
125 (2000) MATHEMATICA BOHEMICA No. 2, 139–144

NEARLY DISJOINT SEQUENCES IN CONVERGENCE �-GROUPS
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Abstract. For an abelian lattice ordered group G let convG be the system of all com-
patible convergences on G; this system is a meet semilattice but in general it fails to be a
lattice. Let αnd be the convergence on G which is generated by the set of all nearly disjoint
sequences in G, and let α be any element of convG. In the present paper we prove that the
join αnd ∨ α does exist in convG.
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All �-groups (= lattice ordered groups) considered in the present paper are assumed
to be abelian.
For a convergence �-group we apply the same notation and definitions as in [2].
Let G be an �-group. A sequence (an) in G+ is said to be nearly disjoint if there

exists a positive integer m such that an(1) ∧ an(2) = 0 whenever n(1) and n(2) are
distinct positive integers with n(i) � m for i = 1, 2.
We prove that for each �-group G there exists a convergence α on G such that,

whenever (xn) is a nearly disjoint sequence in G+, then xn →α 0.
This yields that there exists a convergence αnd on G such that αnd is generated

by the set of all nearly disjoint sequences in G+.
We denote by convG the system of all convergences on G; this system is partially

ordered by the set-theoretical inclusion. Each interval of convG is a complete lattice,
but if α1 and α2 are elements of convG, then the join α1∨α2 need not exist in convG.
We show that the join αnd ∨ α does exist in convG for each element α of convG.
For a similar result concerning disjoint sequences in a Boolean algebra cf. [3] (the

distinction is in the point that in the present paper we do not assume the Urysohn
property for a convergence, while in [3] the Urysohn property was supposed to be
valid).
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A convergence �-group (G, α) will be called strong if for each g ∈ G with g > 0
there exists a sequence (xn) in the interval [0, g] such that xn →α 0 and xn(1) �= xn(2)

whenever n(1), n(2) are distinct positive integers. We use nearly disjoint sequences to
construct a proper class of nonisomorphic types of archimedean strong convergence
�-groups.

1. Convergences generated by nearly disjoint sequences

In this section we assume that G is an �-group. The symbol � denotes the set of
all positive integers.
For the sake of completeness, we recall the following notation and definition con-

cerning the notion of convergence in G as applied in [2].
Let g ∈ G and (gn) ∈ G�. If gn = g for each n ∈ �, then we write (gn) = const g.

For (hn) ∈ G� we put (hn) ∼ (gn) if there is m ∈ � such that hn = gn for each
n ∈ � with n � m.
A convex subsemigroup α of the lattice ordered semigroup (G�)+ = (G+)� is said

to be a convergence on G if it satisfies the following conditions:

(I) If (gn) ∈ α, then each subsequence of (gn) belongs to α.
(II′) Let (gn) ∈ α and (hn) ∈ (G+)�. If (hn) ∼ (gn), then (hn) ∈ α.
(III) Let g ∈ G. Then const g ∈ α if and only if g = 0.

We denote by D(G) the system of all nearly disjoint sequences in G+. Consider
the following condition for a sequence (an) in G+:

(∗) For each m ∈ �, the relation ∧

n�m

an = 0 is valid.

1.1. Lemma. Let (bn) be a sequence in G+ satisfying the condition (∗). Further,
let k ∈ � and for each i ∈ {1, 2, . . . , k} let (xi

n) be an element of D(G). Then the
sequence

(x1n + x2n + . . .+ xk
n + bn)

satisfies the condition (∗).
�����. We put

un = x1n + x2n + . . .+ xk
n + bn

for each n ∈ �. We proceed by induction with respect to k.
Let k = 1. By way of contradiction, suppose that (un) does not satisfy the

condition (∗). Hence there are m ∈ � and 0 < c ∈ G such that the relation

c � x1n + bn

is valid for each n ∈ � with n � m.
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We shall repeatedly use Riesz Decomposition Theorem. It yields that for each
n � m there are c1n and c2n such that

c1n ∈ [0, x1n], c2n ∈ [0, bn], c = c1n + c2n.

If c1n = 0 for each n � m, then c = c2n for each n � m. This is impossible since
(bn) satisfies the condition (∗).
Hence there is n(1) � m such that c1n(1) > 0. Let n � n(1) + 1. Then

c1n ∧ c1n(1) � x1n ∧ x1n(1) = 0, c1n(1) � c,

thus c1n(1) � c2n � bn. We have arrived at a contradiction with the condition (∗) for
(bn). Hence the assertion is valid for k = 1.
Let k > 1 and suppose that the assertion holds for k−1. By way of contradiction,

suppose that it does not hold for k. Hence there exist m ∈ � and 0 < c ∈ G such
that

c � x1n + x2n + . . .+ xk
n + bn

is valid for each n � m. Thus for each such n there are c1n, c2n and c3n in G such that

c = c1n + c2n + c3n,

c1n ∈ [0, x1n + x2n + . . .+ xk−1
n ], c2n ∈ [0, xk

n], c3n ∈ [0, bn].

If c2n = 0 for each n � m, then

c � x1n + x2n + . . .+ xk−1
n + bn

for each n � m, which is a contradiction with the induction assumption.
Thus there exists n(1) � m with c2n(1) > 0. Put m1 = n(1) + 1 and let n � m1.

Then
c2n(1) � c, c2n(1) ∧ c2n � ak

n(1) ∧ ak
n = 0,

whence c2n(1) � c1n + c3n. Therefore

c2n(1) � x1n + x2n + . . .+ xk−1
n + bn

for each n � m1. This is again a contradiction with the induction assumption. �

1.2. Corollary. Let k ∈ � and for each i ∈ {1, 2, . . . , k} let (xi
n) be an element

of D(G). Then the sequence (x1n + x2n + . . .+ xk
n) satisfies the condition (∗).

A nonempty subset X of (G+)� is said to be regular if there exists α ∈ convG

such that X ⊆ α.
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1.3. Lemma. Let X be a nonempty subset of (G+)�. Then the following
conditions are equivalent:
(i) X is regular.
(ii) Whenever 0 � c ∈ G, (x1n), (x

2
n), . . . , (x

k
n) ∈ X , (yi

n) is a subsequence of (x
i
n)

for i = 1, 2, . . . , k, and K, m ∈ � satisfy

c � K(y1n + y2n + . . .+ yk
n)

for each n ∈ � with n � m, then c = 0.

�����. This is a consequence of Proposition 2.3 in [2]. �

1.4. Lemma. The set D(G) is regular.

�����. Let (x1n), (x
2
n), . . . , (x

k
n) be elements of D(G). For each i ∈ {1, 2, . . . , k}

let (yi
n) be a subsequence of (x

i
n). If K ∈ �, then (Kyi

n) belongs to D(G) for
i = 1, 2, . . . , k. Now it suffices to apply 1.2 and 1.3. �

Let ∅ �= X ⊆ (G+)� and α ∈ convG. Suppose that

(i) X ⊆ α;
(ii) whenever β ∈ convG and X ⊆ β, then α ⊆ β.

Under these conditions the convergence α is said to be generated by the set X .
We denote by D1(G) the set of all sequences (un) which satisfy the following

condition: there exist (x1n), (x
2
n), . . . , (x

k
n) in D(G) such that

un = x1n + x2n + . . .+ xk
n

for each n ∈ �.
From Proposition 2.3 in [2] we obtain

1.5. Lemma. Let X be a regular subset of (G+)� and let (zn) be a sequence in
G+. Then the following conditions are equivalent:
(i) (zn) belongs to the convergence on G which is generated by X .
(ii) There exist (x1n), (x

2
n), . . . , (x

k
n) ∈ X , K ∈ M , m ∈ � and (y1n), (y

2
n), . . . , (y

k
n) ∈

(G+)� such that (yi
n) is a subsequence of (x

i
n) (i = 1, 2, . . . , k) and

zn � K(y1n + y2n + . . .+ yk
n)

is valid for each n ∈ � with n � m.

Let the meaning of αnd be as in the introduction; in view of 1.4, αnd does exist.

1.6. Proposition. D1(G) = αnd.
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�����. It is clear that D(G) ⊆ αnd and hence D1(G) ⊆ αnd. Let (zn) ∈ αnd.
We apply 1.5 for X = D(G). Then (under the notation as in 1.5) (Kyi

n) ∈ D(G) for
i = 1, 2, . . . , k, and for each n � m the element zn can be written in the form

zn = t1n + t2n + . . .+ tkn

with tin ∈ [0, Kyi
n], i = 1, 2, . . . , k. Thus (tin) ∈ D(G) for i = 1, 2, . . . , k and hence

(zn) ∈ D1(G). �

1.7. Lemma. Let α ∈ convG, X = α ∪ αnd. Then X is regular.

�����. This is a consequence of 1.1 and 1.6. �

From 1.7 and from Proposition 2.1 in [2] we obtain

1.8. Theorem. Let α ∈ convG. Then the join α ∨ αnd does exist in convG.

2. Strong convergence �-groups

We apply the notion of strong convergence �-group as defined in the introduction.

2.1� ����	
�. Let � be the set of all reals with the usual topology and let
H be the additive group of all continuous real functions on �. The set H is partially
ordered coordinate-wise. Then H is an archimedean �-group. Put α = D1(H). In
view of 1.6, (H, α) is a convergence �-group. Let 0 < f ∈ H . There exist fn ∈ [0, f ]
(n ∈ �) such that fn > 0 for each n ∈ � and fn(1) ∧ fn(2) = 0 whenever n(1) and
n(2) are distinct positive integers. Thus fn →α 0. Therefore the convergence �-group
(H, α) is strong.

2.2. ����	
�. Let I be a nonempty set and for each i ∈ I let Hi = H , where
H is as in 2.1. Put

H(I) =
∏

i∈I

Hi.

Then H is an archimedean �-group.

For i ∈ I and f ∈ H(I) let f i be the component of f in Hi. Let 0 < f ∈
H(I). Thus there is i ∈ I such that f i > 0. Then in view of the properties of
H (cf. 2.1) there exist fn ∈ [0, f ] (n ∈ �) such that fn > 0 for each n ∈ � and
fn(1) ∧ fn(2) = 0 whenever n(1), n(2) are distinct positive integers. Thus fn →α 0,
where α = D1(H(I)). Hence (H(I), α) is a strong convergence �-group.
Let I1 and I2 be nonempty sets such that

(1) card I1 �= card I2.

143



It is easy to verify that the �-group H is directly indecomposable. If an �-group has
a direct product decomposition with nonzero directly indecomposable direct factors,
then this direct decomposition is uniquely determined (this is a consequence of the
well-known Shimbireva’s theorem [4] on the existence of a common refinement of any
two direct product decompositions of a directed group; cf. also Fuchs [1]). Hence
the number of nonzero directly indecomposable direct factors of H(Ik) is equal to
card Ik (k = 1, 2). This yields that whenever (1) holds, then H((I1) and (H(I2)
are not isomorphic. Therefore the convergence �-groups (H(I1), D1(H(I1))) and
(H(I2), D1(H(I2))) are not isomorphic.
From this we conclude

2.3. Proposition. There exists a proper class of nonisomorphic types of archi-
medean strong convergence �-groups.

Let us denote by S the class of all �-groups G having the property that there is
α ∈ convG such that (G, α) is a strong convergence �-group.
It is easy to verify that the class S is closed with respect to �-subgroups and with

respect to direct products. The following example shows that S is not closed with
respect to homomorphisms. Hence S fails to be a variety.

2.4. ����	
�. Let � and � be the additive group of all integers or of all
reals, respectively, with the natural linear order. Put

G = �◦ �,

where the symbol ◦ denotes the lexicographic product. Then G ∈ S, but the factor
�-group G/� (being isomorphic to �) does not belong to S.

We remark without proof that S is a radical class of �-groups.
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