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1. Introduction

In classical stochastic calculus semimartingales have proved to be the “right” class

of stochastic integrators. It is an important issue of stochastic analysis to describe the
functions that leave the class of semimartingales invariant. In the one-dimensional

case, which we will restrict ourselves to throughout this paper, the Itô-Tanaka for-
mula ([11, VI.1.5]) tells us that the transformed process F (X) is a semimartingale

whenever X is a semimartingale and F a function that is locally the difference of two
convex functions. Conversely, in the case of Brownian motion, such functions are

known to be the only semimartingale functions, i.e., the only functions to preserve
the semimartingale property ([5, Theorem 5.5]). For a generalization of this result

to continuous local martingales see [3, Théorème 1].
However, some natural procedures such as C1-transformations of Brownian mo-

tion (see [2]) and the Fukushima decomposition in the theory of Dirichlet forms (see
[9]) suggest the need of studying Dirichlet processes, i.e., processes admitting a de-

composition into a sum of a martingale and a process of zero energy (see [2, 6, 7]).
From the point of view of stochastic analysis the class of local Dirichlet processes
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appears to be a convenient and useful object for two reasons. It extends the class

of semimartingales ([18, Section 4]) but, nevertheless, enjoys properties allowing to
develop some elements of stochastic calculus (see [18, 19]).

Bouleau and Yor established a change of variables formula which describes trans-
formations of one-dimensional semimartingales with absolutely continuous functions

admitting a locally bounded density ([4]). In [18] the second author developed a gen-
eralized Bouleau-Yor formula. This formula includes transformations of continuous

local martingales with absolutely continuous functions admitting a locally square
integrable density. The transformations governed by the generalized Bouleau-Yor

formula represent mappings from the class of continuous semimartingales into the
class of continuous local Dirichlet processes ([18, Section 5]). Besides analogies in the

theory of symmetric Dirichlet forms ([9]), for the special case of Brownian motion,
this result was also obtained by H. Föllmer, P.Protter, A.N. Shiryaev in [8, 3.45].

So, in a natural way, we are led to the problem whether all functions transforming
a given semimartingale into a local Dirichlet process allow to apply the general-

ized Bouleau-Yor formula. In the case of Brownian motion this amounts to asking
whether these functions are necessarily absolutely continuous admitting a locally

square integrable density.

A first result concerning this problem was established by J.Bertoin in [2,

Théorème 3.2]. He showed that every function F that transforms Brownian motion
into a Dirichlet process is absolutely continuous and has a density F ′ satisfying∫
�
(F ′(x))2 exp(−x2) dx < +∞.
In this paper we will study analytical properties of the functions that transform

reflected Brownian motions stopped at certain passage times into local Dirichlet
processes. As a result we will see that, in the case of stopped reflected Brownian

motions, the answer to the above problem is yes. In a subsequent paper this will play
an important role in the investigation of strong Markov continuous local Dirichlet

processes (see [17, Chapter 3]) because, under weak hypotheses, every continuous
strong Markov process can be reduced to a stopped reflected Brownian motion by

means of spatial transformations and time changes (see [1] or [15, Lemma 4.2]).

After introducing definitions and recalling basic facts on reflected Brownian motion

in Section 2, we deal with Dirichlet functions in Section 3. We call a function F a
Dirichlet function for the local Dirichlet process Y if the transformed process F (Y ) is

again a local Dirichlet process. First we show that all Dirichlet functions of Brownian
motion stopped when leaving (a, b) are absolutely continuous and admit a density

that is locally square integrable on (a, b). As a main ingredient we use local time in
our proofs. Then we develop necessary conditions for Dirichlet functions of reflected

Brownian motion stopped at certain passage times. Finally, we deduce a complete
analytical characterization of the Dirichlet functions for reflected Brownian motions.
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2. Definitions and prerequisites

Throughout, (Ω,F ,�) denotes a complete probability space endowed with a filtra-
tion � = (Ft)t�0 satisfying the usual hypotheses. For any process X and �-stopping

time T , the notation XT is used for the process X stopped at T . Let (X, �) be a
continuous semimartingale. Then 〈X〉 always denotes the square variation process
associated withX . Furthermore, LX(t, a) denotes the (right) local time ofX spent in
a up to time t. This is a process which is �-a.s. continuous in t and right-continuous

with left hand limits in a such that the occupation times formula

(1)
∫ t

0
g(Xs) d〈X〉s =

∫
�

g(a)LX(t, a) da �-a.s.

holds for every nonnegative Borel function g and t � 0 ([11, Chapter VI]).
We consider local Dirichlet processes in the framework of the approach to sto-

chastic integration by Russo and Vallois (see [12, 13, 14]). Let us recall some basic
notions (see [18, Section 4]).

Let Q = (Qt)t�0 be an adapted right-continuous process having left limits at every
t > 0. Then Q = (Qt)t�0 has zero energy if

lim
ε→0

�
1
ε

∫ ∞

0
(Qs+ε − Qs)2 ds = 0.

We say that Q has zero quadratic variation if there exists a non-decreasing sequence
of stopping times (Tn)n∈� with lim

n→∞Tn = ∞ a.s. such that, for each n ∈ �, the

stopped process QTn has zero energy.

������ 2.1. Every process Q of zero quadratic variation is automatically �-a.s.
continuous. This immediately follows from [13, (1.16)].

A Dirichlet process Y is defined to be a process admitting a decomposition Y =

Y0 +M +Q, where (M, �) is a right-continuous martingale with M0 = 0 and Q is a
process of zero energy with Q0 = 0.

A process Y is a local Dirichlet process if there exists a non-decreasing sequence
of stopping times (Tn)n∈� with lim

n→∞Tn = ∞ a.s. such that, for each n ∈ �, the

stopped process Y Tn is a Dirichlet process. We say that (Tn)n∈� reduces the local
Dirichlet process.

Lemma 2.2.
(i) A process Y is a local Dirichlet process if and only if it admits a decomposition

Y = Y0 + M + Q, where (M, �) is a right-continuous local martingale with
M0 = 0 and Q is a process of zero quadratic variation with Q0 = 0.
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(ii) If Y = Y0 +M + Q is a continuous local Dirichlet process then there exists a

sequence of stopping times (Tn)n∈� reducing Y and satisfying 〈MTn〉 � n and

|QTn | � n.

(iii) If Y is a local Dirichlet process and T a stopping time then Y T is also a local

Dirichlet process.

�����. Using Remark 2.1, the proof is exactly the same as that of [18, 4.5]
where only the case of continuous local Dirichlet processes was considered. �

Clearly, the class of local Dirichlet processes extends the class of continuous semi-
martingales.

Let Y be a local Dirichlet process. A universally measurable real function F is

said to be a Dirichlet function for Y if F (Y ) is a local Dirichlet process.

We need the following information on reflected Brownian motion.

Let W = W0 +M + V be a continuous semimartingale, T a stopping time and
r1 ∈ �∪{−∞}, r2 ∈ �∪{+∞} with r1 < r2. We callW a Brownian motion stopped

at T with reflecting barriers r1, r2 if

(i) W0 ∈ [r1, r2] ∩ �,
(ii) 〈M〉t = t ∧ T , t � 0, a.s. and
(iii) Vt = 1

2L
W (t, r1)− 1

2L
W (t, r2), t � 0, a.s., where, by convention, LW (·,−∞) =

LW (·,+∞) = 0. In the case T =∞ we briefly call W a Brownian motion with

reflecting barriers r1, r2 or a reflected Brownian motion.

Obviously, in the special case T =∞, r1 = −∞, r2 =∞ in 2.4, W is a Brownian
motion.

Moreover, if W is a Brownian motion stopped at T with reflecting barriers r1, r2
then, on a possibly extended probability space, there exists a Brownian motion W̃

with reflecting barriers r1, r2 such that W = W̃T .

Furthermore, Brownian motionW with reflecting barriers r1, r2 can be character-
ized as the pathwise unique solution to the stochastic differential equation

Wt =W0 +Bt + 12L
W (t, r1)− 1

2L
W (t, r2), t � 0, W0 ∈ [r1, r2] ∩ �

(see [16, Section 1]).

Finally, it is known that a version of Brownian motion with reflecting barriers r1,
r2 can be obtained by transforming a Brownian motion B with

(i) f(x) := r1 + |x − r1|, −∞ < r1 < r2 = +∞,
(ii) f(x) := r2 − |x − r2|, −∞ = r1 < r2 < +∞,
(iii) f(x) := r1 + |x − r1 + 2n(r2 − r1)|,

if x ∈ [r1 − (2n+ 1)(r2 − r1), r1 − (2n − 1)(r2 − r1)] (n ∈ �),
−∞ < r1 < r2 < +∞.
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We outline the proof restricting ourselves to case iii). The Itô-Tanaka formula

([11, VI.1.5]) yields

Wt = f(Bt) = f(B0) +
∫ t

0
f ′
−(Bs) dBs +

1
2

∫
�

LB(t, x) df ′(x)

= f(B0) +
∫ t

0
f ′
−(Bs) dBs

+
∑
n∈�

(
LB

(
t, r1 + 2n(r2 − r1)

) − LB
(
t, r2 + 2n

(
r2 − r1)

))
.

Rewriting the last line in terms of LW by [11, VI.1.9] we obtain

Wt = f(B0) +
∫ t

0
f ′
−(Bs) dBs + 12L

W (t, r1)− 1
2L

W (t, r2).

Since (f ′
−(x))

2 = 1 for every x ∈ �, P. Lévy’s characterization theorem ([11, IV.3.6])
shows that

∫ ·
0 f ′

−(Bs) dBs is a Brownian motion. ThusW is a Brownian motion with

reflecting barriers.

3. Dirichlet functions

First we study the analytical properties of Dirichlet functions for Brownian motion
stopped at passage times. Looking at the construction in Section 2 we then derive

necessary conditions for Dirichlet functions of reflected Brownian motion stopped at
certain passage times in 3.6. In 3.7 we state a complete analytical characterization

of Dirichlet functions for reflected Brownian motion.
We need some preparatory lemmas.

Lemma 3.1. Let B be a Brownian motion with respect to the filtration � =

(Ft)t�0 and a ∈ �. Furthermore, suppose H is a continuous bounded process such

that, for every t � 0, Ht is independent of Ft. Then

�

( ∫ T

0
Hs dsL

B(s, a)

)
=

∫ ∞

0
�Hs ds

(
�LB (T ∧ s, a)

)
holds for every �-stopping time T with �LB (T, a) < ∞.
�����. Since H is bounded and LB(T, a) < ∞ a.s. we can compute

∫ T

0
Hs dsL

B(s, a) a.s.
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pathwise as a Riemann-Stieltjes integral. Given a sequence of partitions

πm : (0 = t
(m)
0 < t

(m)
1 < . . . < t(m)nm

), m ∈ �,

satisfying lim
m→∞ t

(m)
nm = ∞ and lim

m→∞ sup{|t
(m)
i+1 − t

(m)
i |; i = 0, 1, . . . , nm − 1} = 0 we

therefore have∫ T

0
Hs dsL

B(s, a) = lim
m→∞

nm−1∑
i=1

H
t
(m)
i+1

(
LB(t(m)i+1 ∧ T, a)− LB(t(m)i ∧ T, a)

)
a.s.

Since H is bounded and �LB (T, a) < ∞ these Riemann sums converge in L1(P ) by

the dominated convergence theorem. Using the hypothesis that Ht is independent
of Ft we conclude

�

∫ T

0
Hs dsL

B(s, a) = lim
m→∞ �

[ nm−1∑
i=1

H
t
(m)
i+1

(
LB(t(m)i+1 ∧ T, a)− LB(t(m)i ∧ T, a)

)]

= lim
m→∞

nm−1∑
i=1

�H
t
(m)
i+1

(
�LB (t(m)i+1 ∧ T, a)− �LB (t(m)i ∧ T, a)

)
.

Since (�Ht )t�0 is continuous and bounded and �LB (T, a) < ∞ these Riemann sums
converge and we obtain

�

∫ T

0
Hs dsL

B(s, a) =
∫ ∞

0
�Hs ds

(
�LB (s ∧ T, a)

)
.

�

Lemma 3.2. Let B be a Brownian motion with respect to the filtration � =

(Ft)t�0 and T an �-stopping time with �T < ∞. Then

�

( ∫ T

0
h(Bs, Bs+ε − Bs) ds

)
=

∫
�

∫
�

h(a, x)
1√
2�ε
exp

(
−x2

2ε

)
dx �LB (T, a) da

holds for all measurable and bounded functions h : � × � → � and every ε > 0.

�����. First we observe that ∞ > �T = �
∫ T

0 d〈B〉s = �
∫
�

LB(T, a) da =∫
�
�LB (T, a) da and conclude that �LB (T, a) < ∞ for Lebesgue-almost every a ∈ �.

Let g be a bounded and measurable function defined on ([0,+∞)×Ω×�,B([0,+∞))×
F ×B(�)). Here B(E) denotes the σ-algebra of Borel subsets of a topological space
E. We then have

(2)
∫ T

0
g(s, ω, Bs(ω)) ds =

∫
�

∫ T

0
g(s, ω, a) dsL

B(s, ω, a) da �-a.s.
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Indeed, by a monotone class argument, it suffices to verify this equality for indicator

functions g = 1[u,v]×C×D with 0 � u < v < +∞, C ∈ F and D ∈ B(�). But this is
a simple consequence of the occupation times formula (1).

Now, applying formula (2) to g defined by g(s, ω, a) = h(a, Bs+ε(ω) − Bs(ω)),
(s, ω, a) ∈ [0,+∞)×Ω×�, and using Fubini’s theorem and Lemma 3.1 we calculate

�

∫ T

0
h(Bs, Bs+ε − Bs) ds = �

( ∫
�

∫ T

0
h(a, Bs+ε − Bs) dsL

B(s, a) da

)
=

∫
�

�

∫ T

0
h(a, Bs+ε − Bs) dsL

B(s, a) da

=
∫
�

∫ ∞

0
�h(a, Bs+ε − Bs) ds

(
�LB (s ∧ T, a)

)
da.

Since, for every s, Bs+ε − Bs is normally distributed with mean zero and variance

ε and, in particular, the inner integrand does not depend on s, the assertion now
follows immediately. �

Lemma 3.3. Suppose that −∞ � a < b � ∞, B is a Brownian motion starting
in x0 ∈ (a, b) and τ := inf{t � 0: Bt /∈ (a, b)}. Let F be a universally measurable

function such that the process F (B) is right-continuous on [0, τ) �-a.s. Then F is

continuous on (a, b).

�����. In the context of Markov processes, F would be finely continuous on
(a, b) and, since the fine topology for Brownian motion coincides with the usual

topology, the result would follow. However, in our situation the initial state x0 is
fixed and we need another argument.

In a first step we only assume that F (B) is right-continuous on [0, τ) on a set
A ∈ F of strictly positive probability and show that then F is continuous at x0. To

this end, let ε > 0 and define � = inf{t � 0: |F (Bt) − F (x0)| � ε} ∧ τ on A and τ

otherwise. Then � is F -measurable and � > 0 �-a.s. We consider

I(ω) = {Bt(ω) : t < �(ω)}.

Since B is continuous, I(ω) is an interval which, obviously, contains x0. Fur-

thermore, by the martingale property of B (or by the law of iterated logarithm),
I(ω) ∩ (x0,+∞) 
= ∅ and I(ω) ∩ (−∞, x0) 
= ∅ �-a.s. This yields that I(ω) is a
neighbourhood of x0 �-a.s. But, for ω ∈ A, x ∈ I(ω) implies |F (x) − F (x0)| < ε.

Since ε > 0 was chosen arbitrarily, this means that F is continuous at x0.

For a general x ∈ (a, b) we define the �-a.s. finite stopping time σx = inf{t �
0: Bt = x}. Then Bx defined by Bx

t = Bσx+t, t � 0, is again a Brownian motion,
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now starting from x. Because of �(σx < τ) > 0, the hypothesis of the lemma entails

that F (Bx) satisfies the assumption of the first step. Hence F is continuous at x

and the proof of the lemma is completed. �

In the above proof it would be sufficient to know that F is only Lebesgue measur-

able. We also notice that Lemma 3.3 remains true for continuous local martingales
M with 〈M〉∞ = +∞ instead of the Brownian motion B.

In the following we say that a real function F is locally square integrable on a
Borel set B if, for every compact set K with K ⊆ B, the function F1K is square

integrable. For every interval I ⊆ � let W 1,2(I) (or W 1,2
loc (I)) denote the Sobolev

space of all absolutely continuous functions on I admitting a density that is square

integrable (respectively, locally square integrable) on I.

Theorem 3.4. Suppose that −∞ � a < b � ∞, B is a Brownian motion starting
in x0 ∈ (a, b) and τ := inf{t � 0: Bt /∈ (a, b)}. If F is a Dirichlet function for the

stopped process Bτ then F|(a,b) ∈ W 1,2
loc

(
(a, b)

)
.

�����. The definition of a Dirichlet function implies that F (Bτ ) is right-
continuous. Hence the assumptions of Lemma 3.3 are satisfied. By Lemma 3.3, F

is continuous on (a, b). Let now c and d be real numbers such that c < x0 < d

and [c, d] ⊆ (a, b). It is sufficient to show that the restriction of F to (c, d) belongs

to W 1,2
loc

(
(c, d)

)
. But F is bounded and continuous on [c, d]. Furthermore, setting

� := inf{t � 0: Bt /∈ (c, d)}, the stopped process F (B�) is again a local Dirichlet

process by Lemma 2.2, (iii). Consequently, without loss of generality we may assume
that a and b are finite and that F is continuous and hence bounded on [a, b].

1) By Lemma 2.2, (ii), we find a sequence (Tn)n∈� of stopping times reducing the
continuous local Dirichlet process F (Bτ ) such that

lim
ε→0

�

(
1
ε

∫ ∞

0

(
F (Bτ∧Tn

s+ε )− F (Bτ∧Tn
s )

)2
ds

)
(� n)

exists for each n ∈ �. Since F is continuous and bounded we observe that

lim
ε→0

�

(
1
ε

∫ ∞

0

(
F (Bτ∧Tn

s+ε )− F (Bτ∧Tn
s )

)2
ds

)
= lim

ε→0
�

(
1
ε

∫ τ∧Tn

0

(
F (Bs+ε)− F (Bs)

)2
ds

)
by the dominated convergence theorem. From the well-known property �τ < ∞
(cf., e.g., [11, VI.2.8, 2◦)] for f = 1) we now see that �(τ ∧ Tn) < ∞ and using
Bs+ε = Bs + (Bs+ε − Bs) we conclude by 3.2 that

(3) lim
ε→0
1
ε

∫
�

∫
�

(
F (a+ x) − F (a)

)2 1√
2�ε
exp

(
−x2

2ε

)
dx �LB (τ ∧ Tn, a) da
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exists for each n ∈ �.

2) It is well known ([11, VI.2.8]) that f(x) := 1
2 �LB (τ, x), x ∈ �, has the form

f(x) =


(x − a)(b − x0)/(b − a) a � x � x0 � b,

(x0 − a)(b − x)/(b − a) a � x0 � x � b,

0 otherwise.

Thus f is a continuous bounded function with A := {x ∈ � : f(x) > 0} = (a, b).
The functions fn(x) := �LB (τ ∧ Tn, x), x ∈ �, form a non-decreasing sequence

converging pointwise to f . Looking at the Tanaka formula we verify that fn, n ∈ �,
are continuous. Thus the functions fn converge uniformly to f .

3) In order to show F|(a,b) ∈ W 1,2
loc

(
(a, b)

)
it suffices to prove F|Im

∈ W 1,2(Im),

m ∈ �, where Im := {x ∈ � : f(x) � 1
m}, since Im, m ∈ �, are compact intervals

with (a, b) =
⋃
m

Im and Im ⊆ Im+1. Let Im = [r, s]. Since (fn) converges uniformly

to f by 2) we find some n such that �LB (τ ∧ Tn, ·) > 1
2m on Im. Consequently, the

existence of the limit (3) entails that

{
l

∫ r

s

∫
�

(
F (a+ x)− F (a)

)2√ l

2�
exp

(
− l

2
x2

)
dxda; l ∈ �

}

is bounded. We set

∆l(x) := x2l

√
l

2�
exp

(
− l

2
x2

)
, x ∈ �, l ∈ �,

and

hl(a) :=
∫
�

F (a+ x)− F (a)
x

∆l(x) dx, a ∈ [r, s], l ∈ �.

Since ∆l(x) dx is a probability measure on � the Cauchy-Schwarz inequality yields

h2l (a) �
∫
�

(
F (a+ x)− F (a)

x

)2
∆l(x) dx, a ∈ [r, s].

Thus we conclude that (hl)l∈� is bounded in the Hilbert space L2([r, s], da). By
passing to a subsequence if necessary we may therefore assume that (hl)l∈� converges
weakly to some h ∈ L2([r, s], da). As a consequence we have

∫ u

r

h(a) da = lim
l→∞

∫ u

r

∫
�

F (a+ x)− F (a)
x

∆l(x) dxda
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for every u ∈ [r, s]. We set G(u) :=
∫ u

r
F (y) dy. Since

(
(F (a + x) − F (a))/x

)
∆l(x)

is bounded we obtain∫ u

r

h(a) da = lim
l→∞

∫
�

∫ u

r

(F (a+ x)− F (a)) da
∆l(x)

x
dx

= lim
l→∞

∫
�

(G(u + x)− G(u)
x

− G(r + x)
x

)
∆l(x) dx, u ∈ [r, s],

by Fubini’s theorem. As the measures ∆l(x) dx converge weakly to the Dirac measure

δ0 we conclude ∫ u

r

h(a) da = F (u)− F (r), u ∈ [r, s].

Thus F|Im
lies in W 1,2(Im). This completes the proof of Theorem 3.4. �

We remark that, in step 3) of the above proof, we use some analytical arguments

due to J. Bertoin (see the proof of [2, Théorème 3.4]).

By [18, Corollary 5.8] (see also [8, 3.45]), we know that, in fact, every absolutely

continuous function with locally square integrable density is a Dirichlet function for
Brownian motion. Thus, combining Theorem 3.4 and [18, Corollary 5.8] we get

Theorem 3.5. Let B be a Brownian motion starting in x0 ∈ �. A real function

is a Dirichlet function for B if and only if it is absolutely continuous with locally

square integrable density.

It is easy to show that, in the case of Brownian motion, W 1,2
loc (�) is the set of all

functions for which the generalized Bouleau-Yor formula ([18, Theorem 2.2]) can be

stated. Thus, we have characterized the Dirichlet functions of Brownian motion as
the functions inducing a transformation according to the generalized Bouleau-Yor

formula. We emphasize the complete analogy to the well-known fact that a real
function transforms Brownian motion into a semimartingale if and only if it allows

to apply the Itô-Tanaka formula.

Theorem 3.6. Suppose that −∞ � r1 < r2 � +∞ and W is a Brownian motion

with reflecting barriers r1, r2, starting in x0 ∈ [r1, r2] ∩ �, i.e.,

(∗)
{

Wt ∈ [r1, r2] ∩ � , t � 0,
Wt = x0 +Bt + 12L

W (t, r1)− 1
2L

W (t, r2) a.s.,

where B is a Brownian motion with B0 = 0. We consider the situations

(i) τ =∞,
(ii) −∞ < r1, x0 < r2 and τ := inf{t � 0: Wt = c} for some c ∈ (x0, r2),
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(iii) r2 < +∞, x0 > r1 and τ := inf{t � 0: Wt = c} for some c ∈ (r1, x0).
If F is a Dirichlet function for the stopped process W τ we have in the respective

situation

(i) F|[r1,r2]∩� is absolutely continuous with density in L2loc([r1, r2] ∩ �),

(ii) F|[r1,c) is absolutely continuous with density in L2loc([r1, c)),

(iii) F|(c,r2] is absolutely continuous with density in L2loc((c, r2]).

�����. The stochastic differential equation (∗) being unique in the sense of
probability law it suffices to show the assertion for a given Brownian motion with
reflecting barriers r1, r2. We choose the reflected Brownian motion constructed in

Section 2, i.e., we assume that W = f(B̃) is obtained from a Brownian motion B̃

by a transformation f as described in Section 2. (Note that the case r1 = −∞,
r2 = +∞ is treated in Theorem 3.5 since W then is a Brownian motion.) We set in
the respective situation

(i) � :=∞, s1 := r1 − 1, s2 := r2 + 1 (using the usual conventions for ±∞),
(ii) � := inf{t � 0: B̃t = c} ∧ inf{t � 0: B̃t = s1} for some s1 ∈ (−∞, r1), s2 := c,

(iii) � := inf{t � 0: B̃t = c} ∧ inf{t � 0: B̃t = s2} for some s2 ∈ (r2,+∞), s1 := c.

Always � is a stopping time satisfying � � τ . By hypothesis and Lemma 2.2,
(iii),

(
F (W τ )

)�
= (F ◦ f)(B̃�) is a local Dirichlet process. Theorem 3.4 now gives

F ◦ f|(s1,s2) ∈ W 1,2
loc

(
(s1, s2)

)
. Since f|[r1,r2]∩� is always the identical mapping the

theorem follows immediately. �

In the case of reflected Brownian motions the necessary condition for Dirichlet
functions in Theorem 3.6 even turns out to be sufficient.

Theorem 3.7. Suppose −∞ � r1 < r2 � +∞ and let W be a Brownian motion

with reflecting barriers r1, r2, starting in x0 ∈ [r1, r2]∩�. A function F is a Dirichlet

function forW if and only if F|[r1,r2]∩� is absolutely continuous and admits a density
in L2loc([r1, r2] ∩ �).

	��
�� �� ����. The necessity of the condition follows from Theorem
3.6. Now suppose F is a function such that F|[r1,r2]∩� is absolutely continuous with
density in L2loc([r1, r2] ∩ �). Without loss of generality we may assume that F is
constant on � \ (r1, r2) thus ensuring F ∈ W 1,2

loc (�).

In order to show that F satisfies the requirements of the generalized Bouleau-Yor

formula ([18, 2.2]) we choose

B := {r1, r2} ∩ �,

Sn := inf{t � 0: 〈W 〉t > n} ∧ inf{t � 0: LW (t, r1) > n or LW (t, r2) > n}, n ∈ �,

Tn := Sn ∧ inf{t � 0: Wt /∈ (−n, n)}, n ∈ �,
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in the notation of [18, 2.2], and a density F ′ vanishing on B. We have lim
n→∞ Tn =∞

a.s. and LW (Tn, a) = 0 for every a /∈ (−n, n). Furthermore �LW (Tn, a) � 3n holds
in view of the Tanaka formula. Thus we verify

F ′ ∈ L2loc(�) ⊆
⋂
n∈�

L2(�, �LW (Tn, a) da).

Therefore we can apply [18, Theorem 2.2]. We now see that [18, Corollary 5.8]
remains valid without any changes in the proofs of the underlying statements [18,

5.5–5.7]. Thus, F (W ) is a local Dirichlet process. �

Thus, the functions transforming a reflected Brownian motion into a local Dirich-
let process are exactly the functions inducing a transformation according to the
generalized Bouleau-Yor formula.

������ 3.8. Let W and τ be as in Theorem 3.6.(ii) (or (iii)). Suppose that, in

the respective case,

(ii) F|[r1,c) is absolutely continuous with density in L2loc([r1, c)),

(iii) F|(c,r2] is absolutely continuous with density in L2loc((c, r2]).

By using respectively the modified stopping times

(ii) Tn := Sn ∧ inf{t � 0: Wt /∈ (−n, c − 1
n )},

(iii) Tn := Sn ∧ inf{t � 0: Wt /∈ (c+ 1
n , n)}

in the above proof it is possible to show that F (W τ ) is a local Dirichlet process up to

the stopping time τ = lim
n→∞Tn. To this end, we have to apply a slight modification

of [18, Corollary 5.8], where the state space � is replaced by (−∞, c) or (c,+∞),
respectively.

��������������
. The authors would like to thank the referee for care-
fully reading the manuscript and for several helpful remarks which improved the

presentation of the paper.
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