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1. Introduction

We consider quasilinear differential equations of neutral type in the form

(E) (Lα
1 x(t))

′ + f(t, x(g(t))) = 0, t � a > 0,

where α > 0 is a constant and Lα
1 is a differential operator defined by

L0x(t) = x(t)− p(t)x(h(t)),(1.1)

Lα
1x(t) = r(t)|L′

0x(t)|α−1L′
0x(t).(1.2)

The conditions we always assume for (E) are listed below:

(C1) r : [a,∞)→ (0,∞) is continuous and
∫ ∞

a

(r(t))
−1
α dt < ∞;
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(C2) p : [a,∞)→ [0, λ] is continuous, 0 < λ < 1;

(C3) h : [a,∞)→ � is continuous and strictly increasing, h(t) < t for t � a and
lim

t→∞h(t) =∞;
(C4) g : [a,∞)→ � is continuous and lim

t→∞ g(t) =∞;
(C5) f : [a,∞)× � → � is continuous, f(t, x) is nondecreasing in x and satisfies

xf(t, x) > 0 for all x �= 0 and t � a.

Let t1 � a be such that

(1.3) t0 = min {h(t1), inf
t�t1

g(t)} � a.

By a proper solution of (E) we mean a continuous function x : [t0,∞)→ � which
has the property that L0x(t) and Lα

1x(t) are continuously differentiable on [t1,∞),
and satisfies the equation (E) at every point of [t1,∞). The solutions which vanish
for all large t will be excluded from our consideration. A proper solution of (E) is

said to be oscillatory if it has infinite sequences of zeros tending to infinity; otherwise
a proper solution is said to be nonooscillatory.

In this paper we shall study the oscillatory and nonoscillatory behavior of proper
solutions of the equation (E). More specifically we first classify the set of nonoscilla-

tory solutions of (E) according to their asymptotic behavior as t → ∞ and present
conditions for the existence of three types of nonoscillatory solutions of (E) with

specified asymptotic behavior. We then establish criteria for oscillation of all proper
solutions of the equation (E).

Equations of the form (E) include as special cases the neutral equations of the
type

(E1) (r(t)(x(t) − p(t)x(h(t))′)′ + f(t, x(g(t))) = 0, t � a

and the non-neutral equations of the type

(E2) (r(t)|x′(t)|α−1x′(t))′ + f(t, x(g(t))) = 0, t � a,

both of which have been objects of intensive investigation in recent years. We re-
fer to the papers [3–5, 7, 16] and to [1, 2, 8–15, 17, 19, 20] for typical oscillation and

nonoscillation results regarding (E1) and (E2), respectively.
The oscillatory behavior of equations of the form (E) was first studied in the paper

[6] under the hypothesis that the function r(t) defining the operator Lα
1 satisfies∫ ∞

a
(r(s))

−1
α ds = ∞. The purpose of this paper is to turn our attention to the

equation (E) with r(t) satisfying the condition (C1):
∫ ∞

a (r(s))
−1
α ds < ∞ and develop

an oscillation theory for it in the same spirit as in [6].
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Extensive use will be made of the function �α(t) defined by

(1.4) �α(t) =
∫ ∞

t

(r(s))
−1
α ds, t � a.

Note that �α(t)→ 0 as t → ∞ by (C1).
The following notation will be needed in the sequel:

h[0](t) ≡ t, h[k](t) = h(h[k−1](t)), k = 1, 2, . . . ,(1.5)

P0(t) ≡ 1, Pk(t) =
k−1∏
i=0

p(h[i](t)), k = 1, 2, . . . ,(1.6)

γ(t) = sup {s � a; g(s) � t}, γh(t) = sup {s � a;h(s) � t}.(1.7)

2. Classification of proper nonoscillatory solutions

We begin by classifying the set of possible nonoscillatory solutions of the equation

(E) according to their asymptotic behavior as t → ∞.

Let N denote the set of all nonoscillatory solutions of (E). If x ∈ N then it follows

from (E) and the assumptions (C1)–(C5) that the function

(2.1) L0x(t) = x(t) − p(t)x(h(t))

has to be eventually of constant sign, so that either

(2.2) x(t)L0x(t) > 0

or

(2.3) x(t)L0x(t) < 0

for all sufficiently large t.
We use the notation

N+ = {x(t) ∈ N : x(t)L0x(t) > 0 for all large t},
N− = {x(t) ∈ N : x(t)L0x(t) < 0 for all large t}.

If x ∈ N− then by Remark 2.1 in [18] lim
t→∞x(t) = 0. Now in view of (C2), (C3),

lim
t→∞L0x(t) = 0. From this we obtain
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������ 2.1. If x(t) ∈ N−, then lim
t→∞x(t) = 0, lim

t→∞L0x(t) = 0.

Let x(t) ∈ N+ for t � t1. Then from (2.1) we have

(2.4) x(t) = L0x(t) + p(t)L0x(h(t)) + P2(t)x(h[2](t)), t � t2 � γh(t1).

From (2.4) in view of (C2) we get

(2.5) |x(t)| � |L0x(t)|, t � t1.

Repeating the application of (2.1) and (2.4) we obtain

(2.6) x(t) =
n(t)−1∑

k=0

Pk(t)L0x(h[k](t)) + Pn(t)x(h
[n(t)](t)), t � tn(t) � γh(tn(t)−1)),

where n(t) denotes the least positive integer such that h(t1) < h[n(t)] � t1.

Let Kx be a constant such that |x(t)| � Kx for t ∈ [h(t1), t1]. If L0x(t) is nonde-
creasing on [t1,∞), then (2.6) in view of (C2) and (1.6) yields

(2.7) |x(t)| � |L0x(t)|
1− λ

+Kx, t � t2 � t1.

Lemma 2.1. Let x(t) be a nonoscillatory solution of (E) on [t0,∞). If x(t) ∈ N+,

then there exist positive constants c1, c2 and T � t0 such that

(2.8) c1�α(t) � |L0x(t)| � c2 for t � T.

�����. Let x ∈ N+. Without loss of generality we may suppose that x(t) > 0

and L0x(t) > 0 for t � t0. In view of the assumptions (C1)–(C5) the equation (E)
implies that

(2.9) Lα
1x(t) = r(t)|L′

0x(t)|α−1L′
0x(t)

is decreasing for t � t1 � γ(t0). Hence in view of (C1) either L′
0x(t) > 0 for t � t1

or there exists t2 � t1 such that L′
0x(t) < 0 for t � t2.

i) Suppose that L′
0x(t) > 0 on [t1,∞). Then with regard to (2.9) there exists a

constant Kα
1 > 0 such that Lα

1x(t) = r(t)(L′
0x(t))

α � Kα
1 for t � t1. From the last

inequality we obtain L0x(t) − L0x(t1) � K1�α(t1), which implies that

(2.10) L0x(t) � c2, t � t1,
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where c2 = L0x(t1) +K1�α(t1).

ii) Suppose that L′
0x(t) < 0 on [t2,∞). Since Lα

1x(t) = −r(t)(−L′
0x(t))

α is de-

creasing for t � t2 we have

(2.11) −L′
0x(t) � (r(t2))

1
α |L′

0x(t2)|(r(t))
−1
α , t � t2,

from which via integration over [t,∞), t � t2, it follows that

(2.12) L0x(t) � c1�α(t), t � t2,

where c1 = (r(t2))
1
α |L′

0x(t2)|. Let T = max {t1, t2}. The desired inequality (2.8)
follows from (2.12) and (2.10).

Using Lemma 2.1, (2.5) and (2.7) we obtain

0 � lim inf
t→∞ |x(t)|, lim sup

t→∞
|x(t)| < ∞.

Then in view of the monotonicity of L0x(t) there exists a limit lim
t→∞ |L0x(t)| =

b0 < ∞. Let lim inf
t→∞ |x(t)| = 0. Then by Lemma 1 and Lemma 2 [16] we have

lim
t→∞ |L0x(t)| = 0 and lim

t→∞ |x(t)| = 0.

Combining Lemma 2.1 with (2.6), (2.7), we conclude that the following three types
of asymptotic behavior are possible for nonoscillatory solutions x(t) ∈ N+ of (E):

0 < lim inf
t→∞ |x(t)|, lim sup

t→∞
|x(t)| < ∞,(I)

lim
t→∞ x(t) = 0, lim sup

t→∞
|x(t)
�α(t)

=∞,(II)

0 < lim inf
t→∞

|x(t)|
�α(t)

, lim sup
t→∞

|x(t)|
�α(t)

< ∞.(III)

�
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3. Existence of proper nonoscillatory solutions

In this section we establish criteria for the existence of nonoscillatory proper so-

lutions of the equation (E) of type (I), (II) or (III) mentioned above.

Theorem 3.1. The equation (E) has nonoscillatory solutions of type (I) if an
only if

(3.1)
∫ ∞

a

(
1

r(t)

∫ t

a

|f(s, c)| ds
) 1

α

dt < ∞, T � a

for some constant c �= 0.
�����. (The “only if” part.) Let x(t) be a nonoscillatory solution of (E) of

type (I) on [t0,∞), t0 � a. We may suppose that x(t) is eventually positive. Then

there exist positive constants c, c1 and t1 � t0 such that

(3.2) c � x(g(t)) � c1 for t � t1.

In view of (C4), (C5) and (3.2) we see from (E) that

(3.3) (Lα
1x(t))

′ � −f(t, c), t � t1.

The last inequality implies that Lα
1x(t) = r(t)|L′

0x(t)|α−1L′
0x(t) is decreasing on

[t1,∞). Then in view of (C1), there exists a t2 � t1 such that L′
0x(t) is either

positive or negative for t � t2.

i) Suppose that L′
0x(t) > 0 on [t2,∞). Then, integrating (3.3) over [t2, t] we have

∫ t

t2

f(s, c) ds � Lα
1x(t2), t � t2,

which implies because of (C1) that

∫ ∞

t2

(
1

r(t)

∫ t

t2

f(s, c) ds

) 1
α

dt < ∞.

This shows that (3.1) is valid.

ii) Suppose that L′
0x(t) < 0 on [t2,∞). Integration of (3.3) over [t2, t] gives

r(t)|L′
0x(t)|α �

∫ t

t2

f(s, c) ds
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or

−L′
0x(t) �

(
1

r(t)

∫ t

t2

|f(s, c)| ds
) 1

α

, t � t2.

Integrating the above inequality over [t2,∞) and noting that x ∈ N+ we see that
(3.1) holds.

(The “if” part.) Suppose that (3.1) holds for some constant c > 0. The case of
a negative c can be treated similarly. Let b and d be positive constants such that

0 < d < b 1−λ
1+λ and

b+d
1−λ � c, where λ is as in (C2). Take T � a such that

(3.4) T0 = min{h(T ), inf
t�T

g(t)} > a

and

(3.5)
∫ ∞

T

(
1

r(t)

∫ t

T

f(s, c) ds

) 1
α

dt <
d

2
.

Let C[T0,∞) be the locally convex space of all continuous functions defined on
[T0,∞) which are constant on [T0, T ] with the topology of uniform convergence on
any compact subinterval of [T0,∞).
Define a closed convex subset Y of C[T0,∞) by

(3.6)
Y = {y ∈ C[T0,∞); b − d � y(t) � b+ d on [T,∞)

and y(t) = y(T ) on [T0, T ]}.

Using (2.5) we can associate to each y ∈ Y the function ỹ : [T0,∞)→ � defined by

(3.7)
ỹ(t) =

n(t)−1∑
k=0

Pk(t)y(h[k](t)) + Pn(t)
y(T )
1− p(T )

, t � T,

ỹ(t) =
y(T )
1− p(T )

, t ∈ [T0, Y ],

where n(t) denotes the least positive integer such that T0 � h[n(t)](t) � T.

It is easy to verify that

(3.8) y(t) = ỹ(t)− p(t)ỹ(h(t)), t � T0,

and

(3.9) b − d � y(t) � ỹ(t) � b+ d

1− λ
, t � T.
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We now define an operator F : Y → C[T0,∞) by

(Fy)(t) = b+
∫ ∞

t

(
1

r(τ)

∫ τ

T

f(s, ỹ(g(s))) ds

) 1
α

dτ, t � T,

(Fy)(t) = (Fy)(T ), T0 � t � T.

If y ∈ Y , then using (3.9), (3.5) and (C5) we obtain

|(Fy)(t)− b| �
∫ ∞

T

(
1

r(τ)

∫ τ

T

f
(
s,

b+ d

1− λ

)
ds

) 1
α

dτ < d,

which shows that the operator F maps Y into Y. It is a matter of routine calculation
to verify that F is a continuous mapping and that F(Y ) is relatively compact in
the topology of C[T0,∞). Therefore, the Schauder-Tychonoff fixed point theorem
ensures the existence of an element y0 ∈ Y such that Fy0 = y0 and y0 satisfies the
integral equation

(3.10) y0(t) = b +
∫ ∞

t

(
1

r(τ)

∫ τ

T

f(s, ỹ0(g(s))) ds

) 1
α

dτ, t � T,

where y0(t) = ỹ0(t)− ỹ0(h(t)), t � T.

Differentiating (3.10) we obtain that ỹ0(t) is a nonoscillatory solution of (E) of
type (I).

This completes the proof. �

Theorem 3.2. The equation (E) has nonoscillatory solutions of type (III) if and
only if

(3.11)
∫ ∞

T

|f(t, c�α(t))| dt < ∞, T � a.

for some constant c �= 0.
�����. (The “only if” part.) Let x(t) be a type (III)-solution of (E) on [t0,∞),

t0 � a. We may suppose that x(t) is eventually positive. Then there exist positive

constants c, c1 and t1 � t0 such that

(3.12) c�α(t) � x(g(t)) � c1�α(t) for t � t1.

In view of (3.12), (C4) and (C5), the equation (E) yields

(3.13) (Lα
1x(t))

′ � −f(t, c�α(t)), t � t1.
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The last inequality implies that Lα
1x(t) = r(t)|L′

0x(t)|α−1L′
0x(t) is decreasing on

[t1,∞). Then in view of (C1) there exists a t2 � t1 such that L′
0x(t) is either positive

or negative for t � t2.

i) If L′
0x(t) > 0 on [t2,∞), then integrating (3.13) over [t2,∞) we have

∫ ∞

t2

f(t, c�α(t)) dt � Lα
1x(t2) < ∞.

ii) If L′
0x(t) < 0 on [t2,∞), then, in view of the monotonicity of Lα

1x(t) =
−r(t)|L′

0x(t)|α, we have

−L′
0x(s) �

( r(t)
r(s)

) 1
α |L′

0x(t)|, s � t � t2.

Integration of the last inequality over [t,∞) gives

(3.14) L0x(t) � (r(t)) 1α |L′
0x(t)|�α(t), t � t2

which, combined with the inequality following from the integration of (3.13), yields

(3.15)
(L0x(t)

�α(t)

)α

� r(t)|L′
0x(t)|α �

∫ t

t2

f(s, c�α(s)) ds.

Combining (3.15) with (2.6) and (3.12) shows that (3.11) holds as desired.

(The “if” part.) Suppose that (3.11) holds for some nonzero constant c. We may

suppose that c is positive. Let b and d be such that 0 < d < b 1−λα

1+λα ,
(b+d)

1
α

(1−λ � c,
where λ is as in (C2). Take T � a such that (3.4) holds and

(3.16)
∫ ∞

T

f(s, c�αx(t)) dt < d.

We define Y to be the closed convex subset of C[T0,∞) as follows:

Y = {y ∈ C[T,∞) : (b − d)
1
α �α(t) � y(t) � (b + d)

1
α �α(t) on [T,∞)(3.17)

and y(t) = c�α(T ) on [T0, T ]}.

With each y ∈ Y we associate the function ỹ defined by (3.7). Then it can be
shown that the operator F : Y → C[T0,∞) defined by

(Fy)(t) =
∫ ∞

t

(
1

r(τ)

(
b+

∫ τ

T

f(s, ỹ(g(s))) ds

) 1
α
)
dτ, t � T,
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and

(Fy)(t) = (Fy)(T ), T0 � t � T

is a continuous mapping which sends Y into a relatively compact subset of Y. By the

Schauder-Tychonoff fixed point theorem there exists an element y0 ∈ Y such that
Fy0 = y0. This function y0 = y0(t) satisfies the integral equation

(3.18) y0(t) =
∫ ∞

t

(
1

r(τ)

(
b+

∫ τ

T

f(s, ỹ0(g(s)) ds

) 1
α
)
dτ, t � T,

where y0(t) = ỹ0(t)− ỹ0(h(t)), t � T.

Differentiating (3.18) we conclude that ỹ0(t) is a nonoscillatory solution of (E) of
type (III). �

Let us turn to the solutions of type (II) of (E). Unlike the solutions of types (I)

and (III) we have been unable to characterize the existence of this type of solutions.

Theorem 3.3. The equation (E) has nonoscillatory solutions of type (II) if

(3.19)
∫ ∞

a

(
1

r(t)

∫ ∞

t

|f(s, c)| ds
) 1

α

dt < ∞,

for some constant c �= 0 and

(3.20)
∫ ∞

a

|f(t, k�α(t))| dt =∞

for any k �= 0.
�����. Suppose that (3.19) holds for some constant c > 0 . A parallel argument

holds for the case of negative c. Let T be so large and d be such that 0 < d�α(T ) < c

and

(3.21)
∫ ∞

T

(
1

r(t)

(
d�α(T ) +

∫ ∞

T

f(s, c) ds

) 1
α
)
dτ < d�α(T ).

We define a closed convex subset Y of C[T0,∞) and a mapping F : y → [T0,∞) as
follows:

Y = {y ∈ C[T0,∞); d�α(t) � y(t) � c on [T,∞)
and y(t) = y(T ) on [T0, T ]},

(Fy)(t) =
∫ ∞

t

(
1

r(τ)

(
d�α(T ) +

∫ τ

T

f(s, ỹ(g(s))) ds

) 1
α
)
dτ, t � T,

(Fy)(t) = (Fy)(T ), T0 � t � T,
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where ỹ(t) denotes the function associated with y(t) via (3.7). Observe that

d�α(t) � y(t) � ỹ(t) � c

1− λ

for t � T . It is a matter of routine calculation to verify that F is a continuous
mapping and F(Y ) is relatively compact in the topology of C[T0,∞). Therefore by
the Schauder-Tychonoff fixed point theorem there exists a fixed element y0 ∈ Y such

that Fy0 = y0 and y0 satisfies the integral equation

(3.22) y0(t) =
∫ ∞

t

(
1

r(τ)

(
d�α(T ) +

∫ τ

T

f(s, ỹ0(g(s))) ds

) 1
α
)
dτ, t � T,

where y0(t) = ỹ0(t) − ỹ0(h(t)), t � T. From (3.22) and (3.20) it follows that ỹ0(t) is
a nonoscillatory solution of (E) of type (II). �

4. Oscillation of proper solutions

In this section we give criteria for (E) to be almost oscillatory in the sense that
N = N− or equivalently every solution of (E) is either oscillatory or tends to zero
as t → ∞. In order to obtain such criteria we need stronger hypotheses on the
nonlinearity of the function f(t, x) in (E) with respect to x.

Definition 4.1.
(i) The equation (E) is said to be strongly superlinear if there exists a constant

β > α such that |x|−β |f(t, x)| is nondecreasing in |x| for each fixed t � a.

(ii) The equation (E) is said to be strongly sublinear if there exists a constant

0 < γ < α such that |x|−γ |f(t, x)| is nonincreasing in |x| for each fixed t � a.

Theorem 4.1. Let the equation (E) be strongly superlinear. Suppose that

(4.1) g(t) � t for t � a.

If

(4.2)
∫ ∞

a

|f(t, c�α(t))| dt =∞

for all constants c �= 0 then every proper solution of (E) is either oscillatory or tends
to zero as t → ∞.
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�����. Let x(t) be a nonoscillatory solution of (E). Without loss of generality

we suppose that x(g(t)) > 0 for t � t0. Then the equation (E) in view of (C1)–
(C5) implies that the function y(t) = L0(t) is eventually of constant sign, i.e. either
x ∈ N+ or x ∈ N−.

I. Let x ∈ N+. Then (2.5) and (2.8) hold and so the function y(t) = L0x(t) satisfies

(4.3) x(t) � y(t), t � t1

and

(4.4) c1�α(t) � y(t) � c2, t � t1

for some positive constants c1, c2 and t1 � t0.

Using the assumption (C5) and (4.3), we obtain from (E)

(4.5) (Lα
1x(t))

′ � −f(t, y(g(t))), t � t2 = γ(t1).

The function Lα
1x(t) = r(t)|y′(t)|α−1y′(t) is decreasing on [t2,∞). Therefore there

exists a T � t2 such that y′(t) is either positive or negative on [T,∞).
i) Suppose that y′(t) > 0 on [T,∞). Integrating (4.5) from T to∞ and using (4.4)

we have

∞ > r(T )(y′(T ))α �
∫ ∞

T

f(t, c1�α(g(t))) dt �
∫ ∞

T

f(t, c1�α(t)) dt,

which contradicts (4.2).

ii) Suppose that y′(t) < 0 on [T,∞). If β > α is the exponent of superlinearity of
(E), then in view of (4.4) and the monotonicity of y(t) we have

(c1�α(t))−βf(t, c1�α(t)) � (y(g(t))−βf(t, y(g(t))), t � T

or

(4.6) f(t, y(g(t))) �
( y(t)

c1�α(t)

)β

f(t, c1�α(t)), t � T.

On the other hand, since y′(t) < 0 on [T,∞) we have (3.14), i.e.

(4.7)
( y(t)

c1�α(t)

)α

� c−α
1 r(t)|y′(t)|α, t � T1 � T.

Integrating (4.5) from T1 to t, we get

(4.8) −Lα
1x(t) > −Lα

1x(t) + Lα
1x(T1) �

∫ t

T1

f(s, y(g(s))) ds, t � T1.
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Noting that Lα
1 (t) = −r(t)|y′(t)|α < 0 and using (4.6)–(4.8) we obtain

( y(t)
c1�α(t)

)α

� c−α
1

∫ t

T1

f(s, y(g(s))) ds

� c−α
1

∫ t

T1

( y(s)
c1�α(s)

)β

f(s, c1�α(s)) ds, t � T1.

Denote by z(t) the last integral in the above inequalities. We then have

z′(t) = c−α
1

( y(t)
c1�α(t)

)β

f(t, c1�α(t)) � c−α
1 (z(t))

β
α f(t, c1�α(t)), t � T1.

We divide the above inequality by z(t)
β
α and integrate it from T1 to ∞, obtaining

c−α
1

∫ ∞

T1

f(t, c1�α(t)) dt � α

β − α
z(T1)1−

β
α < ∞,

which contradicts (4.2).

II. Let x ∈ N−. Then lim
t→∞x(t) = 0 by Remark 2.1.

The proof of Theorem 4.1 is complete. �

Theorem 4.2. Let the equation (E) be strongly sublinear. Suppose that (4.1)
holds. Every proper solution of (E) is either oscillatory or tends to 0 as t → ∞ if

and only if

(4.9)
∫ ∞

a

(
1

r(t)

∫ t

T

|f(s, c)| ds
) 1

α

dt =∞

for all constants c �= 0.
�����. The “only if” part follows from Theorem 3.1.

To prove the “if” part we assume for a contradiction that (E) has a nonoscillatory
solution x(t) such that lim inf

t→∞ |x(t)| > 0 . Without loss of generality we may suppose

that x(g(t)) > 0 for t � t0. Then the equation (E) in view of (C1)–(C5) implies that
the function L0(t) is eventually of constant sign, i.e. either x ∈ N+ or x ∈ N−.

I. Let x ∈ N+. Then the function y(t) = L0x(t) satisfies (4.3) and (4.4).

i) Suppose that y′(t) > 0 on [t1,∞). Then there exist K > 0 and t2 � t1 such

that y(g(t)) � K for t � t2. It follows from (4.5) in view of (C5) that

(Lα
1 x(t))

′ � −f(t, K), t � t2.
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Integrating this inequality from t2 to t yields

(4.10)
∫ t

t2

f(s, K) ds � Lα
1x(t2)− Lα

1x(t) � Lα
1x(t2) < ∞,

which, in view of the assumption (C1), implies

∫ ∞

t2

(
1

r(t)

∫ t

t2

f(s, K) ds

) 1
α

dt < ∞.

This contradicts (4.9).

ii) Suppose that y′(t) < 0 on [t1,∞). Using the sublinearity of (E) and (4.4) we
find

(y(g(t)))−γf(t, y(g(t))) � c−γ
2 f(t, c2), t � γ(t1) = t2,

where γ ∈ (0, α) is the exponent of sublinearity. Combining (4.5) with (4.11) shows
that

(4.12) −(Lα
1x(t))

′ � c−γ
2 (y(g(t)))

−γf(t, c2), t � T2.

Integrating (4.12) from T2 to t and using the decreasing nature of y and (4.1), we

obtain

r(t)|y′(t)|α � c−γ
2 (y(t))

−γ

∫ t

T2

f(s, c2) ds,

which is equivalent to

(4.13) |y′(t)|(y(t))− γ
α � c

− γ
α

2

(
1

r(t)

∫ t

T2

f(s, c2) ds

) 1
α

, t � T2.

Integrating (4.13) from T2 to ∞ we conclude that

c
− γ

α
2

∫ ∞

T2

(
1

r(t)

∫ t

T2

f(s, K) ds

) 1
α

dt � α

α − γ
(y(T2))

α−γ
α ,

which contradicts (4.9).

II. Let x ∈ N−. Then lim
t→∞x(t) = 0 by Remark 2.1.

This completes the proof of Theorem 4.2. �
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