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THE DIRECTED DISTANCE DIMENSION OF ORIENTED GRAPHS
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Abstract. For a vertex v of a connected oriented graph D and an ordered set W =
{w1, w2, . . . , wk} of vertices of D, the (directed distance) representation of v with respect
to W is the ordered k-tuple r(v

∣
∣ W ) = (d(v,w1), d(v, w2), . . . , d(v, wk)), where d(v, wi) is

the directed distance from v to wi. The set W is a resolving set for D if every two distinct
vertices of D have distinct representations. The minimum cardinality of a resolving set for
D is the (directed distance) dimension dim(D) of D. The dimension of a connected oriented
graph need not be defined. Those oriented graphs with dimension 1 are characterized. We
discuss the problem of determining the largest dimension of an oriented graph with a fixed
order. It is shown that if the outdegree of every vertex of a connected oriented graph D of
order n is at least 2 and dim(D) is defined, then dim(D) � n − 3 and this bound is sharp.
Keywords: oriented graphs, directed distance, resolving sets, dimension

MSC 2000 : 05C12, 05C20

1. Introduction

For an oriented graph D of order n, an ordered set W = {w1, w2, . . . , wk} of
vertices of D, and a vertex v of D, the k-vector (ordered k-tuple)

r(v
∣
∣ W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

is referred to as the (directed distance) representation of v with respect to W , where

d(x, y) denotes the directed distance from x to y, that is, the length of a shortest
directed x − y path in D. Since directed x − y paths need not exist in D, even if

D is connected (its underlying graph is connected), the vector r(v
∣
∣ W ) need not

exist as well. If r(v
∣
∣ W ) exists for every vertex v of D, then the set W is called a

resolving set for D if every two distinct vertices of D have distinct representations.
A resolving set of minimum cardinality is called a basis for D and this cardinality is
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the (directed distance) dimension dim(D) of D. Of course, not every oriented graph

has a dimension. An oriented graph of dimension k is also called k-dimensional.
To determine whether an ordered set W = {w1, w2, . . . , wk} of vertices in an

oriented graph D is a resolving set, we need only show that the representations of
the vertices of V (D) − W are distinct since r(wi

∣
∣ W ) is the only representation

whose ith coordinate is 0.

The directed distance dimension of an oriented graph is a natural analogue of
the metric dimension of a graph that was introduced independently by Harary and
Melter [2] and Slater [3], [4]. This concept was also investigated in [1] as a result of

studying a problem in pharmaceutical chemistry.
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D

�
Figure 1. An oriented graph D with dimension 2

In the oriented graph D of Figure 1, let W1 = {u, v}. The five representations
of the vertices of D with respect to W1 are r(u

∣
∣ W1) = (0, 2), r(v

∣
∣ W1) = (1, 0),

r(w
∣
∣ W1) = (2, 1), r(x

∣
∣ W1) = (2, 1), and r(y

∣
∣ W1) = (1, 3). Since x and w have

the same representation, W1 is not a resolving set for D.

The five representations of the vertices of D with respect to W2 = {u, v, w} are

r(u
∣
∣ W2) = (0, 2, 2), r(v

∣
∣ W2) = (1, 0, 3), r(w

∣
∣ W2) = (2, 1, 0),

r(x
∣
∣ W2) = (2, 1, 1), r(y

∣
∣ W2) = (1, 3, 3)

Since these five 3-vectors are distinct, W2 is a resolving set for D. However, W2
is not a basis for D. To see this, let W3 = {x, y}. Then r(u

∣
∣ W3) = (1, 3),

r(v
∣
∣ W3) = (2, 1), r(w

∣
∣ W3) = (3, 1), r(x

∣
∣ W3) = (0, 2), and r(y

∣
∣ W3) = (2, 0),

which are distinct as well. SoW3 is a resolving set for D. Since there is no 1-element

resolving set for D, it follows that W3 is a basis and dim(D) = 2.
Now let T be the tournament shown in Figure 2. Table 1 gives all 2-element

choices for W and shows that for each such choice, there exist two equal 2-vectors,
thus showing that dim(T ) � 3. However, dim(T ) = 3 since {v1, v3, v6} is a basis
for T . Figure 3 shows an oriented graph D containing T as an induced subdigraph.
The set W = {x, y} is a basis of D, so dim(D) = 2. Hence we have the possibly
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unexpected property that the 3-dimensional tournament T is an induced subdigraph

of the 2-dimensional oriented graph D.

v6

v5 v4

v3

v2

v1

v7

T

�
Figure 2. The tournament T
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Figure 3. The digraph D

There is a fundamental question here—one whose answer is not known to us, but

one which deserves further study. What is a necessary and sufficient condition for
the dimension of a digraph D to be defined? Certainly, if D is strong, then dim(D) is

defined. Also, if D is connected and contains a vertex such that D−v is strong, then
dim(D) is defined. This last statement follows because if od v > 0, then V (D)−{v}
is a resolving set; while if id v > 0, then V (D) is a resolving set. There are numerous
other sufficient conditions for dim(D) to be defined.
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W equivalent vectors

{v1, v2} r(v5 | W ) = r(v7 | W ) = (1, 2)

{v1, v3} r(v6 | W ) = r(v7 | W ) = (1, 1)
{v1, v4} r(v5 | W ) = r(v7 | W ) = (1, 2)

{v1, v5} r(v6 | W ) = r(v7 | W ) = (1, 2)
{v1, v6} r(v2 | W ) = r(v3 | W ) = (2, 2)

{v1, v7} r(v5 | W ) = r(v6 | W ) = (1, 1)
{v2, v3} r(v1 | W ) = r(v6 | W ) = (1, 1)

{v2, v4} r(v5 | W ) = r(v7 | W ) = (2, 2)
{v2, v5} r(v1 | W ) = r(v5 | W ) = (1, 2)
{v2, v6} r(v4 | W ) = r(v5 | W ) = (2, 1)

{v2, v7} r(v4 | W ) = r(v5 | W ) = (2, 1)
{v3, v4} r(v1 | W ) = r(v2 | W ) = (1, 1)

{v3, v5} r(v6 | W ) = r(v7 | W ) = (1, 2)
{v3, v6} r(v1 | W ) = r(v2 | W ) = (1, 2)

{v3, v7} r(v2 | W ) = r(v6 | W ) = (1, 1)
{v4, v5} r(v2 | W ) = r(v3 | W ) = (1, 1)

{v4, v6} r(v1 | W ) = r(v2 | W ) = (1, 2)
{v4, v7} r(v1 | W ) = r(v3 | W ) = (1, 2)

{v5, v6} r(v2 | W ) = r(v3 | W ) = (1, 2)
{v5, v7} r(v2 | W ) = r(v4 | W ) = (1, 1)

{v6, v7} r(v4 | W ) = r(v5 | W ) = (1, 1)

Table 1.

2. 1-dimensional oriented graphs

In this section we characterize those oriented graphs having dimension 1. We also
describe some properties of bases for 1-dimensional oriented graphs.

Theorem 2.1. Let D be a nontrivial oriented graph of order n. Then dim(D) = 1
if and only if there exists a vertex v in D such that

(i) D contains a hamiltonian path P with terminal vertex v such that idD v = 1;
and

(ii) if the hamiltonian path P in (i) is of the form

vn−1, vn−2, . . . , v1, v,

then, for each pair i, j of integers with 1 � i < j � n − 1, the digraph D − E(P )
contains no arc of the form (vj , vi).

158



�����. Assume that dim(D) = 1. Let W = {v}, v ∈ V (D), be a basis

of D. Then the distance d(u, v) from u to v is defined for each vertex u in D

and the set {d(u, v) ; u ∈ V (D)} = {0, 1, . . . , n − 1}. Thus, we may assume that
V (D) = {v, v1, v2, . . . , vn−1} where d(vi, v) = i (1 � i � n − 1). Clearly, id v =

1. Since d(vn−1, v) = n − 1, there exists a hamiltonian path in D, namely P :
vn−1, vn−2, . . . , v1, v, so (i) holds. Furthermore, if there exists a pair i, j of in-

tegers (1 � i < j � n − 1) such that the arc (vj , vi) is in D − E(P ), then
j �= i + 1 and d(vj , v) = d(vi+1, v) (shown in Figure 4). This contradicts the fact

that {d(u, v) ; u ∈ V (D)} consists of n distinct integers, so (ii) holds.

vj

vi vi−1 vi−2 v1 v

vi+1�
Figure 4.

Conversely, assume that there is a vertex v in D such that (i) and (ii) hold.

We show that W = {v} is a resolving set of D. Since d(u, v) is defined for each
u ∈ V (D), it suffices to show that the set {d(vi, v) ; 1 � i � n − 1} consists of n− 1
distinct integers. Suppose that this is not the case. Then there exist integers i, j

(1 � i < j � n− 1) such that d(vj , v) = d(vi, v) = �. Let P1 be a vi − v path and P2

a vj − v path in D such that P1 and P2 have the same length �. Since id v = 1, there
exists a vertex vk �= v in D that belongs to both P1 and P2. Assume that vk is the

vertex with largest index k such that the path vk, vk−1, . . . , v1, v is on both P1 and
P2 (see Figure 5).

vj vk1

vk vk−1 v1 v

vi
vk2�

Figure 5.

Let (vk1 , vk) ∈ E(P1) and (vk2 , vk) ∈ E(P2) where (vk1 , vk) �= (vk2 , vk). Clearly,
k1 > k and k2 > k. It follows that at least one of these arcs is in D−E(P ), but this

is a contradiction to (ii). �

We now present some facts concerning bases in 1-dimensional oriented graphs.

Theorem 2.2. Let D be a digraph of order n with dim(D) = 1. Furthermore,
let v1 and v2 be distinct vertices of D with d(v1, v2) = 2 such that both {v1} and
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{v2} are bases of D. If v is a vertex of D such that (v1, v), (v, v2) ∈ E(D), then {v}
is also a basis of D.

�����. To show that {v} is a basis of D, we show that for each u ∈ V (D), the

distance d(u, v) is defined and the set {d(u, v) ; u ∈ V (D)} consists of n distinct
integers.

First notice that id v = 1, for otherwise there exist distinct vertices x and y of D
such that d(x, v) = d(y, v) = 1. Since id v2 = 1, by Theorem 2.1, we have

d(x, v2) = d(y, v2) = d(x, v) + 1 = 2

This contradicts the fact that {v2} is a basis of D.
Furthermore, suppose that there exist vertices u, w in D such that d(u, v) =

d(w, v). Since id v = 1, each u − v path contains the arc (v1, v) as its terminal
arc, as does each w − v path, so

d(u, v1) = d(w, v1) = d(u, v)− 1

Again, this contradicts the fact that {v1} is a basis of D. �

We now have an immediate consequence of Theorem 2.2.

Corollary 2.3. If D is a 1-dimensional oriented graph of order n � 3 such that
{v} is a basis of D for every vertex v in D, then D is a directed cycle.

�����. Let V (D) = {v1, v2, . . . , vn}. By Theorem 2.2, id v = 1 for every vertex
v of D. Moreover, D contains a hamiltonian path P . We can assume that

P : vn, vn−1, . . . , v2, v1

Next, we show that D contains the cycle

Cn : vn, vn−1, . . . , v2, v1, vn

Since id vn = 1, there exists a unique vertex v such that (v, vn) ∈ E(D). If v �= v1,
then (vi, vn) ∈ E(D) for some i (2 � i � n − 1). Since {vn} is a basis of D, there

exists a hamiltonian path in D with terminal vertex vn. However, since every vertex
has indegree 1, the only possible path in D with vn as its terminal vertex is

P ′ : vn−1, vn−2, . . . , vi+1, vi, vn

Since P ′ has length n− i, it is not a hamiltonian path. This contradicts the fact that

{vn} is a basis. So D contains the cycle Cn. Furthermore, since id v = 1, D cannot
contain any arc except those in Cn. So D = Cn. �
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We can improve Corollary 2.3 slightly.

Corollary 2.4. If D is a 1-dimensional oriented graph of order n � 3 such that

|{v ; {v} is a basis of D}| � n − 1

then D is a directed cycle.

�����. Let V (D) = {v, v1, v2, . . . , vn−1}. Without loss of generality, we assume
that {vi} is a basis of D for 1 � i � n− 1. By Corollary 2.3, it suffices to show that
{v} is a basis as well.
We claim that od v > 0. Suppose that this is not the case. Then for each vertex

u (�= v), the distance d(v, u) is not defined, which contradicts the fact that {u} is
a basis of D. Hence, there is a vertex x (�= v) such that (v, x) ∈ E(D). Since {x}
is also a basis of D, then by Theorem 2.1(i), D contains a hamiltonian path with
terminal vertex x and idx = 1. This implies that there exists a vertex y distinct from

x and v such that (y, v) ∈ E(D). It follows that d(y, x) = 2 and by Theorem 2.2,
{v} is also a basis of D. �

The bound in Corollary 2.4 cannot be improved in general. For example, con-
sider the oriented graph D of order n in Figure 6. Since {vi} is a basis for D for

1 � i � n − 2, dim(D) = 1. However, neither {vn−1} nor {vn} is a basis D. So
|{v ; {v} is a basis of D}| = n − 2 and D is not a directed cycle.

v4v3

v2

v1

vn

vn−1
vn−2
�

Figure 6. An oriented graph with (n − 2) 1-element bases

There is only one 1-dimensional oriented tree of every order.

Theorem 2.5. For every oriented tree T , dim(T ) = 1 or dim(T ) is undefined.
Furthermore, if dim(T ) = 1, then T is a directed hamiltonian path.
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�����. There are certainly oriented trees whose dimension is undefined, for

example, any orientation of a star K1,t, where t � 3. Now let T be an oriented tree
whose dimension is defined. Since T contains no cycles, for every pair x, y of vertices,
whenever d(x, y) is defined, d(y, x) is undefined. Thus dim(T ) = 1.

If dim(T ) = 1, then, by Theorem 2.1, T contains a hamiltonian path P and so
T = P . �

3. On oriented graphs with large dimension

We have characterized those oriented graphs with dimension 1. But how large can
the dimension of an oriented graph of order n be? In this section, we describe upper

bounds for the dimension of a connected oriented graph in terms of lower bounds for
the outdegrees of its vertices. The outdegree of every vertex in the oriented graph

D of Figure 7 is 2, yet dim(D) is undefined. Such examples exist regardless of the
outdegrees.

D : �
Figure 7. The oriented graph D

Theorem 3.1. If D is a connected oriented graph of order n � 3 with od v � 1
for all v ∈ V (D) such that dim(D) is defined, then dim(D) � n − 2.
�����. Let D be an oriented graph satisfying the hypothesis of the theorem.

Certainly dim(D) � n − 1. Assume, to the contrary, that dim(D) = n − 1. Let
W = {v1, v2, . . . , vn−1} be a basis for D and let V (D) − W = {x}. Since odx � 1,
assume, without loss of generality, that x is adjacent to v1. Also, since od v1 � 1,
we may assume that v1 is adjacent to v2. Since dim(D) = n− 1, r(vi

∣
∣ W − {vi}) =

r(x
∣
∣ W − {vi}) for 1 � i � n − 1. Since x is adjacent to v1, it follows that v2 is

adjacent to v1, but this contradicts the fact that D is an oriented graph. �

We now describe a class of oriented graphs. For k � 2, let Dk be an oriented
graph with vertex set

V (Dk) = {u, v, w1, w2, . . . , wk}
and let E(Dk) consist of the arc (u, v) and the arcs (v, wj) and (wj , u) for 1 � j � k.

The oriented graph Dk is shown in Figure 8. Then Dk has order n = k + 2 and
od v � 1 for all v ∈ V (Dk). We claim that dim(Dk) = n − 3.
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u v

w1

w2

wk

Dk :�
Figure 8. The oriented graph Dk with minimum outdegree 1

First we show that dim(Dk) � n − 3. Let W = {w2, w3, . . . , wk}, where then
|W | = n− 3. The distances d(u, w2) = 2, d(v, w2) = 1, and d(w1, w2) = 3 show that
W is a resolving set for Dk and so dim(Dk) � n − 3. On the other hand, at least
k − 1 of the vertices w1, w2, . . . , wk must belong to every resolving set of Dk since
the distance from any two of these vertices to every other vertex of Dk is the same.

Hence dim(Dk) � n − 3 and so dim(D) = n − 3. Of course, this does not show that
sharpness of the bound in Theorem 3.1, except that if D1 is the directed 3-cycle,

then dim(D1) = 1 = n − 2.
We can, however, improve the bound in Theorem 3.1 if we require that the out-

degree of every vertex is at least 2.

Theorem 3.2. If D is a connected oriented graph of order n � 5 with od v � 2
for all v ∈ V (D) such that dim(D) is defined, then dim(D) � n − 3.

�����. Suppose, to the contrary, that D contains a basis B of cardinality n− 2.
Let B = {v1, v2, . . . , vn−2}, and V (D) − B = {x, y}. For each i (1 � i � n − 2),
B − {vi} is not a resolving set. Hence for each such i, some two of the three vertices
x, y, vi have the same representations with respect to B − {vi}. We consider two
cases.

Case 1: For some i (1 � i � n − 2), x and y have the same representations with

respect to B − {vi}. Assume, without loss of generality, that x and y have the same
representations with respect to W = B − {vn−2}. Then x and y have the same

out-neighbors in W . Since x and y have distinct representations with respect to B,
exactly one of x and y is adjacent to vn−2; for if neither x nor y is adjacent to vn−2,
then d(x, vn−2) = d(y, vn−2). Therefore, we may assume that y is adjacent to vn−2.
Let W ′ = {v1, v2, . . . , vn−4, vn−2}. Two of x, y, and vn−3 have the same repre-

sentations with respect to W ′. However, y is adjacent to vn−2 and x is not, so x

and y do not have the same representations with respect to W ′. Thus there are two
possibilities.
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Subcase 1.1: r(x | W ′) = r(vn−3 | W ′). We claim that x is adjacent to at most one
of v1, v2, . . . , vn−2. Suppose that this is not the case. Then we can assume without
loss of generality that x is adjacent to v1 and v2. Then r(v1 | B − {v1}) = r(x | B −
{v1}) or r(v1 | B−{v1}) = r(y | B−{v1}). Similarly, r(v2 | B−{v2}) = r(x | B−{v2})
or r(v2 | B−{v2}) = r(y | B−{v2}). Since the out-neighbors of y in W are the same
as the out-neighbors of x inW , we have that v2 is an out-neighbor of v1 and that v1 is

an out-neighbor of v2. Since D is an oriented graph, this is impossible, so, as claimed,
x is adjacent to at most one of v1, v2, . . . , vn−2. Now, since odx � 2, it follows that x

is adjacent to y and exactly one vertex from v1, v2, . . . , vn−2, say v1. However, since
for 1 � i � n−3, r(vi | B−{vi}) = r(x | B−{vi}) or r(vi | B−{vi}) = r(y | B−{vi}),
it follows that v1 is an out-neighbor of every vertex in the set {x, y, v2, v3, . . . , vn−3},
so od v1 � 1, which contradicts the assumption that every vertex in D has out-degree

at least 2.

Subcase 1.2: r(y | W ′) = r(vn−3 | W ′). We first suppose that x is adjacent to
some vertex in W ′, say v1. Because of the assumptions in Case 1 and Subcase 1.2,

it follows that y and vn−3 are also adjacent to v1. However, since for 2 � i � n − 3,
r(vi | B−{vi}) = r(x | B−{vi}) or r(vi | B−{vi}) = r(y | B−{vi}), it follows that v1
is an out-neighbor of every vertex in the set {x, y, v2, v3, . . . , vn−3, vn−2}, so od v1 = 0,
which is a contradiction. Therefore, x is not adjacent to any of v1, v2, . . . , vn−4, vn−2.
Thus, since odx � 2, it follows that x must be adjacent to both y and vn−3. But
y is adjacent to vn−3 as well, because x and y have the same representations with

respect to W . Since x is not adjacent to any of v1, v2, . . . , vn−4, it follows that y

is not adjacent to any of v1, v2, . . . , vn−4. Now r(y | W ′) = r(vn−3 | W ′), so it
follows that vn−3 is not adjacent to any of v1, v2, . . . , vn−4. All of this implies that
od vn−3 = 1, which is a contradiction.

Case 2: For every i (1 � i � n − 2), x and y have distinct representations with

respect to B − {vi}. We next prove that every vertex of B is an out-neighbor of
x or y but at most one vertex of B is an out-neighbor of both x and y. To prove

this, we first show that among the out-neighbors y1, y2, . . . , yk of y in B, at most
one yi has the same representation as y with respect to B − {yi}. Suppose that
this is not the case. Then we may assume that r(y1 | B − {y1}) = r(y | B − {y1})
and that r(y2 | B − {y2}) = r(y | B − {y2}). The first equality tells us that y2 is

an out-neighbor of y1 and the second equality tells us that y1 is an out-neighbor of
y2, contradicting the fact that D is an oriented graph. Similarly, among the out-

neighbors x1, x2, . . . , x� of x in B, at most one xj has the same representation as x

with respect to B − {xj}.
Next, we show that for each i (1 � i � n−2), at least one of x and y is adjacent to

vi. This follows from the fact that if neither x nor y is adjacent to vi, then no other
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vertex vj from B−{vi} can be adjacent to vi since r(vj | B−{vj}) = r(x | B−{vj})
or r(vj | B−{vj}) = r(y | B−{vj}). Thus id vi = 0, which is impossible since d(z, vi)
must be defined for all z ∈ V (D). Finally, x and y are simultaneously adjacent to
at most one vertex vi (1 � i � n − 2), for if va and vb are distinct out-neighbors of

both x and y, then va and vb are out-neighbors of each other, which is impossible.

This creates a natural partition of the vertices of B into either two or three subsets,
depending on whether there exists a vertex to which x and y are simultaneously
adjacent. We now consider these two subcases.

Subcase 2.1: There exists a unique common out-neighbor of x and y.

We assume, without loss of generality, that vn−2 is an out-neighbor of both x

and y. Furthermore, we can assume, without loss of generality, that the set X =
{v1, v2, . . . , vk} consists of the out-neighbors of x and not y, and that the set Y =

{vk+1, vk+2, . . . , vn−3} consists of the out-neighbors of y and not x. We further
assume, without loss of generality, that the representations of y and vn−2 with respect
to B − {vn−2} are the same. Therefore, there is no vertex in vj ∈ Y for which the
representations of y and vj with respect to B − {vj} are the same. Therefore, for
every vj ∈ Y , the representations of x and vj with respect to B− {vj} are the same.
Since x is adjacent to every vertex in X , every vertex in Y is adjacent to every

vertex in X∪{vn−2}. Now, there is at most one vi ∈ X for which the representations

of x and vi are the same with respect to B−{vi}. Therefore, if |X | � 2, there exists
at least one vertex vi ∈ X for which the representations of y and vi with respect to

B − {vi} are the same. Hence, such a vertex vi is adjacent to every vertex in Y , but
this implies that D is not an oriented graph since for any vj ∈ Y , there is an arc

from vi to vj and an arc from vj to vi. Therefore, |X | � 1. But if |X | = 1, then v1
is the only vertex that could possibly be an out-neighbor of vn−2. This contradicts
the assumption that the out-degree of every vertex in D is at least 2, so |X | = 0. We
have already seen that every vertex in Y ∪ {x} is adjacent to vertex vn−2, so even if
|X | = 0, we have that od vn−2 = 0, which cannot occur.

Subcase 2.2: No vertex is a common out-neighbor of x and y.

We assume, without loss of generality, that the set X = {v1, v2, . . . , vk} consists
of the out-neighbors of x and not y, and that the set Y = {vk+1, vk+2, . . . , vn−2}
consists of the out-neighbors of y and not x. Recall that there is at most one vi ∈ X

such that the representations of vi and x with respect to B − {vi} are equal and at
most one vj ∈ Y such that the representations of vj and y with respect to B − {vj}
are equal. This produces three possibilities to consider.

Subcase 2.2.1: For every vi ∈ X and vj ∈ Y , the representations of vi and y with

respect to B − {vi} are the same and the representations of vj and x with respect to
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B − {vj} are the same. Then every vertex in Y is adjacent to every vertex in X ,

and every vertex in X is adjacent to every vertex in Y . This contradicts the fact
that D is an oriented graph as long as X and Y are both nonempty. However, if X
or Y is empty, then odx � 1 or od y � 1, respectively, which is a contradiction.

Subcase 2.2.2: There is exactly one vi ∈ X for which the representations of vi

and x with respect to B − {vi} are equal and there is no vj ∈ Y for which vj and y

have the same representations with respect to B − {vj}. (Note that this subcase is
symmetric to the case when there is exactly one vj ∈ Y for which the representations

of vj and y with respect to B− {vj} are equal and for which there is no vi ∈ X such
that vi and x have the same representations with respect to B − {vi}.) Now every
vertex in Y has the same out-neighbors as x, namely the vertices in the set X . So if
Y �= ∅, then every vertex in Y is adjacent to every vertex in X . Furthermore, every

vertex in X − {vi} has the same out-neighbors as y. So if |X | � 2, then there is at
least one vertex in X which is adjacent to every vertex in Y . But this produces a
contradiction since D is an oriented graph. Note that if Y = ∅, then y is adjacent to

at most one vertex, namely x, and this is a contradiction.

Assume now that |X | � 1 (so |Y | � 2). If |X | = 1, then vi = v1 and since every

vertex in Y is adjacent to vi, the vertex vi is adjacent to no vertex except possibly
y. Hence, od vi � 1, which is a contradiction. If X = ∅, then x has no out-neighbors

except possibly for y, but this contradicts the assumption that the out-degree of x

is at least 2.

Subcase 2.2.3: There exists exactly one vi ∈ X for which the representations of vi

and x with respect to B − {vi} are the same and exactly one vj ∈ Y for which the

representations of vj and y with respect to B − {vj} are the same. First, suppose
that |X | � 2 and |Y | � 2. Then there exists at least one vertex v ∈ X for which
the representations of v and y with respect to B − {v} are the same. Therefore, v is
adjacent to every vertex in Y . Similarly, there is at least one vertex w ∈ Y for which
the representations of w and x with respect to B − {w} are the same. Therefore, w
is adjacent to every vertex in X . However, since v ∈ X and w ∈ Y , it follows that
v is adjacent to w and w is adjacent to v. This contradicts the fact that D is an

oriented graph.

Next suppose that |X | = 1, that |Y | � 2, and that X = {v1}. Then the out-
neighbors of x are y and v1. Furthermore, v1 is an out-neighbor of every vertex in

Y − {vj}. The only possible out-neighbors of v1 are y and vj . However, if vi is
adjacent to vj , then x is adjacent to vj , which contradicts the fact that vj /∈ X .

Therefore, od vi � 1, contradicting the fact that every vertex in D has out-degree at
least 2. The case where |Y | = 1 and |X | � 2 is similar. �
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The sharpness of the bound in Theorem 3.1 is not illustrated by the digraph Dk

shown in Figure 8 since the outdegrees of most vertices ofDk are 1. We can, however,
show that the upper bound in Theorem 3.2 is sharp. Let Fk be an oriented graph
with vertex set

V (Fk) = {u1, u2, v1, v2, w1, w2, . . . , wk}

and let E(Fk) consist of (1) the arcs (ui, vj) for 1 � i, j � 2 and (2) the arcs (vi, wj)

and (wj , ui) for 1 � i � 2 and 1 � j � k. The oriented graph Fk is shown in Figure 9.
Then Fk has order n = k + 4 and the property that od v � 2 for all v ∈ V (Fk). We

claim that dim(Fk) = n − 3.

u1 v1

w1

w2

wk

u2 v2
Fk :�

Figure 9. The oriented graph Fk with minimum outdegree 2

First we show that dim(Fk) � n − 3. Let W = {u1, v1, w2, w3, . . . , wk}, where
then |W | = n − 3. The distances d(u2, w2) = 2, d(v2, w2) = 1, and d(w1, w2) = 3
show that W is a resolving set for Fk and so dim(Fk) � n − 3. Next we show that
dim(Fk) � n − 3. Let W be a resolving set for Fk. Certainly at least k − 1 of the
vertices w1, w2, . . . , wk must belong to W since the distance from any two of these

vertices to every other vertex of Fk is the same. Moreover, at least one of u1 and
u2 must belong to W since the distance from u1 and u2 every other vertex of Fk is

the same. For the same reason, at least one of v1 and v2 must belong to W . Hence
dim(Fk) � n − 3 and so dim(Fk) = n − 3.
No additional restriction on the outdegrees of the vertices of an oriented graph

yields an improved bound, however. Let r � 2 be an integer. In the oriented graph
of Figure 8, replace u1, u2 by the r vertices u1, u2, . . ., ur and v1, v2 by the r vertices

v1, v2, . . . , vr and add the appropriate arcs. The resulting oriented graph Hk has
od v � r for all v ∈ V (Hk), but dim(Hk) = n − 3.
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