DIRECT PRODUCT DECOMPOSITIONS OF INFINITELY DISTRIBUTIVE LATTICES

Ján Jakubík, Košice

(Received August 17, 1998)

Abstract. Let α be an infinite cardinal. Let \mathcal{T}_{α} be the class of all lattices which are conditionally α-complete and infinitely distributive. We denote by $\mathcal{T}_{\sigma}^{\prime}$ the class of all lattices X such that X is infinitely distributive, σ-complete and has the least element. In this paper we deal with direct factors of lattices belonging to \mathcal{T}_{α}. As an application, we prove a result of Cantor-Bernstein type for lattices belonging to the class $\mathcal{T}_{\sigma}^{\prime}$.

Keywords: direct product decomposition, infinite distributivity, conditional α-completeness

MSC 2000: 06B35, 06D10

1. Introduction

Let L be a partially ordered set and $s^{0} \in L$. The notion of the internal direct product decomposition of L with the central element s^{0} was investigated in [10] (the definition is recalled in Section 2 below).

We denote by $F\left(L, s^{0}\right)$ the set of all internal direct factors of L with the central element s^{0}; this set is partially ordered by the set-theoretical inclusion. In the present paper we suppose that L is a lattice. Then $F\left(L, s^{0}\right)$ is a Boolean algebra (cf. Section 3).

Let α be an infinite cardinal. We denote by \mathcal{T}_{α} the class of all lattices which are conditionally α-complete and infinitely distributive. We prove

Theorem 1. Let $L \in \mathcal{T}_{\alpha}$ and $s^{0} \in L$. Then the Boolean algebra $F\left(L, s^{0}\right)$ is α-complete.

In the particular case when the lattice L is bounded we denote by Cen L the center of L. For each $s^{0} \in L, F\left(L, s^{0}\right)$ is α-complete and if Cen L is a closed sublattice of
L, then Cen L is α-complete and thus $F\left(L, s^{0}\right)$ is α-complete as well. Some sufficient conditions under which the center of a complete lattice is closed were found in [2], [11], [12], [13], [14]; these results were generalized in [4]. For related results cf. also [3].

We denote by $\mathcal{T}_{\sigma}^{\prime}$ the class of all lattices L belonging to $\mathcal{T}_{\aleph_{0}}$ which have the least element and are σ-complete.

As an application of Theorem 1 we prove the following result of Cantor-Bernstein type:

Theorem 2. Let L_{1} and L_{2} be lattices belonging to $\mathcal{T}_{\sigma}^{\prime}$. Suppose that
(i) L_{1} is isomorphic to a direct factor of L_{2};
(ii) L_{2} is isomorphic to a direct factor of L_{1}.

Then L_{1} is isomorphic to L_{2}.
This generalizes a theorem of Sikorski [15] on σ-complete Boolean algebras (proven independently also by Tarski [17]).

Some results of Cantor-Bernstein type for lattice ordered groups and for $M V$ algebras were proved in [5], [6], [7], [8].

2. Internal direct factors

Assume that L and $L_{i}(i \in I)$ are lattices and that φ is an isomorphism of L onto the direct product of lattices L_{i}; then we say that

$$
\begin{equation*}
\varphi: L \rightarrow \prod_{i \in I} L_{i} \tag{1}
\end{equation*}
$$

is a direct product decomposition of L; the lattices L_{i} are called direct factors of L.
For $x \in L$ and $i \in I$ we denote by $x\left(L_{i}, \varphi\right)$ the component of x in L_{i}, i.e.,

$$
x\left(L_{i}, \varphi\right)=(\varphi(x))_{i}
$$

Let $s^{0} \in L$ and $i \in I$. Put

$$
L_{i}^{s^{0}}=\left\{y \in L: y\left(L_{j}, \varphi\right)=s^{0}\left(L_{j}, \varphi\right) \quad \text { for each } j \in I \backslash\{i\}\right\}
$$

Then for each $x \in L$ and each $i \in I$ there exists a uniquely determined element y_{i} in $L_{i}^{s^{0}}$ such that

$$
x\left(L_{i}, \varphi\right)=y_{i}\left(L_{i}, \varphi\right)
$$

The mapping

$$
\begin{equation*}
\varphi^{s^{0}}: L \rightarrow \prod_{i \in I} L_{i}^{s^{0}} \tag{2}
\end{equation*}
$$

defined by

$$
\varphi^{s^{0}}(x)=\left(\ldots, y_{i}, \ldots\right)_{i \in I}
$$

is also a direct product decomposition of L. Moreover, the following conditions are valid:
(i) For each $i \in I, L_{i}^{s^{0}}$ is a closed convex sublattice of L and $s^{0} \in L_{i}^{s^{0}}$.
(ii) For each $i \in I, L_{i}^{s^{0}}$ is isomorphic to L_{i}.
(iii) If $i \in I$ and $x \in L_{i}^{s^{0}}$, then $x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right)=x$.
(iv) If $i \in I, j \in I \backslash\{i\}$ and $x \in L_{j}^{s^{0}}$, then $x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right)=s^{0}$.

We say that (2) is an internal direct product decomposition of L with the central element s^{0}; the sublattices $L_{i}^{s^{0}}$ are called internal direct factors of L with the central element s^{0}.

The condition (ii) yields that if we are interested only in considerations "up to isomorphisms", then we need not distinguish between (1) and (2).

We denote by $F\left(L, s^{0}\right)$ the collection of all internal direct factors of L with the central element s^{0}. Then in view of $(\mathrm{i}), F\left(L, s^{0}\right)$ is a set. On the other hand, it is obvious that the collection of all direct factors of L is a proper class.

3. Auxiliary results

Assume that the relation (2) is valid. Let I_{1} and I_{2} be nonempty subsets of I such that $I_{1} \cap I_{2}=\emptyset$ and $I_{1} \cup I_{2}=I$. Denote

$$
\begin{array}{ll}
L\left(I_{1}\right)=\left\{x \in L: x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right)=s^{0} \quad \text { for each } i \in I_{2}\right\} \\
L\left(I_{2}\right)=\left\{x \in L: x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right)=s^{0} \quad \text { for each } i \in I_{1}\right\}
\end{array}
$$

Consider the mapping

$$
\begin{equation*}
\psi: L \rightarrow L\left(I_{1}\right) \times L\left(I_{2}\right) \tag{3}
\end{equation*}
$$

defined by $\psi(x)=\left(x^{1}, x^{2}\right)$, where

$$
x^{1}=\left(\ldots, x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right), \ldots\right)_{i \in I_{1}}, \quad x^{2}=\left(\ldots, x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right), \ldots\right)_{i \in I_{2}}
$$

Then (3) is also an internal direct product decomposition of L with the central element s^{0}.

Further suppose that we have another internal direct product decomposition of L with the central element s^{0},

$$
\begin{equation*}
\psi^{s^{0}}: L \rightarrow \prod_{j \in J} P_{j}^{s^{0}} \tag{4}
\end{equation*}
$$

3.1. Proposition. Let (2) and (4) be valid. Suppose that there are $i(1) \in I$ and $j(1) \in J$ such that $L_{i(1)}^{s^{0}}=P_{j(1)}^{s^{0}}$. Then for each $x \in L$ the components of x in $L_{i(1)}^{s^{0}}$ and $P_{j(1)}^{s^{0}}$ are equal, i.e.,

$$
x\left(L_{i(1)}^{s^{0}}, \varphi^{s^{0}}\right)=x\left(P_{j(1)}^{s^{0}}, \psi^{s^{0}}\right) .
$$

Proof. This is a consequence of Theorem (A) in [10].
We denote by Con L the set of all congruence relations on L; this set is partially ordered in the usual way. $R_{\min }$ and $R_{\max }$ denote the least element of $\operatorname{Con} L$ or the greatest element of Con L, respectively. For $x \in L$ and $R \in \operatorname{Con} L$ we put $x_{R}=\{y \in L: y R x\}$.

From the well-known theorem concerning direct products and congruence relations of universal algebras and from the definition of the internal direct product decomposition of a lattice we immediately obtain:
3.2. Proposition. Let $R(1)$ and $R(2)$ be elements of Con L such that they are permutable, $R(1) \wedge R(2)=R_{\min }, R(1) \vee R(2)=R_{\max }$. Then the mapping

$$
\varphi: L \rightarrow s_{R(1)}^{0} \times s_{R(2)}^{0}
$$

defined by

$$
\varphi(x)=\left(x^{1}, x^{2}\right), \quad \text { where }\left\{x^{1}\right\}=x_{R(2)} \cap s_{R(1)}^{0},\left\{x^{2}\right\}=x_{R(1)} \cap s_{R(2)}^{0}
$$

is an internal direct product decomposition of L with the central element s^{0}.
3.3. Definition. Congruence relations $R(1)$ and $R(2)$ on L are called interval permutable if, whenever $[a, b]$ is an interval in L, then there are $x_{1}, x_{2} \in[a, b]$ such that $a R(1) x_{1} R(2) b$ and $a R(2) x_{2} R(1) b$.

The following assertion is easy to verify (cf. also [1], p. 15, Exercise 13).
3.4. Lemma. Let $R(1)$ and $R(2)$ be interval permutable congruence relations on L. Then
(i) $R(1) \vee R(2)=R_{\max }$;
(ii) $R(1)$ and $R(2)$ are permutable.

If the relation (2) from Section 2 above is valid, then in view of 2.1, it suffices to express this fact by writing

$$
\begin{equation*}
L=\left(s^{0}\right) \prod_{i \in I} L_{i} \tag{5}
\end{equation*}
$$

where L_{i} has the same meaning as $L_{i}^{s^{0}}$ in (2) of Section 2.

Also, if $x \in L$, then instead of $x\left(L_{i}^{s^{0}}, \varphi^{s^{0}}\right)$ we write simply $x\left(L_{i}\right)$.
If A, B are elements of $F\left(L, s^{0}\right)$ and $x \in L$, then the symbol $x(A)(B)$ means $(x(A))(B)$.

Let the system $\left(F, L, s^{0}\right)$ be partially ordered by the set-theoretical inclusion.
3.5. Lemma. $F\left(L, s^{0}\right)$ is a Boolean algebra.

Proof. This is a consequence of Proposition 3.14 in [9].
It is obvious that if L is bounded, then $F\left(L, s^{0}\right)$ is isomorphic to the center of L.
Further, it is easy to verify that if $A, B \in F\left(L, s^{0}\right)$ and $L=\left(s^{0}\right) A \times B$, then B is the complement of A in the Boolean algebra $F\left(L, s^{0}\right)$; we denote $B=A^{\prime}$.

4. α-COMPLETENESS AND INFINITE DISTRIBUTIVITY

Let α be an infinite cardinal. In this section we suppose that L is a lattice belonging to \mathcal{T}_{α} and that s^{0} is an element of L.

Let I be a set with card $I=\alpha$ and for each $i \in I$ let L_{i} be an element of $F\left(L, s^{0}\right)$. Thus for each $i \in I$ we have

$$
\begin{equation*}
L=\left(s^{0}\right) L_{i} \times L_{i}^{\prime} \tag{1}
\end{equation*}
$$

For each $x \in L$ and each $i \in L$ we denote

$$
x_{i}=x\left(L_{i}\right), \quad x_{i}^{\prime}=x\left(L_{i}^{\prime}\right)
$$

Let $x, y \in L$ and $i \in I$. We put $x R_{i} y$ if $x_{i}^{\prime}=y_{i}^{\prime}$, similarly we set $x R_{i}^{\prime} y$ if $x_{i}=y_{i}$. Then R_{i} and R_{i}^{\prime} belong to Con $L, R_{i} \wedge R_{i}^{\prime}=R_{\min }$ and $R_{i} \vee R_{i}^{\prime}=R_{\max }$. Moreover, R_{i} and R_{i}^{\prime} are permutable.
4.1. Lemma. Let $a, b \in L, a \leqslant b$. There exist elements $x, y, x^{i}(i \in I)$ in $[a, b]$ such that
(i) $x^{i} R_{i} a$ for each $i \in I$;
(ii) $y R_{i}^{\prime} a$ for each $i \in I$;
(iii) $x=\bigvee_{i \in I} x^{i}, x \wedge y=a$ and $x \vee y=b$.

Proof. Let $i \in I$. There exist uniquely determined elements x^{i} and y^{i} in L such that

$$
x^{i} \in a_{R_{i}} \cap b_{R_{i}^{\prime}}, \quad y^{i} \in a_{R_{i}^{\prime}} \cap b_{R_{i}} .
$$

Hence

$$
\begin{aligned}
\left(x^{i}\right)_{i}^{\prime}=a_{i}^{\prime}, & \left(x^{i}\right)_{i}=b_{i}, \\
\left(y^{i}\right)_{i}^{\prime}=b_{i}^{\prime}, & \left(y^{i}\right)_{i}=a_{i} .
\end{aligned}
$$

Then clearly

$$
\begin{align*}
& x^{i} \wedge y^{i}=a \tag{2}\\
& x^{i} \vee y^{i}=b \tag{3}
\end{align*}
$$

Denote

$$
x=\bigvee_{i \in I} x^{i}, \quad y=\bigwedge_{i \in I} y^{i}
$$

these elements exist in L since L is α-complete. By applying the infinite distributivity of L we get

$$
y \wedge x=y \wedge\left(\bigvee_{i \in I} x^{i}\right)=\bigvee_{i \in I}\left(y \wedge x^{i}\right)=\bigvee_{i \in I} \bigwedge_{j \in I}\left(y^{j} \wedge x^{i}\right)
$$

For $j=i$ we have $y^{j} \wedge x^{i}=a$ (cf. (2)). Hence for each $i \in I$ the relation

$$
\bigwedge_{j \in I}\left(y^{j} \wedge x^{i}\right)=a
$$

is valid. Thus
(4)

$$
y \wedge x=a
$$

Further we obtain

$$
x \vee y=x \vee\left(\bigwedge_{i \in I} y^{i}\right)=\bigwedge_{i \in I}\left(x \vee y^{i}\right)=\bigwedge_{i \in I} \bigvee_{j \in I}\left(x^{j} \vee y^{i}\right)
$$

For $j=i$ we have $x^{j} \vee y^{i}=b$ (cf. (3)). Hence

$$
\bigvee_{j \in I}\left(x^{j} \vee y^{i}\right)=b
$$

for each $i \in I$. Therefore

$$
\begin{equation*}
x \vee y=b \tag{5}
\end{equation*}
$$

The definition of x and the relations (4), (5) yield that (iii) is valid. Now, in view of the definition of x^{i}, the condition (i) is satisfied. Let $i \in I$; then $y^{i} R_{i}^{\prime} a$. Since $y \in\left[a, y^{i}\right]$, we obtain $y R_{i}^{\prime} a$. Thus (ii) holds.

346

By an argument dual to that applied in the proof of 4.1 we obtain:
4.2. Lemma. Let $a, b \in L, a \leqslant b$. There exist elements $z, t, z^{i}(i \in I)$ in $[a, b]$ such that
(i) $z^{i} R_{i} b$ for each $i \in I$;
(ii) $t R_{i}^{\prime} b$ for each $i \in I$;
(iii) $z=\bigwedge_{i \in I} z^{i}, z \vee t=b$ and $z \wedge t=a$.
4.3. Lemma. Let a, b, x and $x^{i}(i \in I)$ be as in 4.1. Suppose that $u, v \in[a, x]$, $u \leqslant v$ and $u R_{i}^{\prime} v$ for each $i \in I$. Then $u=v$.

Proof. By way of contradiction, assume that $u<v$. From the definition of x we conclude that

$$
v=u \vee(v \wedge x)=u \vee\left(v \wedge \bigvee_{i \in I} x^{i}\right)=\bigvee_{i \in I}\left(u \vee\left(v \wedge x^{i}\right)\right)
$$

Hence there exists $i \in I$ such that $u<u \vee\left(v \wedge x^{i}\right)$. From $a R_{i} x^{i}$ we obtain

$$
u \vee(v \wedge a) R_{i}\left(u \vee\left(v \wedge x^{i}\right)\right)
$$

whence $u R_{i}\left(u \vee\left(v \wedge x^{i}\right)\right.$. At the same time, since $u \vee\left(v \wedge x^{i}\right)$ belongs to the interval $[u, v]$ and $u R_{i}^{\prime} v$, we get $r R_{i}^{\prime}\left(u \vee\left(v \wedge x^{i}\right)\right)$. Therefore $u=u \vee\left(v \wedge x^{i}\right)$, which is a contradiction.

Analogously, by applying 4.2 we obtain
4.4. Lemma. Let a, b and z be as in 4.2. Suppose that $u, v \in[z, b], u \leqslant v$ and $u R_{i}^{\prime} v$ for each $i \in I$. Then $u=v$.
4.5. Lemma. Let a, b, x, y, z and t be as in 4.1 and 4.2. Then $t=x$ and $z=y$.

Proof. a) We have

$$
t=t \wedge b=t \wedge(x \vee y)=(t \wedge x) \vee(t \wedge y)
$$

The interval $[t \wedge x, x]$ is projectable to the interval $[t, t \vee x]$ and $[t, t \vee x] \subseteq[t, b]$. Hence in view of $4.2,(t \wedge x) R_{i}^{\prime} x$ for each $i \in I$. Thus according to $4.3, t \wedge x=x$ and therefore $t \geqslant x$.
b) Analogously,

$$
y=y \vee a=y \vee(t \wedge z)=(y \vee t) \wedge(y \vee z)
$$

The interval $[y \wedge z, y]$ is projectable to the interval $[z, z \vee y]$ and $y \wedge z, y] \subseteq[a, y]$. Hence in view of 4.1, $z R_{i}^{\prime}(z \vee y)$ for each $i \in I$. Then by applying 4.4 we get $y=z \vee y$, whence $z \geqslant y$.
c) Since L is distributive, if either $t>x$ or $z>y$ then $t \wedge z>a$, which is impossible in view of 4.2 (iii). Thus $t=x$ and $z=y$.

5. The relations R and R^{\prime}

We apply the same assumptions and the same notation as in the previous section. If $a, b \in L, a \leqslant b$ and if x, y are as in 4.1, then we write

$$
x=x(a, b), \quad y=y(a, b)
$$

Let $p, q \in L$. We put $p R q$ if

$$
x(p \wedge q, p \vee q)=p \vee q
$$

Further we put $p R^{\prime} q$ if

$$
y(p \wedge q, p \vee q)=p \vee q
$$

Thus $p R^{\prime} q$ if and only if $p R_{i}^{\prime} q$ for each $i \in I$. Hence we have
5.1. Lemma. R^{\prime} is a congruence relation on L.

In view of the definition, the relation R is reflexive and symmetric.
5.2. Lemma. Let $p, q \in L$. Then the following conditions are equivalent:
(i) $p R q$.
(ii) There exists no interval $[u, v] \subseteq L$ such that $[u, v] \subseteq[p, \wedge q, p \vee q], u<v$ and $u R_{i}^{\prime} v$ for each $i \in I$.

Proof. Denote $p \wedge q=a, p \vee q=b$. Let (i) be valid. Then in view of 4.2, the condition (ii) is satisfied. Conversely, assume that (ii) holds. Put $x(a, b)=x$, $y(a, b)=y$. If $y>a$, then by putting $[u, v]=[a, y]$ we arrive at a contradiction with the condition (ii). Hence $y=a$. Then 4.1 yields that $x=b$, whence (i) is valid.
5.2.1. Corollary. Let $a_{1}, a_{2}, b_{1}, b_{2} \in L, a_{1} \leqslant b_{1} \leqslant b_{2} \leqslant a_{2}, a_{1} R a_{2}$. Then $b_{1} R b_{2}$.
5.3. Lemma. Let $a_{1}, a_{2}, a_{3} \in L, a_{1} \leqslant a_{2} \leqslant a_{3}, a_{1} R a_{2}, a_{2} R a_{3}$. Then $a_{1} R a_{3}$.

Proof. Suppose that $[u, v] \subseteq\left[a_{1}, a_{3}\right]$ and $u R^{\prime} v$. Denote

$$
\begin{gathered}
u_{1}=u \wedge a_{2}, \quad v_{1}=v \wedge a_{2}, \quad u_{2}=u \vee a_{2}, \quad v_{2}=v \vee a_{2}, \\
s=v_{1} \vee u .
\end{gathered}
$$

Thus $u \leqslant s \leqslant v$. Hence if $u<v$, then either $u<s$ or $s<v$.
It is easy to verify that $[u, s]$ is projectable to a subinterval of $\left[a_{1}, a_{2}\right]$ (namely, to the interval $\left.\left[v_{1} \wedge u, v_{1}\right]\right)$. Hence $\left(v_{1} \wedge u\right) R^{\prime} v_{i}$ and thus $v_{1} \wedge u=v_{1}$. Therefore $u=s$. Analogously we obtain the relation $s=v$. Thus $u=v$. According to 5.2, $a_{1} R a_{2}$.
5.4. Lemma. Let $a_{1}, a_{2} \in L, s \in L, a_{1} R a_{2}$. Then $\left(a_{1} \vee s\right) R\left(a_{2} \vee s\right)$ and $\left(a_{1} \wedge s\right) R\left(a_{2} \wedge s\right)$.

Proof. If $[u, v]$ is a subinterval of $\left[a_{1} \vee s, a_{2} \vee s\right.$], then $[u, v]$ is projectable to the interval $\left[a_{2} \wedge u, a_{2} \wedge v\right.$] and this is a subinterval of [a_{1}, a_{2}]. Hence in view of 5.2 , if $u R^{\prime} v$, then $u=v$. Therefore $\left(a_{1} \vee s\right) R\left(a_{2} \vee s\right)$. Similarly we verify that $\left(a_{1} \wedge s\right) R\left(a_{2} \wedge s\right)$.
5.5. Lemma. The relation R is transitive.

Proof. Let $p_{1}, p_{2}, p_{3} \in L, p_{1} R p_{2}, p_{2} R p_{3}$. Denote

$$
\begin{array}{lll}
p_{1} \wedge p_{2}=u_{1}, & p_{2} \wedge p_{3}=u_{2}, & u_{1} \wedge u_{2}=u_{3} \\
p_{1} \vee p_{2}=v_{1}, & p_{2} \vee p_{3}=v_{2}, & v_{1} \vee v_{2}=v_{3}
\end{array}
$$

In view of 5.4 we have $p_{1} R p_{1} \wedge p_{2}$, thus $p_{1} R u_{1}$. Analogously we obtain $p_{2} R u_{2}$. The interval $\left[u_{3}, u_{1}\right]$ is projectable to some subinterval of $\left[u_{2}, p_{2}\right]$, hence $u_{3} R u_{1}$. Similarly we verify that $p_{1} R v_{1}$ and $v_{3} R v_{1}$. Thus $u_{3} R v_{3}$ by 5.2.1. Since $\left[p_{1} \wedge p_{3}, p_{1} \vee p_{3}\right] \subseteq$ [u_{3}, v_{3}], 5.2 yields that $p_{1} R p_{3}$.

From 5.4 and 5.5 we infer
5.6. Lemma. R is a congruence relation on L.
5.7. Lemma. $R \wedge R^{\prime}=R_{\min }, R \vee R^{\prime}=R_{\max }$ and R, R^{\prime} are permutable.

Proof. In view of 5.2 we have $R \wedge R^{\prime}=R_{\text {min }}$. Let $a, b \in L, a \leqslant b$. Let x and y be as in 4.1. Then we have

$$
\begin{equation*}
a R x, \quad a R^{\prime} y \tag{1}
\end{equation*}
$$

Further, $x \wedge y=a$ and $x \vee y=b$. Thus in view of the projectability we obtain

$$
\begin{equation*}
x R^{\prime} b, \quad y R b . \tag{2}
\end{equation*}
$$

Hence $a\left(R \vee R^{\prime}\right) b$. From this we easily obtain $R \vee R^{\prime}=R_{\max }$. Further, from (1), (2) and 3.4 we conclude that R and R^{\prime} are permutable.

Proof of Theorem 1. Let $L \in \mathcal{T}_{\alpha}$ and $s^{0} \in L$. Let $\left\{L_{i}\right\}_{i \in I}$ be a subset of $F\left(L, s^{0}\right)$ such that card $I \leqslant \alpha$. First we verify that $\bigvee_{i \in I} L_{i}$ exists in the Boolean algebra $F\left(L, s^{0}\right)$. Let us apply the notation as above.

Consider the lattices s_{R}^{0} and $s_{R^{\prime}}^{0}$. According to 5.1, 5.6, 5.7 and 3.2 we have

$$
\begin{equation*}
L=\left(s^{0}\right) s_{R}^{0} \times s_{R^{\prime}}^{0} \tag{3}
\end{equation*}
$$

According to the definition of R^{\prime} we obviously have

$$
\begin{equation*}
s_{R^{\prime}}^{0}=\bigcap_{i \in I} L_{i}^{\prime} . \tag{4}
\end{equation*}
$$

Then (3) and (4) yield

$$
\begin{equation*}
s_{R^{\prime}}^{0}=\bigwedge_{i \in I} L_{i}^{\prime} . \tag{5}
\end{equation*}
$$

Further, in view of the definition of $R, L_{i} \subseteq s_{R}^{0}$ for each $i \in I$. Let $X \in F\left(L, s^{0}\right)$ and suppose that $L_{i} \subseteq X$ for each $i \in I$. Put $Y=X \cap s_{R}^{0}$. Then $Y \in F\left(L, s^{0}\right)$ and $L_{i} \subseteq Y$ for each $i \in I$. Moreover, Y is a closed sublattice of L.

Let $p \in s_{R}^{0}$. Put $a=p \wedge s^{0}$ and $b=p \vee s^{0}$. Thus $a, b \in s_{R}^{0}$. Hence $s^{0} R b$. In view of the definition of R there exist $x^{i} \in\left[s^{0}, b\right](i \in I)$ such that $x^{i} \in L_{i}$ and $\bigvee_{i \in I} x^{i}=b$. Then all x^{i} belong to Y; since Y is closed, we get $b \in Y$. By a dual argument (using Lemma 4.2) we obtain the relation $a \in Y$. Hence, by the convexity of Y, the element p belongs to Y. Therefore, $s_{R}^{0} \subseteq Y$. Thus

$$
\begin{equation*}
s_{R}^{0}=\bigvee_{i \in I} L_{i} \tag{6}
\end{equation*}
$$

Further, we have to verify that each subset of $F\left(L, s^{0}\right)$ having the cardinality $\leqslant \alpha$ possesses the infimum. But this is a consequence of the just proved result concerning the existence of suprema and of the fact that each Boolean algebra is self-dual.
5.8. Corollary. Under the assumptions as in Theorem 1 and under the notation as above we have

$$
L=\left(s^{0}\right)\left(\bigvee_{i \in I} L_{i}\right) \times\left(\bigwedge_{i \in I} L_{i}^{\prime}\right)
$$

Proof. This is a consequence of (3)-(6).

6. On lattices belonging to $\mathcal{T}_{\sigma}^{\prime}$

Let L be a lattice which belongs to the class $\mathcal{T}_{\sigma}^{\prime}$. The least element of L will be denoted by s^{0}. Suppose that for each $n \in \mathbb{N}$ we have

$$
\begin{equation*}
L=\left(s^{0}\right) L_{n} \times L_{n}^{\prime} . \tag{1}
\end{equation*}
$$

We apply analogous notation as in Sections 4 and 5 above (with the distinction that we now have \mathbb{N} instead of I).
6.1. Lemma. Suppose that $L_{n(1)} \cap L_{n(2)}=\left\{s^{0}\right\}$ whenever $n(1)$ and $n(2)$ are distinct positive integers. For each $n \in \mathbb{N}$ let $x^{n} \in L_{n}$ and let $x=\bigvee_{n \in \mathbb{N}} x^{n}$. Then $x\left(L_{n}\right)=x^{n}$.
Proof. We have $x^{n}\left(L_{n}\right)=x^{n}$. Since $x^{n} \leqslant x$, we obtain $x^{n} \leqslant x\left(L_{n}\right)$. Further, from $x=x\left(L_{n}\right) \vee x\left(L_{n}^{\prime}\right)$ we get $x\left(L_{n}\right) \leqslant x$.

Clearly, $x\left(L_{n}\right) \wedge x^{m}=s^{0}$ for each $m \in \mathbb{N} \backslash\{n\}$, thus

$$
x\left(L_{n}\right)=x\left(L_{n}\right) \wedge x=x\left(L_{n}\right) \wedge\left(\bigvee_{m \in \mathbb{N}} x^{m}\right)=\bigvee_{m \in \mathbb{N}}\left(x\left(L_{n}\right) \wedge x^{m}\right)=x\left(L_{n}\right) \wedge x^{n}
$$

Summarizing, we obtain $x\left(L_{n}\right)=x^{n}$.
6.2. Lemma. s_{R}^{0} is the set of all elements $x \in L$ which can be expressed in the form $x=\bigvee_{n \in \mathbb{N}} x^{n}$, where $x^{n} \in L_{n}$ for each $n \in \mathbb{N}$.

Proof. This is a consequence of 5.6 and of the fact that s^{0} is the least element of s_{R}^{0}.
6.3. Lemma. Let $\left(L_{n}\right)_{n \in \mathbb{N}}$ be as in 6.1. Then the mapping

$$
\varphi^{0}: s_{R}^{0} \rightarrow \prod_{n \in \mathbb{N}} L_{n}
$$

where $\varphi^{0}(x)=\left(\ldots, x\left(L_{n}\right), \ldots\right)_{n \in \mathbb{N}}$, is an internal direct product decomposition of s_{R}^{0} with the central element s^{0}.

Proof. In view of the definition, φ^{0} is a homomorphism. According to 6.1 and 6.2, φ^{0} is surjective and injective.

If A and B are elements of $F\left(L, s^{0}\right)$ such that $A \subseteq B$, then there exists $C \in$ $F\left(L, s^{0}\right)$ with $B=\left(s^{0}\right) A \times C$; moreover, C is uniquely determined. We denote

$$
C=B-A
$$

In fact, C is the relative complement of the element A in the interval $\left[\left\{s^{0}\right\}, B\right]$ of the Boolean algebra $F\left(L, s^{0}\right)$.

We will use Theorem 1 and apply the method which is analogous to the well-known argument of the proof of Cantor-Bernstein Theorem of set theory.
6.4. Lemma. Let A, B be elements of $F\left(L, s^{0}\right)$ such that $A \supseteq B$. Assume that B is isomorphic to L. Then A is isomorphic to L as well.

Proof. There exists an isomorphism f of L onto B. Put $A_{1}=L, A_{2}=A$.
Inductively we define

$$
A_{n+2}=f\left(A_{n}\right)
$$

for each $n \in \mathbb{N}$. Hence

$$
\begin{equation*}
A_{n+2} \simeq A_{n} \quad \text { for each } n \in \mathbb{N} \tag{2}
\end{equation*}
$$

where \simeq is the relation of isomorphism between lattices.
By induction we can verify that $A_{n} \in F\left(L, s^{0}\right)$ and

$$
\begin{equation*}
A_{n} \supseteq A_{n+1} \quad \text { for each } n \in \mathbb{N} \text {. } \tag{3}
\end{equation*}
$$

For $n \in \mathbb{N}$ we denote

$$
\begin{equation*}
L_{n}=A_{n}-A_{n+1} \tag{4}
\end{equation*}
$$

Then (2) yields

$$
\begin{equation*}
L_{n+2} \simeq L_{n} \quad \text { for each } n \in \mathbb{N} \tag{5}
\end{equation*}
$$

If $n(1)$ and $n(2)$ are distinct positive integers, then

$$
\begin{equation*}
L_{n(1)} \cap L_{n(2)}=\left\{s^{0}\right\} . \tag{6}
\end{equation*}
$$

Put

$$
C=\bigcap_{n=1}^{\infty} A_{n} .
$$

According to Theorem 1, C belongs to $F\left(L, s^{0}\right)$. Consider the complement C^{\prime} of C in $F\left(L, s^{0}\right)$.

From (4) we obtain

$$
A_{n+1} \subseteq L_{n}^{\prime} \quad \text { for each } m \in \mathbb{N}
$$

Hence according to (3),

$$
C \subseteq \bigcap_{n \in \mathbb{N}} L_{n}^{\prime}
$$

Let $x \in \bigcap_{n \in \mathbb{N}} L_{n}^{\prime}$. Then $x \in A_{1}$. Suppose that $x \in A_{n}$ for some $n \in \mathbb{N}$. Since $x \in L_{n}^{\prime}$ we get $x\left(L_{n}\right)=s^{0}$ and thus, in view of (4), $x \in A_{n+1}$. Therefore we obtain by induction that x belongs to C. Summarizing we have

$$
C=\bigcap_{n \in \mathbb{N}} L_{n}^{\prime}
$$

Hence according to Theorem 1 we obtain

$$
L=\left(s^{0}\right) s_{R}^{0} \times C .
$$

Moreover, in view of 6.3 , we get an internal direct product decomposition with the central element s^{0}

$$
\begin{equation*}
\varphi^{1}: L \rightarrow\left(\prod_{n \in \mathbb{N}}^{\infty} L_{n}\right) \times C \tag{7}
\end{equation*}
$$

Since $A=A_{1}$, we obtain analogously an internal direct product decomposition with the central element s^{0},

$$
\begin{equation*}
\varphi^{2}: A \rightarrow\left(\prod_{n=2}^{\infty} L_{n}\right) \times C \tag{8}
\end{equation*}
$$

Now, (7), (8) and (5) yield that L and A are isomorphic.
Proof of Theorem 2. Let the assumptions of Theorem 2 be valid. The least element of L_{1} and L_{2} will be denoted by s^{0} or by t^{0}, respectively. In view of the assumption there exist $A_{1} \in F\left(L_{1}, s^{0}\right), B_{1} \in F\left(L_{2}, t^{0}\right)$, an isomorphism f of L_{1} onto B_{1} and an isomorphism g of L_{2} onto A_{1}. Put $A_{2}=g\left(B_{1}\right)$. Then $A_{2} \in F\left(A_{1}, s^{0}\right)$, whence $A_{2} \in F\left(L_{1}, s^{0}\right)$ and A_{2} is isomorphic to B_{1}. Thus A_{2} is isomorphic to L_{1}. Then in view of 6.4, A_{1} is isomorphic to L_{1}. Hence L_{1} is isomorphic to L_{2}.

If L is a Boolean algebra, then each interval of L is isomorphic to a direct factor of L. Further, each Boolean algebra is infinitely distributive and contains the least element. Hence Theorem 2 yields as a corollary the following result:
6.5. Theorem. (Sikorski [13]; cf. also Sikorski [14] and Tarski [15].) Let L_{1} and L_{2} be σ-complete Boolean algebras. Suppose that
(i) there exists $a_{2} \in L_{2}$ such that L_{1} is isomorphic to the interval $\left[0, a_{2}\right]$ of L_{2};
(ii) there exists $a_{1} \in L_{1}$ such that L_{2} is isomorphic to the interval $\left[0, a_{1}\right]$ of L_{1}.

Then L_{1} and L_{2} are isomorphic.

References

[1] G. Grätzer: General Lattice Theory. Akademie Verlag, Berlin, 1972.
[2] S. S. Holland: On Radon-Nikodym Theorem in dimension lattices. Trans. Amer. Math. Soc. 108 (1963), 66-87.
[3] J. Jakubik: Center of a complete lattice. Czechoslovak Math. J. 23 (1973), 125-138.
[4] J. Jakubik: Center of a bounded lattice. Matem. časopis 25 (1975), 339-343.
[5] J. Jakubik: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159-175.
[6] J. Jakubik: On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221-230.
[7] J. Jakubik: Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49-56.
[8] J. Jakubik: Cantor-Bernstein theorem for complete $M V$-algebras. Czechoslovak Math. J. 49 (1999), 517-526.
[9] J. Jakubik: Atomicity of the Boolean algebra of direct factors of a directed set. Math. Bohem. 123 (1998), 145-161.
[10] J. Jakubik, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359-378.
[11] M. F. Janowitz: The center of a complete relatively complemented lattice is a complete sublattice. Proc. Amer. Math. Soc. 18 (1967), 189-190.
[12] J. Kaplansky: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61 (1955), 524-541.
[13] S. Maeda: On relatively semi-orthocomplemented lattices. Hiroshima Univ. J. Sci. Ser. A 24 (1960), 155-161.
[14] J. von Neumann: Continuous Geometry. Princeton Univ. Press, New York, 1960.
[15] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloquium Math. 1 (1948), 140-144.
[16] R. Sikorski: Boolean Algebras. Second Edition, Springer Verlag, Berlin, 1964.
[17] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949.
Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@mail.saske.sk.

