1 =
∏

n>2
Xn, B1 = X1 ×X2.

Then we have direct product decompositions

ϕ : L→ A×B, ψ → A1 ×B1,

A is isomorphic to A1, but B fails to be isomorphic to B1.

Further, the notion of the internal direct product decomposition can be used in

group theory (where the central element coincides with the neutral element of the
corresponding group); cf., e.g. Kurosh [3], p. 104. The result analogous to 3.1 does

not hold, in general, for internal direct product decompositions of a group.

�����	
. Let X be the additive group of all reals, Y = X , G = X × Y . We
put

X0 = {(x, 0): x ∈ X},
Y 0 = {(0, y) : y ∈ Y },
Z0 = {(x, y) ∈ G : x = y}.

Then Y 0 	= Z0. The group G is the internal direct product of X0 and Y 0; at the
same time, G is the internal direct product of X0 and Z0.

We conclude by remarking that the assumption of connectedness of L cannot be

omitted in 3.1.
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