NEARLY DISJOINT SEQUENCES IN CONVERGENCE ℓ-GROUPS

Ján Jakubík, Košice

(Received January 12, 1998)

Abstract

For an abelian lattice ordered group G let conv G be the system of all compatible convergences on G; this system is a meet semilattice but in general it fails to be a lattice. Let $\alpha_{n d}$ be the convergence on G which is generated by the set of all nearly disjoint sequences in G, and let α be any element of conv G. In the present paper we prove that the join $\alpha_{n d} \vee \alpha$ does exist in conv G.

Keywords: convergence ℓ-group, nearly disjoint sequence, strong convergence
MSC 2000: 06F20, 22C05

All ℓ-groups (= lattice ordered groups) considered in the present paper are assumed to be abelian.

For a convergence ℓ-group we apply the same notation and definitions as in [2].
Let G be an ℓ-group. A sequence $\left(a_{n}\right)$ in G^{+}is said to be nearly disjoint if there exists a positive integer m such that $a_{n(1)} \wedge a_{n(2)}=0$ whenever $n(1)$ and $n(2)$ are distinct positive integers with $n(i) \geqslant m$ for $i=1,2$.

We prove that for each ℓ-group G there exists a convergence α on G such that, whenever $\left(x_{n}\right)$ is a nearly disjoint sequence in G^{+}, then $x_{n} \rightarrow_{\alpha} 0$.

This yields that there exists a convergence $\alpha_{n d}$ on G such that $\alpha_{n d}$ is generated by the set of all nearly disjoint sequences in G^{+}.

We denote by conv G the system of all convergences on G; this system is partially ordered by the set-theoretical inclusion. Each interval of $\operatorname{conv} G$ is a complete lattice, but if α_{1} and α_{2} are elements of conv G, then the join $\alpha_{1} \vee \alpha_{2}$ need not exist in conv G.

We show that the join $\alpha_{n d} \vee \alpha$ does exist in conv G for each element α of conv G.
For a similar result concerning disjoint sequences in a Boolean algebra cf. [3] (the distinction is in the point that in the present paper we do not assume the Urysohn property for a convergence, while in [3] the Urysohn property was supposed to be valid).

Supported by Grant GA SAV 2/5125/98.

A convergence ℓ-group (G, α) will be called strong if for each $g \in G$ with $g>0$ there exists a sequence $\left(x_{n}\right)$ in the interval $[0, g]$ such that $x_{n} \rightarrow_{\alpha} 0$ and $x_{n(1)} \neq x_{n(2)}$ whenever $n(1), n(2)$ are distinct positive integers. We use nearly disjoint sequences to construct a proper class of nonisomorphic types of archimedean strong convergence ℓ-groups.

1. Convergences generated by nearly disjoint sequences

In this section we assume that G is an ℓ-group. The symbol \mathbb{N} denotes the set of all positive integers.

For the sake of completeness, we recall the following notation and definition concerning the notion of convergence in G as applied in [2].

Let $g \in G$ and $\left(g_{n}\right) \in G^{\mathbb{N}}$. If $g_{n}=g$ for each $n \in \mathbb{N}$, then we write $\left(g_{n}\right)=$ const g. For $\left(h_{n}\right) \in G^{\mathbb{N}}$ we put $\left(h_{n}\right) \sim\left(g_{n}\right)$ if there is $m \in \mathbb{N}$ such that $h_{n}=g_{n}$ for each $n \in \mathbb{N}$ with $n \geqslant m$.

A convex subsemigroup α of the lattice ordered semigroup $\left(G^{\mathbb{N}}\right)^{+}=\left(G^{+}\right)^{\mathbb{N}}$ is said to be a convergence on G if it satisfies the following conditions:
(I) If $\left(g_{n}\right) \in \alpha$, then each subsequence of $\left(g_{n}\right)$ belongs to α.
(II') Let $\left(g_{n}\right) \in \alpha$ and $\left(h_{n}\right) \in\left(G^{+}\right)^{\mathbb{N}}$. If $\left(h_{n}\right) \sim\left(g_{n}\right)$, then $\left(h_{n}\right) \in \alpha$.
(III) Let $g \in G$. Then const $g \in \alpha$ if and only if $g=0$.

We denote by $D(G)$ the system of all nearly disjoint sequences in G^{+}. Consider the following condition for a sequence $\left(a_{n}\right)$ in G^{+}:
$(*)$ For each $m \in \mathbb{N}$, the relation $\bigwedge_{n \geqslant m} a_{n}=0$ is valid.
1.1. Lemma. Let $\left(b_{n}\right)$ be a sequence in G^{+}satisfying the condition (*). Further, let $k \in \mathbb{N}$ and for each $i \in\{1,2, \ldots, k\}$ let $\left(x_{n}^{i}\right)$ be an element of $D(G)$. Then the sequence

$$
\left(x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}+b_{n}\right)
$$

satisfies the condition (*).
Proof. We put

$$
u_{n}=x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}+b_{n}
$$

for each $n \in \mathbb{N}$. We proceed by induction with respect to k.
Let $k=1$. By way of contradiction, suppose that $\left(u_{n}\right)$ does not satisfy the condition $(*)$. Hence there are $m \in \mathbb{N}$ and $0<c \in G$ such that the relation

$$
c \leqslant x_{n}^{1}+b_{n}
$$

is valid for each $n \in \mathbb{N}$ with $n \geqslant m$.

We shall repeatedly use Riesz Decomposition Theorem. It yields that for each $n \geqslant m$ there are c_{n}^{1} and c_{n}^{2} such that

$$
c_{n}^{1} \in\left[0, x_{n}^{1}\right], \quad c_{n}^{2} \in\left[0, b_{n}\right], \quad c=c_{n}^{1}+c_{n}^{2} .
$$

If $c_{n}^{1}=0$ for each $n \geqslant m$, then $c=c_{n}^{2}$ for each $n \geqslant m$. This is impossible since $\left(b_{n}\right)$ satisfies the condition ($*$).

Hence there is $n(1) \geqslant m$ such that $c_{n(1)}^{1}>0$. Let $n \geqslant n(1)+1$. Then

$$
c_{n}^{1} \wedge c_{n(1)}^{1} \leqslant x_{n}^{1} \wedge x_{n(1)}^{1}=0, \quad c_{n(1)}^{1} \leqslant c
$$

thus $c_{n(1)}^{1} \leqslant c_{n}^{2} \leqslant b_{n}$. We have arrived at a contradiction with the condition $(*)$ for $\left(b_{n}\right)$. Hence the assertion is valid for $k=1$.

Let $k>1$ and suppose that the assertion holds for $k-1$. By way of contradiction, suppose that it does not hold for k. Hence there exist $m \in \mathbb{N}$ and $0<c \in G$ such that

$$
c \leqslant x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}+b_{n}
$$

is valid for each $n \geqslant m$. Thus for each such n there are c_{n}^{1}, c_{n}^{2} and c_{n}^{3} in G such that

$$
\begin{gathered}
c=c_{n}^{1}+c_{n}^{2}+c_{n}^{3} \\
c_{n}^{1} \in\left[0, x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k-1}\right], \quad c_{n}^{2} \in\left[0, x_{n}^{k}\right], \quad c_{n}^{3} \in\left[0, b_{n}\right] .
\end{gathered}
$$

If $c_{n}^{2}=0$ for each $n \geqslant m$, then

$$
c \leqslant x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k-1}+b_{n}
$$

for each $n \geqslant m$, which is a contradiction with the induction assumption.
Thus there exists $n(1) \geqslant m$ with $c_{n(1)}^{2}>0$. Put $m_{1}=n(1)+1$ and let $n \geqslant m_{1}$. Then

$$
c_{n(1)}^{2} \leqslant c, \quad c_{n(1)}^{2} \wedge c_{n}^{2} \leqslant a_{n(1)}^{k} \wedge a_{n}^{k}=0
$$

whence $c_{n(1)}^{2} \leqslant c_{n}^{1}+c_{n}^{3}$. Therefore

$$
c_{n(1)}^{2} \leqslant x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k-1}+b_{n}
$$

for each $n \geqslant m_{1}$. This is again a contradiction with the induction assumption.
1.2. Corollary. Let $k \in \mathbb{N}$ and for each $i \in\{1,2, \ldots, k\}$ let $\left(x_{n}^{i}\right)$ be an element of $D(G)$. Then the sequence $\left(x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}\right)$ satisfies the condition $(*)$.

A nonempty subset X of $\left(G^{+}\right)^{\mathbb{N}}$ is said to be regular if there exists $\alpha \in \operatorname{conv} G$ such that $X \subseteq \alpha$.
1.3. Lemma. Let X be a nonempty subset of $\left(G^{+}\right)^{\mathbb{N}}$. Then the following conditions are equivalent:
(i) X is regular.
(ii) Whenever $0 \leqslant c \in G$, $\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{k}\right) \in X,\left(y_{n}^{i}\right)$ is a subsequence of $\left(x_{n}^{i}\right)$ for $i=1,2, \ldots, k$, and $K, m \in \mathbb{N}$ satisfy

$$
c \leqslant K\left(y_{n}^{1}+y_{n}^{2}+\ldots+y_{n}^{k}\right)
$$

for each $n \in \mathbb{N}$ with $n \geqslant m$, then $c=0$.
Proof. This is a consequence of Proposition 2.3 in [2].
1.4. Lemma. The set $D(G)$ is regular.

Proof. Let $\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{k}\right)$ be elements of $D(G)$. For each $i \in\{1,2, \ldots, k\}$ let $\left(y_{n}^{i}\right)$ be a subsequence of $\left(x_{n}^{i}\right)$. If $K \in \mathbb{N}$, then $\left(K y_{n}^{i}\right)$ belongs to $D(G)$ for $i=1,2, \ldots, k$. Now it suffices to apply 1.2 and 1.3.

Let $\emptyset \neq X \subseteq\left(G^{+}\right)^{\mathbb{N}}$ and $\alpha \in \operatorname{conv} G$. Suppose that
(i) $X \subseteq \alpha$;
(ii) whenever $\beta \in \operatorname{conv} G$ and $X \subseteq \beta$, then $\alpha \subseteq \beta$.

Under these conditions the convergence α is said to be generated by the set X.
We denote by $D_{1}(G)$ the set of all sequences $\left(u_{n}\right)$ which satisfy the following condition: there exist $\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{k}\right)$ in $D(G)$ such that

$$
u_{n}=x_{n}^{1}+x_{n}^{2}+\ldots+x_{n}^{k}
$$

for each $n \in \mathbb{N}$.
From Proposition 2.3 in [2] we obtain
1.5. Lemma. Let X be a regular subset of $\left(G^{+}\right)^{\mathbb{N}}$ and let $\left(z_{n}\right)$ be a sequence in G^{+}. Then the following conditions are equivalent:
(i) $\left(z_{n}\right)$ belongs to the convergence on G which is generated by X.
(ii) There exist $\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{k}\right) \in X, K \in M, m \in \mathbb{N}$ and $\left(y_{n}^{1}\right),\left(y_{n}^{2}\right), \ldots,\left(y_{n}^{k}\right) \in$ $\left(G^{+}\right)^{\mathbb{N}}$ such that $\left(y_{n}^{i}\right)$ is a subsequence of $\left(x_{n}^{i}\right)(i=1,2, \ldots, k)$ and

$$
z_{n} \leqslant K\left(y_{n}^{1}+y_{n}^{2}+\ldots+y_{n}^{k}\right)
$$

is valid for each $n \in \mathbb{N}$ with $n \geqslant m$.
Let the meaning of $\alpha_{n d}$ be as in the introduction; in view of 1.4, $\alpha_{n d}$ does exist.
1.6. Proposition. $D_{1}(G)=\alpha_{n d}$.

Proof. It is clear that $D(G) \subseteq \alpha_{n d}$ and hence $D_{1}(G) \subseteq \alpha_{n d}$. Let $\left(z_{n}\right) \in \alpha_{n d}$. We apply 1.5 for $X=D(G)$. Then (under the notation as in 1.5) $\left(K y_{n}^{i}\right) \in D(G)$ for $i=1,2, \ldots, k$, and for each $n \geqslant m$ the element z_{n} can be written in the form

$$
z_{n}=t_{n}^{1}+t_{n}^{2}+\ldots+t_{n}^{k}
$$

with $t_{n}^{i} \in\left[0, K y_{n}^{i}\right], i=1,2, \ldots, k$. Thus $\left(t_{n}^{i}\right) \in D(G)$ for $i=1,2, \ldots, k$ and hence $\left(z_{n}\right) \in D_{1}(G)$.
1.7. Lemma. Let $\alpha \in \operatorname{conv} G, X=\alpha \cup \alpha_{n d}$. Then X is regular.

Proof. This is a consequence of 1.1 and 1.6.
From 1.7 and from Proposition 2.1 in [2] we obtain
1.8. Theorem. Let $\alpha \in \operatorname{conv} G$. Then the join $\alpha \vee \alpha_{n d}$ does exist in conv G.

2. Strong convergence ℓ-Groups

We apply the notion of strong convergence ℓ-group as defined in the introduction.
2.1. Example. Let \mathbb{R} be the set of all reals with the usual topology and let H be the additive group of all continuous real functions on \mathbb{R}. The set H is partially ordered coordinate-wise. Then H is an archimedean ℓ-group. Put $\alpha=D_{1}(H)$. In view of $1.6,(H, \alpha)$ is a convergence ℓ-group. Let $0<f \in H$. There exist $f_{n} \in[0, f]$ $(n \in \mathbb{N})$ such that $f_{n}>0$ for each $n \in \mathbb{N}$ and $f_{n(1)} \wedge f_{n(2)}=0$ whenever $n(1)$ and $n(2)$ are distinct positive integers. Thus $f_{n} \rightarrow_{\alpha} 0$. Therefore the convergence ℓ-group (H, α) is strong.
2.2. Example. Let I be a nonempty set and for each $i \in I$ let $H_{i}=H$, where H is as in 2.1. Put

$$
H(I)=\prod_{i \in I} H_{i}
$$

Then H is an archimedean ℓ-group.
For $i \in I$ and $f \in H(I)$ let f^{i} be the component of f in H_{i}. Let $0<f \in$ $H(I)$. Thus there is $i \in I$ such that $f^{i}>0$. Then in view of the properties of H (cf. 2.1) there exist $f_{n} \in[0, f](n \in \mathbb{N})$ such that $f_{n}>0$ for each $n \in \mathbb{N}$ and $f_{n(1)} \wedge f_{n(2)}=0$ whenever $n(1), n(2)$ are distinct positive integers. Thus $f_{n} \rightarrow_{\alpha} 0$, where $\alpha=D_{1}(H(I))$. Hence $(H(I), \alpha)$ is a strong convergence ℓ-group.

Let I_{1} and I_{2} be nonempty sets such that

$$
\begin{equation*}
\operatorname{card} I_{1} \neq \operatorname{card} I_{2} \tag{1}
\end{equation*}
$$

It is easy to verify that the ℓ-group H is directly indecomposable. If an ℓ-group has a direct product decomposition with nonzero directly indecomposable direct factors, then this direct decomposition is uniquely determined (this is a consequence of the well-known Shimbireva's theorem [4] on the existence of a common refinement of any two direct product decompositions of a directed group; cf. also Fuchs [1]). Hence the number of nonzero directly indecomposable direct factors of $H\left(I_{k}\right)$ is equal to card $I_{k}(k=1,2)$. This yields that whenever (1) holds, then $H\left(\left(I_{1}\right)\right.$ and $\left(H\left(I_{2}\right)\right.$ are not isomorphic. Therefore the convergence ℓ-groups $\left(H\left(I_{1}\right), D_{1}\left(H\left(I_{1}\right)\right)\right)$ and $\left(H\left(I_{2}\right), D_{1}\left(H\left(I_{2}\right)\right)\right)$ are not isomorphic.

From this we conclude
2.3. Proposition. There exists a proper class of nonisomorphic types of archimedean strong convergence ℓ-groups.

Let us denote by S the class of all ℓ-groups G having the property that there is $\alpha \in \operatorname{conv} G$ such that (G, α) is a strong convergence ℓ-group.

It is easy to verify that the class S is closed with respect to ℓ-subgroups and with respect to direct products. The following example shows that S is not closed with respect to homomorphisms. Hence S fails to be a variety.
2.4. Example. Let \mathbb{Z} and \mathbb{R} be the additive group of all integers or of all reals, respectively, with the natural linear order. Put

$$
G=\mathbb{Z} \circ \mathbb{R},
$$

where the symbol \circ denotes the lexicographic product. Then $G \in S$, but the factor ℓ-group $G / \mathbb{R}($ being isomorphic to $\mathbb{Z})$ does not belong to S.

We remark without proof that S is a radical class of ℓ-groups.

References

[1] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.
[2] J. Jakubik: Sequential convergences in ℓ-groups without Urysohn's axiom. Czechoslovak Math. J. 42 (1992), 101-116.
[3] J. Jakubik: Disjoint sequences in Boolean algebras. Math. Bohem 123 (1998), 411-418.
[4] E. P. Shimbireva: On the theory of partially ordered groups. Matem. Sbornik 20 (1947), 145-178. (In Russian.)

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@linux1.saske.sk.

