GRAPHS WITH THE SAME PERIPHERAL AND CENTER ECCENTRIC VERTICES

Peter Kyš, Bratislava

(Received July 27, 1998)

Abstract

The eccentricity $e(v)$ of a vertex v is the distance from v to a vertex farthest from v, and u is an eccentric vertex for v if its distance from v is $d(u, v)=e(v)$. A vertex of maximum eccentricity in a graph G is called peripheral, and the set of all such vertices is the peripherian, denoted Peri G). We use $\operatorname{Cep}(G)$ to denote the set of eccentric vertices of vertices in $C(G)$. A graph G is called an S-graph if $\operatorname{Cep}(G)=\operatorname{Peri}(G)$. In this paper we characterize S-graphs with diameters less or equal to four, give some constructions of S-graphs and investigate S-graphs with one central vertex. We also correct and generalize some results of F. Gliviak.

Keywords: graph, radius, diameter, center
MSC 2000: 05C12, 05C20

1. Introduction

We consider nonempty and finite graphs without loops and multiple edges. All terminology as well as notation except that given here is taken from [1].

The set of vertices of a graph G is denoted by $V(G)$, and the set of edges by $E(G)$. Let G be a connected graph with vertices u and v. The distance $d(u, v)$ between u and v is the length of a shortest $u-v$ path in G. The eccentricity $e(v)$ of a vertex v is the distance from v to a vertex farthest from v, and u is an eccentric vertex for v if $d(u, v)=e(v)$. The radius $r(G)$ of G is $\min \{e(v) ; v \in V(G)\}$, while the diameter $d(G)$ of G is $\max \{e(v) ; v \in V(G)\}$. A diametral path is a path of length $d(G)$ joining a pair of vertices of the graph G that are at distance $d(G)$ from one another. A vertex with minimum eccentricity is called a central vertex and the set of all such vertices is the center of G denoted by $C(G)$. A graph is self-centered if its every vertex is in the center. The neighborhood of a vertex $v \in V(G)$ is denoted by $N_{G}(v)$. For any nonempty subset S of vertices in G, the induced subgraph $\langle S\rangle$ is the
maximal subgraph of G with the vertex set S. A vertex u is a center eccentric vertex of G if it is an eccentric vertex of some central vertex of G. A vertex v is peripheral if $e(v)=d(G)$, and the set of such vertices is the peripherian of G. We use $\operatorname{Cep}(G)$ to denote the set of all center eccentric vertices and $\operatorname{Peri}(G)$ to denote the peripherian of G. A connected nontrivial graph G is called an S-graph if $\operatorname{Cep}(G)=\operatorname{Peri}(G)$.

Buckley and Lewinter [2] proved the existence of an S-graph G with $r(G)=a$ and $d(G)=b$ for every positive integers $a, b, a \leqslant b \leqslant 2 a$, and showed how to embed a graph G into an S-graph. They also proved that the cartesian product of two graphs is an S-graph if and only if both these graphs are S-graphs.

2. Main Results

As follows from the definition of an S-graph, any self-centered graph as well as any tree are S-graphs. In particular, the complete graph $K_{n}, n \geqslant 1$ is an S-graph. Further we will investigate only S-graphs that are not self-centered.

Let G_{1}, G_{2} be two disjoint connected graphs. Let $x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)$. We say that a graph G arose from G_{1} and G_{2} by the identification of the vertices x, y with a new vertex $t\left(t \notin V\left(G_{1}\right), t \notin V\left(G_{2}\right)\right)$, if

$$
\begin{aligned}
V(G)= & V\left(G_{1}\right) \cup V\left(G_{2}\right)-\{x, y\} \cup\{t\} \\
E(G)= & E\left(G_{1}\right) \cup E\left(G_{2}\right)-\left\{x u, y u ; x u \in E\left(G_{1}\right), y u \in E\left(G_{2}\right)\right\} \\
& \cup\left\{t u ; x u \in E\left(G_{1}\right) \text { or } y u \in E\left(G_{2}\right)\right\}
\end{aligned}
$$

Gliviak [4] gave the following construction of S-graphs with one central vertex.
Construction. Let $r \geqslant 1, n \geqslant 2$ be natural numbers. Let $G_{i}, i=1,2, \ldots, n$ be vertex disjoint graphs having at least one vertex v_{i} of eccentricity r. Let the graph H arise from graphs G_{i} by identification of all vertices v_{i} with one common vertex w.

He claims (Theorem 2) that a graph Q is an S-graph of radius one if and only if Q is either a complete graph $K_{n}, n \geqslant 2$ or can be constructed according to the previous construction, as well as (Theorem 3) that for any $r \geqslant 2$ a graph Q is an S-graph of radius r with one central vertex if and only if Q can be constructed according to this construction.

This construction gives S-graphs with one central vertex, but not all such S-graphs. In any S-graph G which we get by the construction the central vertex is a cut vertex of G and the diameter of such a graph is equal to $2 r(G)$. As follows from Fig. 1 there exist S-graphs with one central vertex, which cannot be constructed according to the above construction. In Fig. 1a there is an S-graph with radius $r \geqslant 1$, diameter

Fig. 1
$2 r$, and one central vertex v. The peripherian of this graph consists of all vertices belonging to $C_{2 r}$. In Fig. 1b there is an S-graph with radius 3, diameter 5 and one central vertex v. The peripherian of this graph is $\{x, y\}$.

Theorem 2.1. Let G be a graph with $r(G)=1$ and $d(G)=2$. Then G is an S-graph if and only if $|C(G)|=1$.

Proof. If $C(G)=\{c\}$, then the eccentricity of any vertex from $V(G)-\{c\}$ is equal to two. Thus $\operatorname{Peri}(G)=\operatorname{Cep}(G)=V(G)-\{c\}$, and G is an S-graph.

Conversely, let G be an S-graph. Let $|C(G)| \geqslant 2$ and $x, y \in C(G), x \neq y$. Since $x, y \in \operatorname{Cep}(G)$ and no vertex from $C(G)$ can belong to $\operatorname{Peri}(G)$, we have a contradiction. This completes the proof.

Corollary 2.2. A graph G with $r(G)=1$ is an S-graph if and only if it is a complete graph $K_{p}, p \geqslant 2$, or has one central vertex.

As mentioned above, for any two positive integers a and $b, a \leqslant b \leqslant 2 a$, there exists an S-graph with radius a and diameter b. The following theorem shows that there exists no S-graph G with $d(G)=r(G)+1$ and $|C(G)|=1$.

Theorem 2.3. Let G be an S-graph with $r(G) \neq d(G) \geqslant 3$ and $|C(G)|=1$. Then $r(G)<d(G)-1$.

Proof. Let G be an S-graph with $C(G)=\{c\}$ and $d(G) \geqslant 3$. Let $r(G)=$ $d(G)-1$. The eccentricity of any vertex $t \in N_{G}(c)$ is greater than $r(G)$, but $e_{G}(t) \leqslant$ $d(G)=r(G)+1$. Therefore $e_{G}(t)=d(G)$ and $t \in \operatorname{Peri}(G)=\operatorname{Cep}(G)$, which is a contradiction with $d_{G}(t, c)=1<r(G)$. This completes the proof.

Lemma 2.4. Let G be an S-graph, $r(G) \geqslant 2$ and $r(G) \neq d(G)$. Then the distance of any two vertices from $C(G)$ in G is less than $r(G)$ and $d(\langle V(G)-C(G)\rangle) \geqslant$ $d(G)$.

Proof. The distance of no two vertices from $C(G)$ can be equal to $r(G)$, since no vertex from $C(G)$ can belong to $\operatorname{Peri}(G)$.

If $e_{\langle V(G)-C(G)\rangle}(x)<d(G)$ for any vertex $x \in V(G)-C(G)$, then the eccentricity of any vertex from $V(G)$ in G is less than $d(G)$, which is a contradiction.

Theorem 2.5. Let G be a graph with $d(G)=r(G)+1$ and $r(G) \geqslant 2$. Then G is an S-graph if and only if any vertex from $V(G)-C(G)$ is a center eccentric vertex of G.

Proof. Let G be an S-graph. Then $\operatorname{Peri}(G)=V(G)-C(G)$, because the eccentricity of any vertex from $V(G)-C(G)$ is equal to $d(G)$. Since G is an S-graph, every vertex from $\operatorname{Peri}(G)$ is eccentric for some vertex from $C(G)$.

Conversely, let any vertex of $V(G)-C(G)$ be a center eccentric vertex of G. Since $\operatorname{Peri}(G)=V(G)-C(G)$, the graph G is an S-graph. This completes the proof.

Corollary 2.6. Let G be a graph with $d(G)=3$ and $r(G)=2$. Then G is an S-graph if and only if no vertex from $V(G)-C(G)$ is joined to all central vertices of G.

Theorem 2.7. Let G be a graph with diameter four and radius two. Let $Q=\langle V(G)-C(G)\rangle$, where $C(G)$ is the center of G. Then G is an S-graph if and only if

1) $\langle C(G)\rangle$ is a complete graph and
2) the cardinality of the set $T=\left\{x \in V(Q) ; N_{G}(x) \cap C(G)=\emptyset\right\}$ is at least two, and for every vertex $x \in T$ at least one vertex $y \in V(Q)$ such that $d_{Q}(x, y) \geqslant 4$ belongs to T.

Proof. Let G be an S-graph. As follows from Lemma 2.4, $\langle C(G)\rangle$ is a complete graph, and $d(Q) \geqslant 4$. Any vertex $t \in V(Q)-T$ has eccentricity $e_{G}(t)=3$. Thus any vertex with eccentricity four belongs to T, i.e. $\operatorname{Peri}(G)$ is a subset of T. Since G is an S-graph, $\operatorname{Peri}(G)=\operatorname{Cep}(G)$. But $T=\operatorname{Cep}(G)$, because T consists of all center eccentric vertices of G. Obviously, $|\operatorname{Cep}(G)| \geqslant 2$. Let $x \in T$. If there is no vertex $y \in V(Q)$ such that $d_{Q}(x, y) \geqslant 4$ belongs to T, then $e_{G}(x) \leqslant 3$, which is a contradiction with $x \in \operatorname{Peri}(G)$.

Conversely, let 1) and 2) hold. As follows from 2), $d(Q) \geqslant 4$ and T consists of all center eccentric vertices of G. Thus $\operatorname{Cep}(G)=T$. Let $x \in T$ and $y \in T$ be such that
$d_{Q}(x, y) \geqslant 4$. Then $e_{G}(x)=4$, and T consists of all diametral vertices of G. Thus $\operatorname{Peri}(G)=T$.

This completes the proof.
There exists no self-centered S-graph with one central vertex. As follows from Theorem 2.3, there exists no S-graph G with one central vertex and $r(G)=d(G)-1$. Next we prove that for all other possible cases of radius and diameter there does exist an S-graph with one central vertex.

Theorem 2.8. For each pair of positive integers d and $r, r \geqslant 2, r+2 \leqslant d \leqslant 2 r$, there exists an S-graph G with $r(G)=r, d(G)=d$ and $|C(G)|=1$.

Proof. If $d=2 r$, then we can use the graph formed by P_{d+1}.
Let $d=r+k, 2 \leqslant k<r$. To construct an S-graph G with the required properties we can proceed as follows.

Let $T_{1}, T_{2}, \ldots, T_{m}$, where $m=4 k-2$, be disjoint copies of the trees from Fig. 2, such that T_{1} and $T_{2 k}$ are copies of the tree H, T_{k} and $T_{3 k-1}$ are copies of S and all the other $T_{i}, 1 \leqslant i \leqslant m$ are copies of Q.

Fig. 2
Let the tree T arise from $T_{1}, T_{2}, \ldots, T_{m}$ by the identification of all the corresponding copies of the vertex x_{0} from $T_{1}, T_{2}, \ldots, T_{m}$ in this order, with one common vertex x.

Let G be the graph which we get by forming a cycle C_{j} on all vertices with the distance j from x, for $j=k, k+1, \ldots, r$. (The corresponding graph G with the cycles C_{2}, C_{3}, C_{4} for $r=4$ and $d=6$ is in Fig. 2). There are $l=r-k+1$ such cycles C_{j}
with lengths $2 d-2(r-j+1)=2(k+j-1)$ for $j=k, k+1, \ldots, r-1$, and $2 d$ for $j=r$.

It is easy to check that the eccentricity of any vertex t of $C_{2 d}$ is equal to d and this eccentricity is attained for the vertex t^{\prime} of $C_{2 d}$ whose distance in $C_{2 d}$ from t is d (Fig. 2).

Let f be a vertex from $C_{j}, k \leqslant j \leqslant r-1$ and let f^{\prime} be the vertex from C_{j} with distance $d-r+j-1=k+j-1$ from f in C_{j}. Let $f^{\prime \prime}$ be a nearest vertex from $C_{2 d}$ for the vertex f^{\prime} in G. Then $d_{G}\left(f, f^{\prime \prime}\right)=d-1=e_{G}(f)$.

Let u be a vertex with a distance $i \leqslant k-1$ from x, and let u belong to T_{n}, $1 \leqslant n \leqslant m$. Let v be a vertex from $C_{2 d}$ belonging to $T_{(n+2 k-1) \bmod (4 k-2)}$. Then $d_{G}(u, v)=r+i=e_{G}(u)$.

Thus Peri (G) consists of all vertices of $C_{l}, \operatorname{Cep}(G)=\operatorname{Peri}(G)$ and $C(G)=\{x\}$, which completes the proof.

For any vertex v of a connected graph G there exists a spanning tree T that is distance preserving from v, i.e. $d_{T}(v, u)=d_{G}(v, u)$ for any vertex $u \in V(G)$. If G is an S-graph with one central vertex x, then its distance preserving spanning tree T_{x} from x is also an S-graph with $d\left(T_{x}\right)=2 r(G), C\left(T_{x}\right)=C(G)=\{x\}$ and $\operatorname{Peri}\left(T_{x}\right)=\operatorname{Cep}\left(T_{x}\right)=\operatorname{Peri}(G)=\operatorname{Cep}(G)$. Therefore any S-graph G with one central vertex can be constructed by adding new edges to a proper tree of radius $r(G)$ and diameter $2 r(G)$. On the other hand, not every tree T with radius r and one central vertex, is a distance preserving spanning tree of an S-graph with radius r, diameter $d(G)<d(T)$ and one central vertex. For example, P_{7} cannot be supplemented (by adding new edges) to an S-graph G with one central vertex, of diameter 5 and radius 3. As follows from the proof of Theorem 2.8 for the case $r(G)=3$ and $d(G)=5$ there exists such a distance preserving spanning tree given by the construction of T as in Fig. 2.

Given an S-graph G we will say that an edge $e \in E(G)$ is superfluous in G, if $G-e$ is also an S-graph with the same radius, diameter and peripherian as in G. An S-graph G is said to be critical, if it has no superfluous edge. For example, G is a critical S-graph with one central vertex, radius $r(G)$ and diameter $d(G)=2 r(G)$ if and only if it is a tree with one central vertex, radius $r(G)$ and diameter $2 r(G)$. We suggest to investigate critical S-graphs with one central vertex.

Buckley and Lewinter [2] studied two other interesting classes of graphs called F-graphs and L'-graphs. A connected graph G is an F-graph if it has at least two central vertices, and for each pair of central vertices u and $v, d(u, v)=r(G)$ holds. They showed that the only graph that is both an F-graph and an S-graph is K_{n}, $n \geqslant 2$.

If no diametral path of a connected graph G contains a central vertex, G is called an L'-graph.

Let G be an S-graph with one central vertex c and $d(G)<2 r$. Since G is an S-graph, $\operatorname{Peri}(G)=\operatorname{Cep}(G)$ and the distance between c and any diametral vertex is equal to $r(G)$. Since no diametral path in G can contain the central vertex c, G is an L^{\prime}-graph. The opposite is not true as there are L^{\prime}-graphs that are not S-graphs. One such graph G with diameter 5 and radius 3 is shown in Fig. 3. The center of this graph is $C(G)=\{t\}, \operatorname{Cep}(G)=\{x, v, q, y\}$ and $\operatorname{Peri}(G)=\{x, y\}$.

Fig. 3
Let H and Q be two graphs and let s be an arbitrary vertex from $V(H)$. We say that the graph G arose from H by the substitution of s by Q if

$$
V(G)=V(H) \cup V(Q)-\{s\}
$$

and

$$
E(G)=E(H) \cup E(Q) \cup\{x y ; x \in V(Q) \text { and } s y \in E(H)\}-\{s y ; s y \in E(H)\} .
$$

Gliviak [4] used this substitution to prove the existence of an S-graph G with a prescribed radius a and diameter b containing a given graph Q as an induced subgraph of G. To prove this assertion for the case $a \geqslant 2$ and $b=2 a-1$ it is suggested to construct such an S-graph by the substitution of any central vertices of $P_{2 a}$ by G and for $a \geqslant 2$ and $b=2 a$ by the substitution of the central vertex of $P_{2 a+1}$ by G. If $a=2$ and $d(G) \geqslant 2$ then the resulting graph is not an S-graph. This can be corrected by substituting not a central but a diametral vertex of $P_{2 a}$ and $P_{2 a-1}$, respectively.

Next we formulate a more general theorem based on the substitution of a vertex of an S-graph.

Theorem 2.9. Let G be an S-graph with $r(G) \geqslant 3$ and $x \in V(G)$. Let H be a graph disjoint with G. Let G^{\prime} be the graph, arising from G by the substitution of x by H. Then G^{\prime} is an S-graph, and

1) $r(G)=r\left(G^{\prime}\right), d(G)=d\left(G^{\prime}\right)$
2) $\operatorname{Cep}\left(G^{\prime}\right)=\operatorname{Peri}\left(G^{\prime}\right)=\operatorname{Cep}(G)=\operatorname{Peri}(G)$ if $x \notin \operatorname{Cep}(G)$
3) $\operatorname{Cep}\left(G^{\prime}\right)=\operatorname{Peri}\left(G^{\prime}\right)=\operatorname{Cep}(G) \cup V(H)-\{x\}$, if $x \in \operatorname{Cep}(G)$.

Proof. As follows from the substitution, $e_{G}(s)=e_{G^{\prime}}(s)$ for any $s \in V(G)$ and $e_{G}(x)=e_{G^{\prime}}(t)$ for any $t \in V(H)$. Thus $r(G)=r\left(G^{\prime}\right)$ and $d(G)=d\left(G^{\prime}\right)$.

Let $x \notin \operatorname{Cep}(G)$.Then $d_{G}(x, c)<r(G)$ for any central vertex $c \in C(G)$, and also $d_{G^{\prime}}(t, c)<r(G)$ for any $t \in V(H)$. Any $s \in V(G)$ is a center eccentric vertex in G if and only if it is a center eccentric vertex in G^{\prime}. Thus $\operatorname{Cep}(G)=\operatorname{Cep}\left(G^{\prime}\right)$. Since $x \notin \operatorname{Cep}(G)=\operatorname{Peri}(G)$, the eccentricity of x in G is less than $d(G)$. Then also $e_{G^{\prime}}(t)<d(G)$ for any $t \in V(H)$, and no vertex from $V(H)$ is a diametral vertex in G^{\prime}. Any $s \in V(G)$ is a diametral vertex in G if and only if it is a diametral vertex in G^{\prime}. Thus Peri $(G)=\operatorname{Peri}\left(G^{\prime}\right)$.

Let $x \in \operatorname{Cep}(G)$. Then x is an eccentric center vertex in G, and any $t \in V(H)$ is an eccentric vertex in G^{\prime}. Thus the set of the center eccentric vertices in G^{\prime} is $\operatorname{Cep}(G) \cup V(H)-\{x\}=\operatorname{Cep}\left(G^{\prime}\right)$. Since G is an S-graph, $x \in \operatorname{Peri}(G)$. Then any vertex $t \in V(H)$ is a diametral vertex in G^{\prime}. Therefore the set of diametral vertices in G^{\prime} is $\operatorname{Peri}\left(G^{\prime}\right)=\operatorname{Peri}(G) \cup V(H)-\{x\}=\operatorname{Cep}(G) \cup V(H)-\{x\}$. This completes the proof.

Theorem 2.10. Let H be a graph. For any positive integers a, b such that $a+2 \leqslant b \leqslant 2 a, a \neq b$ and $a \geqslant 3$ there exists an S-graph G with $r(G)=a, d(G)=b$ and $\langle C(G)\rangle=H$.

Proof. Let Q be an S-graph with radius a and diameter b with one center vertex c. Let G be the graph which we get by the substitution of c by H in G. As follows from Theorem 2.9, G is an S-graph with $r(G)=r(Q), d(Q)=d(G)$, $\operatorname{Peri}(Q)=\operatorname{Cep}(Q)=\operatorname{Peri}(G)=\operatorname{Cep}(G)$ and $\langle C(G)\rangle=H$.

Theorem 2.11. Let $G_{1}, G_{2}, \ldots, G_{n}, n \geqslant 2$, be disjoint S-graphs with $r\left(G_{i}\right)=$ $r \geqslant 2$ and $C\left(G_{i}\right)=\left\{x_{i}\right\}$ for $i=1,2, \ldots, n$. Let H be a self-centered graph disjoint with $G_{i}, 1 \leqslant i \leqslant n$ and $V(H)=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$. Let G be the graph that we construct by identifying the corresponding pairs of vertices t_{i} and x_{i} with a new vertex u_{i}, for $i=1,2, \ldots, n$. Then the graph G is an S-graph with $d(G)=2 r+r(H)$, $r(G)=r+r(H), C(G)=V(H), \operatorname{Peri}(G)=\bigcup_{i=1}^{n} \operatorname{Peri}\left(G_{i}\right)$ and $\operatorname{Cep}(G)=\bigcup_{i=1}^{n} \operatorname{Cep}\left(G_{i}\right)$

Proof. For every $i=1,2, \ldots, n$ the eccentricity $e_{G}\left(u_{i}\right)=r+r(H)$ and the eccentricity of any vertex $z \in V(G), z \neq u_{i}$ for $i=1,2, \ldots, n$ is $e_{G}(z)>r+r(H)$. Thus $r(G)=r+r(H)$ and $C(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.

The distance of any two vertices $x, y \in V(G)$ is $d_{G}(x, y) \leqslant 2 r+r(H)$. The equality holds only if x and y are center eccentric vertices of the graphs G_{i} and G_{j}, respectively, for which $d_{G}\left(u_{i}, u_{j}\right)=r(H)$. Thus $\operatorname{Peri}(G)=\bigcup_{i=1}^{n} \operatorname{Peri}\left(G_{i}\right)$.

Similarly, the distance of a vertex $x \in V(G)$ from $u_{i},{ }_{i}^{i=1}\left\langle\langle 1, n\rangle\right.$ is $d_{G}\left(x, u_{i}\right)=$ $r+r(H)$ only if x is a center eccentric vertex of G_{j} for which $d_{G}\left(u_{i}, u_{j}\right)=r+r(H)$. Therefore $\operatorname{Cep}(G)=\bigcup_{i=1}^{n} \operatorname{Cep}\left(G_{i}\right)$.

In the conclusion we give an estimate of the number of edges of an S-graph.

Theorem 2.12. Let G be an S-graph with p vertices and q edges. Let $d(G)=$ $d \geqslant 3$. Then $p-1 \leqslant q \leqslant d+1 / 2(p-d+1)(p-d+4)$.

Proof. Ore [5] proved this upper bound for any connected graph with diameter $d \geqslant 3$. As follows from the example in Fig. 4, this upper bound is attained also for S -graphs. The lower bound is obvious and it is attained for P_{d+1}.

Fig. 4

References

[1] Chartrand, G., Lesniak, L.: Graphs and Digraphs. Wadsworth and Brooks, Monterey, California, 1986.
[2] Buckley, F., Lewinter, M.: Minimal graph embeddings, eccentric vertices and the peripherian. Proc. Fifth Carribean Conference on Combinatorics and Computing. University of the West Indies, 1988, pp. 72-84.
[3] Buckley, F., Lewinter, M.: Graphs with all diametral paths through distant central vertices. Math. Comput. Modelling 17 (1993), 35-41.
[4] Gliviak, F.: Two classes of graphs related to extremal eccentricities. Math. Bohem. 122 (1997), 231-241.
[5] Ore, O.: Diameters in graphs. J. Combin. Theory 5 (1968), 75-81.
Author's address: Peter Kyš, Faculty of Mathematics and Physics, Mlynská dolina, 84215 Bratislava, Slovakia, e-mail: kys@fmph.uniba.sk.

