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Abstract. Various new criteria for the oscillation of nonlinear neutral difference equations
of the form

∆i (xn − xn−h) + qn|xn−g|c sgn xn−g = 0, i = 1, 2, 3 and c > 0,

are established.
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1. Introduction

Let �∗ be the set of all non-negative intergers, and let ∆ be the first order forward
difference operator, ∆xn = xn+1 − xn, n ∈ �

∗ . For i � 1, let ∆i be the i-th order
forward operator, ∆i xn = ∆(∆i−1xn).
Consider the neutral difference equations

(Ei) ∆i(xn − xn−h) + qn |xn−g|c sgnxn−g = 0, i = 1, 2, 3,

and

(Ni) ∆i(xn − xn−h)− qn |xn−g|c sgnxn−g = 0, i = 1, 2, 3,

where {qn} is a sequence of non-negative real numbers, c is a positive constant, and
h and g are positive integers. A solution {xn}, n ∈ �

∗ of the equations (Ei) (or of
(Ni)) is said to be oscillatory if for every n0 � 0, there exists an n � n0 such that
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xn xn+1 � 0. Otherwise the solution is called nonoscillatory. The equation (Ei) is
called oscillatory if every solution of (Ei) is oscillatory.

The problem of obtaining sufficient conditions under which all the solutions or
all the bounded solutions of certain classes of neutral delay difference equations are
oscillatory has been studied by a number of authors. A large portion of the results
reported have been for neutral difference equations of the form

(Pi) ∆i(xn + axn−h) + qn |xn−g|c sgnxn−g = 0, i � 1, c > 0,

where a �= −1. Here, we refer to [1–11] and the references cited therein.
Much less is known regarding the oscillatory behavior of (E1) when c = 1, though

a number of authors have considered this problem. For recent works in this direction,
we refer the reader to [1, 4, 8]. It seems that in these results the condition

(1.1)
∞∑

j=n0�0
qj =∞,

is essential for the oscillation of the equation (E1) for c = 1. In view of Theorem 1
of [12], for the continuous analogue of (E1) with c = 1, namely

d
dt
(x(t)− x(t − h)) + q(t)x(t − g) = 0.

where q : [t0,∞) −→ (0,∞) is continuous and g and h are positive real numbers, one
can easily show that (E1) with c = 1 is oscillatory if

(1.2)
∞∑

nqn

∞∑
j=n

qj =∞.

Very little is known, as far as we have gathered, regarding the oscillation of non-
linear equations (Ei) and (Ni), i = 1, 2, 3. The purpose of this paper is to establish
some new criteria for the oscillation of all solutions (all bounded solutions) of (Ei)
(of (Ni)), i = 1, 2, 3. The results of this paper can be applied to superlinear (c > 1),
linear (c = 1) and sublinear (0 < c < 1) equations of type (Ei) and (Ni). We would
also like to point out that the result obtained for (E1) extends the two oscillation
criteria mentioned above.
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2. Oscillation of (Ei), i = 1, 2, 3

First we investigate the oscillation of (E3) by considering two cases:

���� 1. For n � n0 � 0, Qn =
∞∑

j=n

qj < ∞.

Theorem 2.1. If

(2.1)
∞∑

n=n0

(nQn)c qn =∞,

then (E3) is oscillatory.

�����. Let {xn} be an eventually positive nonoscillatory solution of (E3). Then
there exists n1 � n0 such that xn−a > 0 for n � n1, where a = max{g, h}. Let

(2.2) yn = xn − xn−h.

Then

(2.3) ∆3yn = −qnxc
n−g � 0 for n � n1,

which implies that ∆iyn, i = 0, 1, 2 are eventually of one sign and that ∆2yn is
nonincreasing for n � n1 and is eventually positive. There are four cases to consider:
(A) yn < 0 and ∆yn < 0 eventually,
(B) yn < 0 and ∆yn > 0 eventually,
(C) yn > 0 and ∆yn < 0 eventually,
(D) yn > 0 and ∆yn > 0 eventually.
Assume (A) holds. Since yn is nonincreasing for n � n1, there exist a constant

c1 > 0 and N � n1 such that

yn < −c1 for n � N.

Thus,
xN = yN + xN−h < −c1 + xN−h,

or
xN+h = yN+h + xN < −c1 + xN < −2c1 + xN−h.

Hence for any integer m > 1

xN+mh < −(m+ 1)c1 + xN−h −→ −∞ as m → ∞,
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a contradiction.

Assume (B) holds. Since ∆2yn > 0 eventually, we must have yn > 0 eventually, a
contradiction.

Assume (C) holds. Here we have

xn > xn−h for n � n1.

Hence, there exist a constant b > 0 and N1 � n1 + g such that

xn−g � b for n � N1.

Then

(2.4) ∆3yn � −bcqn for n � N1,

and hence

∆2ys −∆2yn � −bc
s−1∑
j=n

qj , n � N1.

Now, letting s → ∞ we have

(2.5) ∆2yn � bcQn for n � N1.

In view of the monotonicity of ∆yn and ∆2yn we obtain for everym2 � m1 � k � N1

(2.6) yk � (m1 − k + 1)(−∆ym1),

and

(2.7) −∆ym1 � (m2 − m1 + 1)∆2ym2 .

Thus, for n � N2 � N1 + 2h, we have

(2.8) yn−2h � (h+ 1)2∆2yn.

Using (2.8) in (2.5), we obtain

(2.9) yn � C Qn+2h, n � N2,

where C = bc(h+ 1)2.
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Let N2 + (m − 2)h � n � N2 + (m − 1)h, then

(2.10)
xn � C

(
Qn+2h +Qn+h + . . . Qn−(m−3)h

)
+ xn−mh

� C(m − 2)Qn.

From (2.3) and (2.10) we obtain

(2.11) ∆3yn � −Cc(m − 2)c Qc
n qn = −Mn.

In view of the fact that n
m → h as n → ∞, we have

(2.12)
Mn

(nQn)c qn
= Cc

(
m − 2

n

)c

−→ Cc

hc
as n → ∞.

Clearly (2.1) and (2.12) imply that

(2.13)
∞∑

n�N2

Mn =∞.

Then (2.11) and (2.13) yield

∆2yn −→ −∞ as n → ∞,

which contradicts the fact that ∆2yn > 0 eventually.

Assume (D) holds. There exist a constant k > 0 and n2 � n1 such that

(2.14) xn−g � yn−g � k for n � n2.

By Lemma 4.1 of [5], there exists an M∗ � n2 such that

(2.15) ∆yn � 1
2n∆

2yn for n � M∗.

Replacing n with j � M∗ in (2.3), summing from n � M∗ to s− 1(� n) and letting
s → ∞, we obtain

(2.16) ∆2yn � kc Qn, n � M∗.

Using (2.15) in (2.16) we have

(2.17) ∆yn � 1
2k

c nQn, n � M∗.
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Now, for m − 1 � M∗ we have

(2.18) xm � ym � ym − ym−1 � 1
2k

c (m − 1)Qm,

and hence

xn−g � 1
2k

c (n − g − 1)Qn for n � M∗ + g + 1.

There exists M∗
1 � M∗ + g + 1 such that

(2.19) xn−g � 1
4k

c nQn for n � M∗
1 .

Using (2.19) in (2.3) and summing from M∗
1 to M − 1 � M∗

1 , we have

0 < ∆2yM � ∆2yM∗
1
− (14kc)c

M−1∑
n=M∗

1

(nQn)
c qn −→ −∞ as M → ∞,

a contradiction. This completes the proof. �

From the proof of Theorem 2.1, one can easily extract the following two oscillation
criteria.

Corollary 2.1. If condition (2.1) holds, then equation (E1) is oscillatory.

�����. The proof is contained in the proof of Theorem 2.1 cases (A) and (C)
and hence is omitted. �

Corollary 2.2. If

(2.20)
∞∑

k=n1�n0+g+1

qk

(
k−g−1∑
n=n0

nQn

)c

=∞,

then every unbounded solution of the difference equation

(E∗3) ∆3yn + qn |yn−g|c sgn yn−g = 0, c > 0,

where qn and g are defined as in the equation (E3), is oscillatory.

�����. The proof is similar to that of Theorem 2.1 (D) and hence is omitted. �

The following example is illustrative.
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�	�
��� 2.1. Consider the difference equations

(Fi) ∆i(xn − xn−h) + (1/na)|xn−g|c sgnxn−g = 0, c > 0, i = 1, 3 and n � 1,

where h, g are nonnegative integers, h > 0 and a > 1. One can easily check that

Qn =
∞∑

j=n

(1/ja) � 1/(a− 1)na−1,

and hence condition (2.1) is satisfied if 1 < a � 2c+1
c+1 .

Thus we conclude that (Fi), i = 1, 3 are oscillatory for h > 0, g � 0 and all a and
c such that 1 < a � 2c+1

c+1 .

���� 2. We consider (E3) when

(2.21)
∞∑

j=n0

qj =∞.

Theorem 2.2. If condition (2.21) holds, then (E3) is oscillatory.

�����. Let xn be an eventually positive solution of (E3), say xn > 0 for n �
n0 � 0. There exists n1 � n0 such that xn−a > 0 for n � n1 where a = max{g, h}.
Define yn by (2.2) and as in the proof of Theorem 2.1, we see that ∆i yn, i = 0, 1, 2
are eventually of one sign and the four cases (A)–(D) hold. The proofs of cases (A)
and (B) are similar to those of Theorem 2.1 (A) and (B) and hence are omitted.
Next, we consider the cases (C) and (D). In both cases we see that ∆2yn > 0 and
yn > 0 eventually. From (2.2), we have xn > xn−h for n � n1. Hence, there exist
b > 0 and n2 � n1 such that

xn−g � b for n � n2.(2.22)

Then,

∆3yn � −bc qn for n � n2.(2.23)

Summing both sides of (2.23) from n2 to m − 1(� n2), we obtain

0 < ∆2ym � ∆2yn2 − bc
m−1∑
n=n2

qn −→ −∞ as m → ∞,

a contradiction. This completes the proof. �
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The following two criteria are immediate.

Corollary 2.3. If condition (2.21) holds, then (E1) is oscillatory.

Corollary 2.4. If qn = q, q is a positive real number, then (Ei), i = 1, 3 are
oscillatory.

Now, we pose the following question: “Is condition (2.21) (alone) a sufficient
condition for the oscillation of (E2)?” The following example gives a negative answer
to this question.

�	�
��� 2.2. The second order neutral difference equation

(F2) ∆2(xn − xn−3) + (e3 − 1)(1− e−1)2 e−gxn−g = 0,

has a nonoscillatory solution {e−n}.
Therefore, our objective here is to present the following criteria for the oscillation

of (E2).

Theorem 2.3. If g � h, condition (2.21) holds and every bounded solution of the
difference equation

(E∗2) ∆2zn − qn|zn−(g−h)|c sgn zn−(g−h) = 0,

is oscillatory, then (E2) is oscillatory.

�����. Let {xn} be an eventually positive solution of (E2), say xn > 0 and
xn−g > 0 for n � n1 � n0 � 0. Defining yn by (2.2) we have, from (E2),

(2.24) ∆2yn = −qn xc
n−g � 0 for n � n1,

which implies that {∆yn} is nonincreasing for n � n1.

As in the proof of Theorem 2.1, we consider the four cases (A)–(D).

Proof of case (A) is similar to that of Theorem 2.1 (A) and hence is omitted.

(B) Suppose yn < 0 and ∆yn > 0, n � n1. Note that

0 < vn = −yn = xn−h − xn < xn−h,

and hence

xn > vn+h for n � n1.
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From (2.24), we have

∆2vn � qn

(
vn−(g−h)

)c
for n � n1.

Now, in view of Theorem 2 of [7] and its proof, we see that (E∗2) has eventually
positive solution, a contradiction.
(C) Suppose yn > 0 and ∆yn < 0, n � n1. Since ∆2yn � 0, n � n1, one can easily

see that yn → −∞ as n → ∞, a contradiction.
(D) Suppose yn > 0 and ∆yn > 0, n � n1. From (2.2), we see that xn > xn−h

for n � n1 and hence there exists b > 0 and n2 � n1 such that (2.22) holds. Using
(2.22) in (2.24) and summing from n2 to (m − 1)(� n2), we have

0 < ∆ym � ∆yn2 − bc
m−1∑
n=n2

qn −→ −∞ as n → ∞,

a contradiction. This completes the proof. �

The following corolloary is immediate.

Corollary 2.5. Let g � h, c = 1 and

(2.25) qn � q > 0 for n � n0 � 0.

Then (E2) is oscillatory if one of the following conditions is satisfied:

(2.26) q � 1 and g = h.

(2.27) q >
4kk

(2 + k)(2+k)
, where k = g − h � 1.

�����. Follows from the proof of Theorem 2.3 above and Corollary 2.2 (ii) and
(iii) of [7]. �

The following result deals with the oscillatory and asymptotic behavior of all
solutions of (E2).

Corollary 2.6. If condition (2.21) or (2.25) holds, then every solution {xn} of
(E2) is either oscillatory or xn → 0 monotonically as n → ∞.
�����. Let {xn} be an eventually positive solution of (E2) and let yn be defined

as in (2.2). Proceeding as in the proof of Theorem 2.3, we see that the cases (A), (C),
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and (D) are impossible. Next, we consider the case (B) and suppose that xn → c1 � 0
as n → ∞. We claim that c1 = 0. To show this, assume that c1 > 0. Then there
exists an n2 � n1 such that

(2.28) xn � 1
2c1 for n � n2.

Using (2.28) in (2.24) and summing from n2 to m − 1(� n2), we obtain

0 < ∆ym � ∆yn2 − (12c1)c
m−1∑
n=n2

qn → −∞ as n → ∞,

a contradition. �

�
��� 2.1. The hypotheses of Corollary 2.6 are satisfied for (F2), and hence,
we see that xn = e−n → 0 monotonically as n → ∞.
�
��� 2.2. The characteristic equation associated with the linear difference

equation

(Li) ∆i (xn − xn−h) + q xn−g = 0, i = 1, 2, 3,

which is a special case of (Ei), i = 1, 2, 3 has the form

(Ci) (m − 1)i(1− m−h) + q m−g = 0, i = 1, 2, 3,

where q is a positive real constant and g and h are positive integers. By Corollary 2.1,
one may conclude that (Ci), i = 1 and 3 have no positive roots, while, by Corollary
2.5, one may observe that (C2) has no positive roots if either condition (2.26) or
(2.27) is satisfied.

3. Bounded Oscillation of (Ni), i = 1, 2, 3

The results of this section are concerned with the oscillatory behavior of every
bounded solution of (Ni), i = 1, 2, 3.

Theorem 3.1. If g � h and every bounded solution of each of the equations

(H1) ∆2zn +

(
n − g

2

)c

qn |zn−g|c sgn zn−g = 0,

and

(H2) ∆3wn + qn |wn−(g−h)|c sgnwn−(g−h) = 0,
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is oscillatory, then every bounded solution of (N3) is oscillatory.

�����. Let {xn} be a bounded and eventually positive solution of (N3), say
xn > 0 and xn−g > 0 for n � n1 � n0 � 0. Define yn as in (2.2). Then (N3) takes
the form

(3.1) ∆3yn = qnxc
n−g � 0, for n � n1,

and hence ∆i yn, i = 0, 1, 2 are eventually of one sign. Since xn is bounded, ∆2yn < 0
eventually. Therefore, the following two cases are considered:

(I) ∆yn > 0 and yn < 0 eventually.

(II) ∆yn > 0 and yn > 0 eventually.

I. Assume ∆yn > 0 and yn < 0 for n � n2 � n1. Note that

(3.2) 0 < vn = −yn = xn−h − xn < xn−h.

Using (3.2) in (3.1), we have

(3.3) ∆3vn + qn vc
n−(g−h) � 0, n � n2.

Now, in view of Theorem 1 of [7] and its proof, (H2) has a bounded and eventually
positive solution, a contradiction.

II. Assume ∆yn > 0 and yn > 0 for n � n2 � n1. By Lemma 4.1 (d) of [5], there
exists n3 � n2 such that

yn−g � n − g

2
∆yn−g for n � n3.

From (2.2), we see that

(3.4) xn−g � n − g

2
∆yn−g for n � n3.

Using (3.4) in (3.1), we have

(3.5) ∆2un �
(

n − g

2

)
qn uc

n−g for n � n3,

where un = ∆yn > 0, n � n3. The rest of the proof is similar to that of Theorem
2.3 (B) and hence is omitted. �
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Theorem 3.2. If g � h, condition (2.21) (or (2.25)) holds and every bounded
solution of (H2) is oscillatory, then every bounded solution of (N3) is oscillatory.

�����. Let {xn} be a bounded and eventually positive solution of (N3) and
let yn be defined as in (2.2). As in the proof of Theorem 3.1, we see that case (I)
is impossible, and so, we consider case (II). From (2.2) and the fact that yn > 0
for n � n1, there exist n2 � n1 and b > 0 such that (2.22) holds for n � n2. In
view of condition (2.21) (or (2.25)), using (2.22) in (3.1), and summing from n2 to
m − 1(� n2) we have

0 > ∆2ym � ∆2yn2 + bc
m−1∑
n=n2

qn → ∞ as m → ∞,

a contradiction. �

From the proof of Theorem 3.1, we have the following oscillation result for (N1).

Corollary 3.1. If g � h and the equation

(H3) ∆vn + qn|vn−(g−h)|c sgn vn−(g−h) = 0,

is oscillatory, then every bounded solution of (N1) is oscillatory.

The following result deals with the oscillatory and asymptotic behavior of every
bounded solution of each of the equations (Ni), i = 1, 3.

Corollary 3.2. If condition (2.21) (or (2.25)) holds, then every bounded solu-
tion {xn} of each of the equations (Ni), i = 1, 3, is either oscillatory or xn → 0
monotonically as n → ∞.
�����. Let {xn} be a bounded and eventually positive solution of (N3) and let

yn be defined as in (2.2). As in the proof of Theorem 3.2, we see that case (II) is
impossible. Now, we consider (I), and as in the proof of Theorem 3.1 (I), we obtain
(3.1). Suppose xn → c1 � 0 as n → ∞. We claim that c1 = 0. If c1 > 0, there exists
n2 � n1 such that (2.28) holds for n � n2. Using (2.28) in (3.1) and summing from
n2 to m − 1(� n2) we have

0 > ∆2ym � ∆2yn2 + (
1
2c1)

c
m−1∑
n=n2

qn → ∞ as m → ∞,

a contradiction. �

The following example is illustrative.
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�	�
��� 3.1. The difference equations

(F3) ∆i (xn − xn−h) =
(
1− eh) (e−1 − 1)i e−g xn−g, i = 1, 3,

where h and g are nonnegative integers, h > 0, has a nonoscillatory solution xn =
e−n → 0 monotonically as n → ∞. All conditions of Corollary 3.2 are satisfied.
�
��� 3.1. Proof of (N1) is similar to that of (N3) and hence is omitted.

The following result is concerned with the oscillation of all bounded solutions of
(N2).

Theorem 3.3. Every bounded solution of (N2) is oscillatory if one of the following
conditions is satisfied:

(i) Condition (2.1).
(ii) Condition (2.21) or (2.25).
(iii) Every bounded solution of the difference equation

(H4) ∆2zn − qn |zn−g|c sgn zn−g = 0,

is oscillatory.

�����. Let {xn} be a bounded and eventually positive solution of (N2), say
xn > 0 and xn−a > 0 for n � n1 � n0 � 0 and a = max{g, h}. Let yn be defined as
in (2.2). Then (N2) takes the form

(3.6) ∆2yn = qn xc
n−g for n � n1.

Since xn is bounded, we must have ∆yn < 0 eventually and so yn must be eventually
positive. Assume (2.1) holds. There exist n2 � n1 and b > 0 such that (2.22)
holds for n � n2. Replacing n with j � n2 in (3.6) and summing from n(� n2) to
m − 1(� n), we have

(3.7) −∆yn � ∆ym −∆yn � bc
m−1∑
j=n

qj → bcQn as m → ∞

or
yn � yn − yn+1 � bcQn for n � n2.

The rest of the proof is similar to that of Theorem 2.1 (C) and hence is omitted.
Next, assume (ii) holds. Using (2.22) in (3.6) and summing from n(� n2) to

m − 1(� n), we have

0 > ∆yn � ∆yn2 + bc
m−1∑
n=n2

qn → ∞ as m → ∞,

319



a contradiction. Finally assume (iii) holds. From (2.2) and the fact that yn > 0, n �
n1, we have xn � yn for n � n1. Thus

∆2yn � qn yc
n−g for n � n2 � n1.

The rest of the proof is similar to that of Theorem 2.3 (B) and hence is omitted. �

From Theorems 3.2 and 3.3 above and Corollary 1 of [7], we have the following
result:

Corollary 3.3. For the linear difference equations

(L∗i ) ∆i (xn − xn−h) = q xn−g, i = 1, 2, 3,

where q is a positive real number, h > 0 and g � 0 are integers, we have:
(i) Every bounded solution of (L∗1) is oscillatory if q > 1 for g = h and

q >
kk

(1 + k)(1+k)
for k = g − h � 1.

(ii) Every bounded solution of (L∗2) is oscillatory.
(iii) Every bounded solution of (L∗3) is oscillatory if q > 1 for g = h and

q >
27 kk

(3 + k)(3+k)
for k = g − h � 1.

The following examples are illustrative.

�	�
��� 3.2. Consider the difference equations

(F∗i ) ∆i (xn − xn−h)− (1− e−h)(e− 1)i eg xn−g = 0, i = 1, 2, 3,

where h > 0 and g � 0 are integers. All conditions of Corollary 3.3 are satisfied if
g � h � 1 and hence bounded solutions of each of the equations (F∗i ), i = 1, 2, 3 are
oscillatory. We note that each of the equations (F∗i ), i = 1, 2, 3, has an unbounded
nonoscillatory solution xn = en.

�	�
��� 3.3. Consider the neutral difference equation

(F4) ∆2 (xn − xn−h) = n−a |xn−g|c sgnxn−g, a > 1, c > 0,

where h > 0 and g � 0 are integers. As in Example 2.1, we see that all bounded
solutions of (F4) are oscillatory by Theorem 3.3 (i).
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�
��� 3.2.
1. The results of this paper are presented in a form which is essentially new. These
results are applicable to superlinear, linear and sublinear equations of type (Ei)
and (Ni), i = 1, 2, 3.

2. The results obtained here are concerned with the delay neutral difference equa-
tions (i.e., g, h > 0). The results for advanced equations of type (Ei) and (Ni),
i = 1, 2, 3 (i.e., g, h < 0) can be obtained similarly. Here, we omit the details.

3. It would be interesting to obtain results similar to those presented here for
equations (Ei) and (Ni), i > 3, as well as those for the oscillation of all solutions
of equations (Ni), i � 1.
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