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Abstract. Let P denote the well-known class of Carathéodory functions of the form
p(z) = 1 + c1z + . . ., z ∈ ∆ = {z ∈ � : |z| < 1}, with positive real part in the unit disc
and let H(M) stand for the class of holomorphic functions commonly bounded by M in ∆.
In 1992, J. Fuka and Z. J. Jakubowski began an investigation of families of mappings p ∈ P
fulfilling certain additional boundary conditions on the unit circle T . At first, the authors
examined the class P(B, b; α) of functions defined by conditions given by the upper limits
for two disjoint open arcs of T . After that, such boundary conditions given, in particular,
by the nontangential limits, were assumed for different subsets of the unit circle. In parallel,
G. Adamczyk started to search for properties of families, contained in H(M) and satisfying
certain similar conditions on T . The present article belongs to the above series of papers.
In the first section we will consider subclasses of P of functions satisfying some inequalities
on several arcs of T , whereas in Sections 2 and 3—families of mappings f ∈ H(M) with
conditions given for measurable subsets of the unit circle T .
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1.

In this section we will consider Carathéodory functions connected with several
arcs of the unit circle.
Let b = (b1, b2, . . . , bk), 0 � b1 � b2 � . . . � bk, α = (α1, α2, . . . , αk), αj � 0,

j = 1, 2, . . . , k,
k∑

j=1
αj = 1, k � 2. As usual, denote ∆ =

{
z ∈ � : |z| < 1

}
,

T =
{
z ∈ � : |z| = 1}, P = {

p(z) = 1 + c1z + . . . , Re p(z) > 0, z ∈ ∆}
.

Definition 1. Let b, α be fixed as above and p ∈ P . We say that f ∈ P(b, α)
iff there exists a system Iα = Iα(p) = (Iα1 , Iα2 , . . . , Iαk

) of k disjoint open arcs of
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the unit circle T of lengths, respectively, 2�αj , j = 1, 2, . . . , k, such that

(1) lim
z→ζ

Re p(z) � bj for all ζ ∈ Iαj ,

j = 1, 2, . . . , k.

������ 1. Of course, for any admissible b and α = (α1, 1 − α1, 0, . . . , 0),
α1 ∈ (0, 1), the classes P(b, α) reduce to the well-known families P(B, b;α), [4].

Consider p ∈ P(b, α), Iα = Iα(p)—the respective system of arcs, with ωj—the
harmonic measure of Iαj , j = 1, 2, . . . , k. Put

(2) ω(z) =
k∑

j=1

bjωj(z), z ∈ ∆ \ {ζ1, . . . , ζk},

where ζ1, . . . , ζk stand for the ends of arcs of the system Iα. Of course, ω is a
nonnegative harmonic function bounded by bk in ∆. From (1) we also obtain

lim
z→ζ

(−Re p(z)) � −bj = −ωj(ζ), ζ ∈ Iαj , j = 1, 2, . . . , k.

Using the Lindelöf maximum principle, we get

Lemma 1. Let b, α be arbitrary and admissible. If p ∈ P(b, α), where ω is the
function given by formula (2) for Iα(p), then

(3) Re p(z) � ω(z), z ∈ ∆.

This and the normalization p(0) = 1, ωj(0) = αj imply

Theorem 1. If the class P(b, α) is not empty, then

(4)
k∑

j=1

bjαj � 1.

������ 2. In (4) the equality holds iff Re p is of the form (2).

Consider a sequence of vectors bn = (b1, b2, . . . , bk−1, b
(n)
k ) such that 0 < b1 <

b2 < . . . < bk−1 < b
(n)
k and lim

n→∞ b
(n)
k = ∞. Fix suitable α, Iα and a sequence {pn}

of functions holomorphic in ∆ with positive real parts, such that

lim
z→ζ

Re pn(z) �
{

bj for ζ ∈ Iαj , j = 1, 2, . . . , k − 1,
b
(n)
k for ζ ∈ Iαk

.
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Then

Re pn(z) � b1ω1(z) + . . .+ bk−1ωk−1(z) + b
(n)
k

(
1−

k−1∑
j=1

ωj(z)

)

� b
(n)
k

(
1−

k−1∑
j=1

ωj(z)

)
, z ∈ ∆.

Let z ∈ ∆r = {z ∈ � : |z| � r}. Of course, W (z) =
k−1∑
j=1

ωj(z) is a function

harmonic in ∆r, so W (z) � δ(r) with δ(r) < 1. Therefore |pn| � b
(n)
k

(
1 − δ(r)

)
,

z ∈ ∆r. It means that pn converge almost uniformly to ∞ if n → ∞. It is known
that if pn ∈ P(bn, α), then pn(0) = 1. So, we have

������ 3. Let {bn} be the sequence given above. Then the classes P(bn, α)
are, starting with a certain n, empty.

Assume now that, for fixed b, α, (4) holds. Let Iα be a respective system of
arcs, ωj—the harmonic measure of the arc Iαj , ω∗

j—the conjugate function of ωj ,
ω∗

j (0) = 0. Put

(5) hj(z) = ωj(z) + iω
∗
j (z), z ∈ ∆, j = 1, 2, . . . , k

and

(6) p0(z) =
k∑

j=1

bjhj(z), z ∈ ∆.

Denote also

(7) η =
k∑

j=1

αjbj.

One can easily check that if η = 1, then p0 ∈ P(b, α). For η ∈ (0, 1), put

(8) p(z) = p0(z) + (1− η) q(z), z ∈ ∆,

where q is an arbitrary function from P . Then p ∈ P(b, α). So the following theorem
is true.

Theorem 2. If condition (4) holds, then the class P(b, α) is not empty.
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������ 4. It is clear that there are infinitely many functions belonging to
P(b, α) because in the construction (6) or (8) we can choose another system Iα or
another mapping q ∈ P .
Moreover, the above constructions prove

Proposition 1. 1◦ If η = 1, then P(b, α) is a set of mappings of the form (6).
2◦ If 0 < η < 1, then P(b, α) is a set of mappings of the form (8).
Indeed, take p ∈ P(b, α), construct p0 by formula (6) for Iα = Iα(p) and consider

a function P (z) = p(z) − p0(z), z ∈ ∆. This is a function holomorphic in ∆ and
limz→ζ ReP (z) � 0 for ζ ∈ Iαj , j = 1, 2, . . . , k. So, ReP (z) � 0, z ∈ ∆. Moreover,
P (0) = 1 − η, so if η = 1, then P ≡ 0 and (6) holds. For η ∈ (0, 1), it is enough to
take q(z) = 1

1−η P (z) to justify (8).
In view of Theorem 2 and Proposition 1, constructions (6) and (8) constitute

structure formulae in the respective classes P(b, α). They are useful, among other
things, in the searching for estimates of certain functionals.
Consequently, consider η ∈ (0, 1). Let p ∈ P(b, α). To this mapping there

correspond, of course, a definite system of arcs Iα(p) and functions p0 and q according
to (8). From (5) and (6) we obtain

p0(z) =
k∑

j=1

bj

∫
Iαj

(
1 + 2e−itz + . . .

)
dt.

On the other hand, p0(z) = η + c1,p0z + . . ., z ∈ ∆. So

Re cn,p0 = 2
k∑

j=1

bj

∫
Iαj

cosnt dt, n = 1, 2, . . .

In view of Proposition 1 (2◦) and the well-known estimate of the coefficients in P ,
we get

(9) max
p∈P(b,α)

Re cn,p = 2 max
Iα

k∑
j=1

bj

∫
Iαj

cosnt dt+ 2(1− η).

Let Iα be a fixed system of appropriate arcs of the circle T . Denote by Iτα the
system Iα rotated by the angle τ , i. e. such that Iτ

αj
=

{
z = e−iτ ζ, ζ ∈ Iαj

}
.

Definition 2. By P(b, α; Iα) we will denote the set of all functions p ∈ P(b, α)
for which there exists τ = τ(p) ∈ 〈0, 2�) such that Iα(p) = Iτα.
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Let us consider the case k = 3 and put α = (α1, α2, α3), α1 = α2 = 1
2 (1 − α),

α3 = α, α ∈ (0, 2�). Let Iα = (Iα1 , Iα2 , Iα3) where Iα1 =
{
ζ = eit : t ∈ (�, 2�−α�)

}
,

Iα2 =
{
ζ = eit : t ∈ (α�, �)}, Iα3 =

{
ζ = eit : t ∈ (−α�, α�)

}
.

Take p ∈ P(b, α; Iα). From the definition of this class and from (9) we have

Re c1,p(τ) = 2

(
b3

∫ α�+τ

−α�+τ

cos t dt+ b2

∫
�+τ

α�+τ

cos t dt+ b1

∫ −α�+τ

�+τ

cos t dt

)

=
(
1
2b3 − b2 − b1

)
sin α�

2 cos τ + (b1 − b2) cos α�
2 sin τ.

If p0 runs over the set of all functions of the form (6), then τ runs over the interval
〈0, 2�). Hence

Re c1,p(τ) � max
τ∈〈0,2�)

Re c1,p(τ)

= 2 cos α�
2

(
(12b3 − b2 − b1) cosx0 sin α�

2 + (b1 − b2) sinx0 cos α�
2

)
,

where

x0 =
�

2
− arctg

( 1
2b3 − b2 − b1

b1 − b2
ctg

α�

2

)
.

Corollary 1. Let α ∈ (0, 2�), α =
(
1−α
2 , 1−α

2 , α
)
, b = (b1, b2, b3) be arbitrary

and fixed, and let the system Iα be defined as above. Let p ∈ P(b, α; Iα) be of the
form p(z) = 1 + c1,pz + . . . , z ∈ ∆. Then

∣∣c1,p∣∣ � 2
{
1 + cos α�

2

(
(12b3 − b2 − b1) cos x0 sin α�

2 + (b1 − b2) sinx0 cos α�
2

)}
,

x0 is given by the above formula, and these estimates are sharp.

Definition 3. Fix an arbitrary Iα and denote

P∨(b, α; Iα) =
{
p ∈ P(b, α) : Iα(p) = Iα

}
.

�����	� 5. Let k = 3, α =
(
1
4 ,
1
2 ,
1
4

)
, b = (b1, b2, b3) and Iα1 =

{
ζ = eit :

−� < t < − �

2

}
, Iα2 =

{
ζ = eit : − �

2 < t < �

2

}
, Iα3 =

{
ζ = eit : �

2 < t < �

}
,

Iα = (Iα1 , Iα2 , Iα3). Using Proposition 1 (2
◦) for p ∈ P∨(b, α; Iα) we get cn,p =

cn,p0 + (1− η)cn,q, n = 1, 2, . . . , whence

∣∣cn,p

∣∣ � 2(1− η) +




0 for n = 4l,√
2

n�

√
b21 + b23 + 2b2(b2 − b1 − b3) for n = 4l+ 1, n = 4l+ 3,

2
n�

∣∣b3 − b1
∣∣ for n = 4l+ 2,

l ∈ �.
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The following assertions are true.

Proposition 2. For any admissible b, α, the class P(b, α) is compact.
Using Lemma 1, one can prove this fact analogously as in [4].

Proposition 3. For any admissible b, α, Iα, the class P∨(b, α; Iα) is convex.

Proposition 4. Let bk > bk−1. The class P(b, α) is not convex.
To verify them, consider two functions p0 and pτ

0 given by formula (6) for Iα
and Iτα, 0 < τ < min{2�αj}k

j=1. The linear convex combination pλ of the functions
p1 and p2 given by (8) for η ∈ (0, 1), p0, pτ

0 and q(z) = 1+z
1−z , z ∈ ∆, does not satisfy

the definition condition (1) for j = k. If η = 1, one should take pλ = λp0+(1−λ)pτ
0 .

Below, we will determine a relationship between P(b, α) and the families H(l, α)
investigated in article [1]. Let us recall:
Let H stand for the family of mappings f holomorphic and bounded in ∆, f(0) =

f ′(0)− 1 = 0.
Definition 4. Let l = (l1, l2, . . . , lk), α = (α1, α2, . . . , αk), 0 < l1 � . . . � lk,

αj � 0, j = 1, 2, . . . , k,
k∑

j=1
αj = 1, k � 2. By H(l, α) we denote the set of functions

f ∈ H for which there exists a respective system Iα = Iα(f) such that

lim
z→ζ

∣∣f(z)∣∣ � lj for each ζ ∈ Iαj ,

j = 1, 2, . . . , k.

It is known that H(l, α) �= ∅ iff η(k) =
k∏

j=1
l
αj

j � 1. Assume that l, α satisfy

additionally lk < e and η(k) < e. We have

Theorem 3. If p ∈ P(b, α), then the mapping

f(z) = ze1−p(z), z ∈ ∆,

belongs to the class H(l, α′) where lj = e1−bk−j+1 , α′
j = αk−j+1, j = 1, 2, . . . , k.

The proof is analogous to that in [2].
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2.

In this part we will investigate functions bounded in the unit disc with some
conditions given for two sets of T .
In literature one can find various methods for investigating the boundary behaviour

of functions defined in certain domains (see, for instance, the local Fatou theorem
in [12], p. 94).
For f ∈ H, the upper limit and also the nontangential limit a. e. on T exist. So,

denote
lim

Γβ	z→ζ

∣∣f(z)∣∣ =: ∣∣f(eiθ)∣∣ for ζ = eiθ ∈ T .

Similarly as in [8] one can justify

Lemma 2. Let I ⊂ T be an arbitrary open arc, f ∈ H. The conditions

(A) lim
z→ζ

∣∣f(z)∣∣ � M for ζ ∈ I

and

(B)
∣∣f(
eiθ

)∣∣ � M a. e. on I

are equivalent.

Besides, note that if f ∈ H, then there exist radial limits ∣∣f∗ (
eiθ

)∣∣ a. e. on T and

(10)
∣∣f∗ (

eiθ
)∣∣ = lim

r→1
∣∣f (

reiθ
)∣∣ = lim

Γβ	z→eiθ
∣∣f(z)∣∣, θ ∈ 〈0, 2�) a. e.

Definition 5. Let F ⊂ T be a set of Lebesgue measure 2�α, α ∈ (0, 1) and
0 < m < M < ∞. By H∨(M, m, α;F ) we denote the family of functions f ∈ H such
that

(11)
∣∣f (
eiθ

)∣∣ �
{

M a. e. on F ,

m a. e. on T \ F .

������ 6. Let F be an open arc Iα of length 2�α. Then H∨(M, m, α; Iα) =
H∨(M, m; Iα). The considerations in this part of the paper represent a certain kind
of generalization of investigations from the paper [13].

For arbitrary admissible M , m, α, F , we have

Proposition 5. H∨(M, m, α;F ) is a family of functions commonly bounded
by M in ∆.
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Constructing a function analogously as in [5] and [13] one obtains conditions for
the nonemptiness of the above families. So, let F ⊂ T be a fixed set of measure 2�α,
ω( · ;F )—the harmonic measure of the set F , ω∗( · ;F )—the conjugate of ω( · ;F ),
ω∗(0;F ) = 0. Put h( · ;F ) = ω( · ;F ) + iω∗( · ;F ) and

(12) f0(z) = z eh(z;F ) LogM+(1−h(z;F )) Logm, z ∈ ∆,

and, for

(13) η̃ =
1

Mαm1−α
,

(14) f1(z) = f0(z) · z − η̃

1− η̃z
, z ∈ ∆.

If η̃ = 1, then f0 ∈ H∨(M, m, α;F ), whereas if η̃ ∈ (0, 1), then f1 is a function of
the family H∨(M, m, α;F ). Thus we get

Theorem 4. If 0 < m < M , α ∈ (0, 1) and

(15) Mαm1−α � 1,

then H∨(M, m, α;F ) �= ∅ for F ⊂ T and F is of length 2�α.

Conversely:

Theorem 5. Inequality (15) is a necessary condition for the nonemptiness of
H∨(M, m, α;F ).

The proof is omitted (see [13]). One can easily prove the structure formula below.

Theorem 6. Let f ∈ H∨(M, m, α;F ). Then there exists a holomorphic function
Φ bounded by 1 in ∆, Φ(0) = 0, Φ′(0) = η̃, such that

(16) f(z) =
f0(z)

z
· Φ(z), z ∈ ∆,

where f0 is the function given by (12) for the set F .

The converse is also true, i. e. each function which is the product (16) of any
suitably fixed mapping f0(z)/z and Φ(z) belongs to H∨(M, m, α;F ).

Proposition 6. The classes H∨(M, m, α;F ) are compact.
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For the proof, it is enough to use Proposition 5 and the structure formula (16) for
a sequence fn of functions from the class investigated, converging almost uniformly
on ∆.
In the consideration carried out so far, the set F , distinguished by the given

boundary condition, was fixed. Now, we shall consider the possibility of changing F

and some consequences resulting from it.
Let F ⊂ T be an arbitrary fixed set of measure 2�α, τ ∈ 〈−�, �), Fτ—the set F

rotated by τ , i. e. Fτ = {z = e−iτζ : ζ ∈ F}.
Definition 6. Let f ∈ H. We say that f ∈ H(M, m, α;F ) if there exists

τ = τ(f) ∈ 〈−�, �) such that f satisfies conditions (11) for the set Fτ .

The following two statements are valid.

Proposition 7. For any fixed and admissible M , m, α, F ,

H(M, m, α;F ) =
⋃

τ∈〈−�,�)

H∨(M, m, α;Fτ )

holds.

Proposition 8. The classes H(M, m, α;F ) are compact in the topology given by
the almost uniform convergence in ∆.

To prove this one should carry out a reasoning analogous to that in [5], [13].

������ 7. Note that, for the justification of the assertions given in this part of
the paper, it would suffice to assume in the definition of the families H∨(M, m, α;F )
that inequalities (11) are satisfied for the corresponding radial limits f∗(eiθ). In
view of the existence of both the radial and nontangential limits as well as by equal-
ity (10) in this case, the analogous class H∨∗ (M, m, α;F ) is identical with the class
H∨(M, m, α;F ). But note also that the equality of both the limits does not mean
their “equivalence”, of course, in the sense of the theorems obtained on their proper-
ties of the function f in ∆. It is known, for example, that if a function f holomorphic
and bounded in ∆ has a nontangential limit equal to zero on a certain subset E ⊂ T ,
then f ≡ 0. The above assertion does not hold for radial limits.

3.

In this section we will investigate functions p ∈ P which satisfy fixed conditions
on the boundary of the disc ∆, distinguishing k subsets measurable in the sense of
Lebesgue. We will assume that b = (b1, b2, . . . , bk), α = (α1, α2, . . . , αk) are defined
as in Section 1.
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Definition 7. Let p ∈ P . We say that p belongs to the class ℘(b, α) iff there
exist k disjoint sets Fj ⊂ T of Lebesgue measures, respectively, 2�αj , j = 1, 2, . . . , k,
such that

(17) Re p(eiθ) � bj a. e. on Fj ,

j = 1, 2, . . . , k.

In this definition, Re p(eiθ) stand for the nontangential limits. The case k = 2 was
the subject of investigations in papers [5], [8]. Throughout our article, we denote
(F1, . . . , Fk) = F(p) = F . Putting

(18) U(z;F) =
k∑

j=1

bjωj(z), z ∈ ∆,

with ωj being the corresponding harmonic measures of the sets Fj , we obtain a
function harmonic in ∆, continuous almost everywhere on ∆ and such that

(19) U(z;F) = bj a. e. on Fj , j = 1, 2, . . . , k.

Assume that ℘(b, α) �= ∅. So, let p ∈ ℘(b, α). Conditions (17) and (19) imply
that Re p(z) � U(z;F) a. e. on T . Let χFj stand for the characteristic function of
the set Fj . Then, for z ∈ ∆, we get

Re p(z) =
∫

�

−�

Re
eit + z

eit − z
dµ(t) � 1

2�

∫
�

−�

Re p(eit)Re
eit + z

eit − z
dt

�
k∑

j=1

1
2�

∫
�

−�

χFj (t)Re p(e
it)Re

eit + z

eit − z
dt

�
k∑

j=1

1
2�

∫
�

−�

χFj (t) · bj · Re e
it + z

eit − z
dt =

k∑
j=1

bjωj(z).

We have thus shown

Lemma 3. Take p ∈ ℘(b, α), F = F(p) and U( · ;F) given by formula (18) for F .
Then

Re p(z) � U(z;F), z ∈ ∆.

Putting z = 0 in the above inequality and remembering that ωj(0) = α, we have

Theorem 7. If ℘(b, α) �= ∅, then

(20)
k∑

j=1

bjαj � 1.
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Moreover, we get

Theorem 8. If condition (20) holds, then the class ℘(b, α) �= ∅. Besides, there
exists a function p ∈ ℘(b, α) such that Re p(z) = bj a. e. on Fj , j = 1, 2, . . . , k.


����. For the system F one can construct (analogously as in Theorem 2) a
function

(21) G(z;F) =
k∑

j=1

bjhj(z), z ∈ ∆,

holomorphic in ∆, ReG(z;F) = U(z;F), G(0;F) =
k∑

j=1
αjbj . If there is an equality

in (20), then G(z;F) ∈ ℘(b, α), whereas if there is a sharp inequality, one may put

(22) pγ(z) = G(z;F) +
(
1−

k∑
j=1

bjαj

)
eiγ + z

eiγ − z
, z ∈ ∆, |γ| = 1.

Then pγ ∈ ℘(b, α). Note that, for pγ , the equalities hold in (17). �

We will establish some topological properties for a fixed subclass of the families
℘(b, α).
Let F = (F1, . . . , Fk) be arbitrary, fixed, admissible and ℘∨(b, α,F) = {p ∈

℘(b, α) ; F(p) = F}.

Proposition 9. The classes ℘∨(b, α,F) are convex.
Using Lemma 3 and the properties of the function U( · ;F), one can verify

Proposition 10. The classes ℘∨(b, α,F) are compact.
Directly from the definition of the families ℘(b, α) it follows that they are sub-

classes of Carathéodory functions.
It turns out that the imposition of additional boundary conditions on a function

p ∈ P has its consequences. However, it is possible to fix a certain relationship
between the families ℘(b, α) and P . Similarly as Proposition 1 (2◦) one can prove

Theorem 9. Let b, α be any fixed admissible systems. A function p ∈ ℘(b, α)
iff there exist F and q ∈ P such that

(23) p(z) = G(z;F) +
(
1−

k∑
j=1

bjαj

)
q(z), z ∈ ∆,

where G( · ;F) is the function of the form (21) given for the system F of sets.
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Using formula (23), one can prove

Theorem 10. A function p belonging to the class ℘∨(b, α,F) is an extreme point
of this class iff it is of the form (22).


����. Assume that p ∈ ℘∨(b, α,F) is an extreme point of this class. The-
orem 9 implies that there exists a q ∈ P such that (23) holds. Suppose to the
contrary that q(z) �= eiγ+z

eiγ−z . It means that q is not an extreme point in P . So there
exist q1, q2 ∈ P and λ ∈ (0, 1) such that q(z) = λq1(z) + (1− λ)q2(z), z ∈ ∆. Put

pk(z) = G(z;F) +
(
1−

k∑
j=1

bjαj

)
qk(z), z ∈ ∆, k = 1, 2.

Of course, pk ∈ ℘∨(b, α,F), k = 1, 2. Besides, p = λp1 + (1 − λ)p2, but this
contradicts the first assumption.
Similarly one can justify the sufficient condition of the above theorem. �
������ 8. Let p ∈ ℘(b, α) and F = (F1, . . . , Fk) = F(p). Then

∣∣cn

∣∣ �
∣∣∣∣ 12�

k∑
j=1

2bj

∫
�

−�

χFj
(t)eint dt

∣∣∣∣+ 2
(
1−

k∑
j=1

bjαj

)
, n � 1.

Indeed, let b, α be suitably fixed and let p ∈ ℘(b, α). Let also F = F(p) stand for
a system of k respective sets Fj for which (17) holds. Consider the known function
G( · ;F). Of course,

G(z;F) =
k∑

j=1

bjαj + a1,Gz + . . .+ an,Gzn + . . . , z ∈ ∆.

The mapping p can be represented by (23) where

q(z) = 1 + q1z + . . .+ qnzn + . . . , z ∈ ∆.

Hence we get

(24) cn,p = an,G +

(
1−

k∑
j=1

bjαj

)
qn, n � 1.

Moreover,

G(z;F) = 1
2�

k∑
j=1

∫
�

−�

bjχFj (t)
eit + z

eit − z
dt

=
1
2�

k∑
j=1

∫
�

−�

bjχFj (t)(1 + 2e
itz + . . .+ 2eintzn + . . .) dt, z ∈ ∆,
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so

(25) an,G =
1
2�

k∑
j=1

2bj

∫
�

−�

χFj (t)e
int dt.

Hence and from the estimate of |qn| in P we get the assertion.
�����	� 9. Let k = 3, α =

(
1
4 ,
1
2 ,
1
4

)
, b = (b1, b2, b3). Consider the sets

F1 =
{
ζ = eit : t ∈ (−�, �2

)} \ � , F2 =
{
ζ = eit : t ∈ (−�

2 , �2
)} \ � , F3 =

{
ζ = eit :

t ∈ (
�

2 , �
)} \� , where � denotes the set of rational numbers, and F = (F1, F2, F3).

Let p ∈ ℘∨(b, α;F). Using (25) and the properties of Lebesgue integrals, for
G( · ;F) we successively obtain

an,G =
1
2�

k∑
j=1

2bj

∫
T

χFj (t)e
int dt =

1
2�

k∑
j=1

2bj

∫
Fj

eint dt =
1
2�

k∑
j=1

2bj

∫
Fj∪�

eint dt.

The above considerations mean that the estimate of |cn,p| are identical with those
in the corresponding family P(b, α; Iα) (see Ex. 1).
More generally, let Iαj ⊂ T be an open arc of length 2�αj , where Qj ⊂ T is a set

of measure zero, Fj = Iαj \ Qj, j = 1, 2, . . . , k. From formulae (24), (25) and the
properties of Lebesgue integrals it follows that the estimates |cn,p| in ℘∨(b, α;F)
and P(b, α; Iα), Iα = (Iα1 , . . . , Iαk

), F = (F1, . . . , Fk), are the same.

�����	� 10. Let α =
(
1
4 ,
1
2 ,
1
4

)
, b = (b1, b2, b3). Consider the sets F1 ={

ζ = eit : t ∈ (
0, �4

) ∪ (
3
4�, �

)}
, F2 =

{
ζ = eit : t ∈ (−�, 0)

}
, F3 =

{
ζ = eit : t ∈(

�

4 ,
3
4�

)}
. Let F = (F1, F2, F3) and p ∈ ℘∨(b, α;F). Again, using (24), (25), after

suitable computations we obtain

∣∣cn,p

∣∣ � 2
(
1−

k∑
j=1

bjαj

)
+




0 if n = 8k ∨ n = 8k + 4,
1
n�

∣∣(√2−2)b1+2b2−√
2b3

∣∣ if n = 8k+1 ∨ n = 8k+7,

2
n�

|b1 − b3| if n = 8k+1 ∨ n = 8k+6,

1
n�

|2b2 − b1| if n = 8k+3 ∨ n = 8k+5,

������ 11. It is easy to note, that if F is essentially different from three arcs
of the circle T (that means—it is neither a triple of arcs of T nor a triple of arcs with
sets of Lebesgue measure zero omitted) then, for instance, the estimate of coefficients
are more complicated.
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