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NEARLY DISJOINT SEQUENCES IN CONVERGENCE ¢-GROUPS

JAN JAKUBIK, Kogice
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Abstract. For an abelian lattice ordered group G let conv G be the system of all com-
patible convergences on Gj this system is a meet semilattice but in general it fails to be a
lattice. Let a4 be the convergence on GG which is generated by the set of all nearly disjoint
sequences in GG, and let « be any element of conv GG. In the present paper we prove that the
join au,g V o does exist in conv G.
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All ¢-groups (= lattice ordered groups) considered in the present paper are assumed
to be abelian.

For a convergence ¢-group we apply the same notation and definitions as in [2].

Let G be an f-group. A sequence (a,) in GV is said to be nearly disjoint if there
exists a positive integer m such that a, ) A a,2) = 0 whenever n(1) and n(2) are
distinct positive integers with n(i) > m for i = 1, 2.

We prove that for each /-group G there exists a convergence o on G such that,
whenever (z,,) is a nearly disjoint sequence in G, then z,, — 0.

This yields that there exists a convergence a,q on G such that a4 is generated
by the set of all nearly disjoint sequences in G+.

We denote by conv G the system of all convergences on G this system is partially
ordered by the set-theoretical inclusion. Each interval of conv G is a complete lattice,
but if @1 and a9 are elements of conv G, then the join a3 Vs need not exist in conv G.

We show that the join au,q V « does exist in conv G for each element « of conv G.

For a similar result concerning disjoint sequences in a Boolean algebra cf. [3] (the
distinction is in the point that in the present paper we do not assume the Urysohn
property for a convergence, while in [3] the Urysohn property was supposed to be
valid).
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A convergence ¢-group (G, «) will be called strong if for each g € G with g > 0
there exists a sequence (x,) in the interval [0, g] such that z,, —» 0 and ,,(1) # Tp(2)
whenever n(1),n(2) are distinct positive integers. We use nearly disjoint sequences to
construct a proper class of nonisomorphic types of archimedean strong convergence
{-groups.

1. CONVERGENCES GENERATED BY NEARLY DISJOINT SEQUENCES

In this section we assume that G is an ¢-group. The symbol N denotes the set of
all positive integers.

For the sake of completeness, we recall the following notation and definition con-
cerning the notion of convergence in G as applied in [2].

Let g € G and (g,) € GV. If g, = g for each n € N, then we write (g,,) = const g.
For (h,) € GN we put (hy) ~ (gn) if there is m € N such that h,, = g, for each
n € N with n > m.

A convex subsemigroup « of the lattice ordered semigroup (GN)* = (GT)V is said
to be a convergence on G if it satisfies the following conditions:

(I) If (¢95) € @, then each subsequence of (g,,) belongs to «.
(I') Let (gn) € a and (hy,) € (GT)N. If (hy) ~ (gn), then (h,) € a.
(III) Let g € G. Then const g € « if and only if g = 0.

We denote by D(G) the system of all nearly disjoint sequences in GT. Consider
the following condition for a sequence (a,,) in GT:

(*¥) For each m € N, the relation A a, =0 is valid.

n=m

1.1. Lemma. Let (by,) be a sequence in G satisfying the condition (x). Further,
let k € N and for each i € {1,2,...,k} let (%) be an element of D(G). Then the
sequence

(xl + 22 + .. 428 +by)

satisfies the condition ().

Proof. We put
Up = x> +22 + ...+ 28 +b,

for each n € N. We proceed by induction with respect to k.
Let £ = 1. By way of contradiction, suppose that (u,) does not satisfy the
condition (). Hence there are m € N and 0 < ¢ € G such that the relation

c<al +b,

is valid for each n € N with n > m.
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We shall repeatedly use Riesz Decomposition Theorem. It yields that for each
n > m there are ¢} and 2 such that

chel0,zt], 2 €0,b,], c=ck+c2.

If ¢& = 0 for each n > m, then ¢ = ¢2 for each n > m. This is impossible since
(by,) satisfies the condition (k).
Hence there is n(1) > m such that ¢}, ;) > 0. Let n > n(1) + 1. Then

1 1 1 1 1
Cp N\ Cp1y S Ty Ny q) = 0, Cr1) S G

thus c}l(l) < 2 < b,. We have arrived at a contradiction with the condition (x) for
(bn). Hence the assertion is valid for k = 1.

Let k > 1 and suppose that the assertion holds for £k — 1. By way of contradiction,
suppose that it does not hold for k. Hence there exist m € N and 0 < ¢ € G such
that

1 2 k
c<Lx,+x, +...+x, + by

is valid for each n > m. Thus for each such n there are ¢}, c? and ¢3 in G such that

— Al 2 3
c=c,+c, t+c,,

k—l]
)

che0,xh +x2 + ... +ak 2 e[0,2F], ¢ €0,b,).

n

If ¢2 = 0 for each n > m, then
e<zl 422+ . +a2F 14w,

for each n > m, which is a contradiction with the induction assumption.
Thus there exists n(1) > m with ci(l) > 0. Put m; =n(l)+1 and let n > m;.
Then
2 2 2 k
Cn(l) < C, Cn(]_) A\ Cp, < an(l) A\ a, = 0,

whence ci(l) < ¢l + 3. Therefore
ci(l) <zl4al4. 42+,
for each n > m;. This is again a contradiction with the induction assumption. [

1.2. Corollary. Letk € N and for each i € {1,2,...,k} let (z¢) be an element
of D(G). Then the sequence (z} + x2 + ...+ zF) satisfies the condition ().

A nonempty subset X of (GT)V is said to be regular if there exists a € conv G
such that X C a.
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1.3. Lemma. Let X be a nonempty subset of (GT)N. Then the following
conditions are equivalent:
(i) X is regular.
(ii) Whenever 0 < ¢ € G, (z}),(22),...,(zF) € X, (y!) is a subsequence of (z?))
fori=1,2,...,k, and K, m € N satisfy

c< KW +y2+.. 4+yh)

for each n € N with n > m, then ¢ = 0.

Proof. Thisis a consequence of Proposition 2.3 in [2]. O

1.4. Lemma. The set D(G) is regular.

n

let (y%) be a subsequence of (zf). If K € N, then (Ky!) belongs to D(G) for
i=1,2,..., k. Now it suffices to apply 1.2 and 1.3. O

Proof. Let (zl),(22),...,(xF) be elements of D(G). For each i € {1,2,...,k}

Let ) # X C (G*)N and a € conv G. Suppose that
(i) X Ca
(ii) whenever 8 € convG and X C 3, then o C (.

Under these conditions the convergence « is said to be generated by the set X.
We denote by D;(G) the set of all sequences (u,) which satisfy the following
condition: there exist (x1),(z2),...,(z¥) in D(G) such that

n
1 2 k
Up =X, +x, +...+x,

for each n € N.
From Proposition 2.3 in [2] we obtain

1.5. Lemma. Let X be a regular subset of (Gt)N and let (2,,) be a sequence in
G™. Then the following conditions are equivalent:
(i) (zn) belongs to the convergence on G which is generated by X.
(ii) There exist (x}), (¥2),...,(zF) € X, K € M, m € N and (y}), (¥2),...,(y¥) €
(GT)N such that (yt) is a subsequence of (z¢) (i =1,2,...,k) and

2y <Kyt +y2 4. +9yF)

is valid for each n € N with n > m.

Let the meaning of a.,q be as in the introduction; in view of 1.4, a,,q does exist.

1.6. Proposition. D1(G) = ang.
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Proof. It is clear that D(G) C apg and hence D1(G) C anq. Let (z,) € ang.
We apply 1.5 for X = D(G). Then (under the notation as in 1.5) (Ky’) € D(G) for
i=1,2,...,k, and for each n > m the element z,, can be written in the form

Zn =t FEE 4 th

with !, € [0,Kyi], i = 1,2,...,k. Thus (t}) € D(G) for i = 1,2,...,k and hence
(zn) € D1(G). O

1.7. Lemma. Leta € convG, X = aU a,gq. Then X is regular.
Proof. This is a consequence of 1.1 and 1.6. (]

From 1.7 and from Proposition 2.1 in [2] we obtain

1.8. Theorem. Let a € convG. Then the join oV au,g does exist in conv G.

2. STRONG CONVERGENCE /-GROUPS

We apply the notion of strong convergence ¢-group as defined in the introduction.

2.1. Example. Let R be the set of all reals with the usual topology and let
H be the additive group of all continuous real functions on R. The set H is partially
ordered coordinate-wise. Then H is an archimedean ¢-group. Put o = D1(H). In
view of 1.6, (H, «) is a convergence ¢-group. Let 0 < f € H. There exist f, € [0, f]
(n € N) such that f,, > 0 for each n € N and f,,(1) A fn(2) = 0 whenever n(1) and
n(2) are distinct positive integers. Thus f,, —, 0. Therefore the convergence ¢-group
(H,«) is strong.

2.2. Example. Let I be a nonempty set and for each ¢ € I let H; = H, where
H is as in 2.1. Put
H(I) =] H:.
iel
Then H is an archimedean /-group.

Fori € I and f € H(I) let f be the component of f in H;. Let 0 < f €
H(I). Thus there is i € I such that f® > 0. Then in view of the properties of
H (cf. 2.1) there exist f, € [0, f] (n € N) such that f, > 0 for each n € N and
Jn) A fn2) = 0 whenever n(1),n(2) are distinct positive integers. Thus f, —q 0,
where o = Dy (H(I)). Hence (H(I),«) is a strong convergence ¢-group.

Let I; and Is be nonempty sets such that

(1) card I # card Is.
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It is easy to verify that the ¢-group H is directly indecomposable. If an ¢-group has
a direct product decomposition with nonzero directly indecomposable direct factors,
then this direct decomposition is uniquely determined (this is a consequence of the
well-known Shimbireva’s theorem [4] on the existence of a common refinement of any
two direct product decompositions of a directed group; cf. also Fuchs [1]). Hence
the number of nonzero directly indecomposable direct factors of H(Ij) is equal to
card I, (k = 1,2). This yields that whenever (1) holds, then H((I;) and (H(I3)
are not isomorphic. Therefore the convergence ¢-groups (H([1),D1(H(I1))) and
(H(I2),D1(H(I3))) are not isomorphic.
From this we conclude

2.3. Proposition. There exists a proper class of nonisomorphic types of archi-
medean strong convergence {-groups.

Let us denote by S the class of all /-groups G having the property that there is
a € conv G such that (G, «) is a strong convergence ¢-group.

It is easy to verify that the class S is closed with respect to /-subgroups and with
respect to direct products. The following example shows that .S is not closed with
respect to homomorphisms. Hence S fails to be a variety.

24. Example. Let Z and R be the additive group of all integers or of all
reals, respectively, with the natural linear order. Put

G=7oR,

where the symbol o denotes the lexicographic product. Then G € S, but the factor
¢-group G/R (being isomorphic to 7Z) does not belong to S.

We remark without proof that S is a radical class of ¢-groups.

References

[1] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.

[2] J. Jakubik: Sequential convergences in f-groups without Urysohn’s axiom. Czechoslovak
Math. J. 42 (1992), 101-116.

[3] J. Jakubik: Disjoint sequences in Boolean algebras. Math. Bohem 123 (1998), 411-418.

[4] E. P. Shimbireva: On the theory of partially ordered groups. Matem. Sbornik 20 (1947),
145-178. (In Russian.)

Author’s address: Jdan Jakubik, Matematicky tustav SAV, Gresdkova 6, 04001 KosSice,
Slovakia, e-mail: musavke@linux1.saske.sk.

144



