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Abstract. Let α be an infinite cardinal. Let Tα be the class of all lattices which are
conditionally α-complete and infinitely distributive. We denote by T ′

σ the class of all lattices
X such that X is infinitely distributive, σ-complete and has the least element. In this paper
we deal with direct factors of lattices belonging to Tα. As an application, we prove a result
of Cantor-Bernstein type for lattices belonging to the class T ′

σ .
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1. Introduction

Let L be a partially ordered set and s0 ∈ L. The notion of the internal direct
product decomposition of L with the central element s0 was investigated in [10] (the

definition is recalled in Section 2 below).
We denote by F (L, s0) the set of all internal direct factors of L with the central

element s0; this set is partially ordered by the set-theoretical inclusion. In the
present paper we suppose that L is a lattice. Then F (L, s0) is a Boolean algebra

(cf. Section 3).
Let α be an infinite cardinal. We denote by Tα the class of all lattices which are

conditionally α-complete and infinitely distributive. We prove

Theorem 1. Let L ∈ Tα and s0 ∈ L. Then the Boolean algebra F (L, s0) is

α-complete.

In the particular case when the lattice L is bounded we denote by CenL the center
of L. For each s0 ∈ L, F (L, s0) is α-complete and if CenL is a closed sublattice of
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L, then CenL is α-complete and thus F (L, s0) is α-complete as well. Some sufficient

conditions under which the center of a complete lattice is closed were found in [2],
[11], [12], [13], [14]; these results were generalized in [4]. For related results cf. also [3].
We denote by T ′

σ the class of all lattices L belonging to Tℵ0 which have the least
element and are σ-complete.
As an application of Theorem 1 we prove the following result of Cantor-Bernstein

type:

Theorem 2. Let L1 and L2 be lattices belonging to T ′
σ. Suppose that

(i) L1 is isomorphic to a direct factor of L2;

(ii) L2 is isomorphic to a direct factor of L1.
Then L1 is isomorphic to L2.

This generalizes a theorem of Sikorski [15] on σ-complete Boolean algebras (proven
independently also by Tarski [17]).
Some results of Cantor-Bernstein type for lattice ordered groups and for MV -

algebras were proved in [5], [6], [7], [8].

2. Internal direct factors

Assume that L and Li (i ∈ I) are lattices and that ϕ is an isomorphism of L onto

the direct product of lattices Li; then we say that

(1) ϕ : L→
∏
i∈I

Li

is a direct product decomposition of L; the lattices Li are called direct factors of L.
For x ∈ L and i ∈ I we denote by x(Li, ϕ) the component of x in Li, i.e.,

x(Li, ϕ) = (ϕ(x))i.

Let s0 ∈ L and i ∈ I. Put

Ls0

i = {y ∈ L : y(Lj , ϕ) = s0(Lj , ϕ) for each j ∈ I \ {i}}.

Then for each x ∈ L and each i ∈ I there exists a uniquely determined element yi in
Ls0

i such that

x(Li, ϕ) = yi(Li, ϕ).

The mapping

(2) ϕs0 : L→
∏
i∈I

Ls0

i
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defined by

ϕs0 (x) = (. . . , yi, . . .)i∈I

is also a direct product decomposition of L. Moreover, the following conditions are

valid:
(i) For each i ∈ I, Ls0

i is a closed convex sublattice of L and s
0 ∈ Ls0

i .

(ii) For each i ∈ I, Ls0

i is isomorphic to Li.
(iii) If i ∈ I and x ∈ Ls0

i , then x(L
s0

i , ϕ
s0) = x.

(iv) If i ∈ I, j ∈ I \ {i} and x ∈ Ls0

j , then x(L
s0

i , ϕ
s0) = s0.

We say that (2) is an internal direct product decomposition of L with the central

element s0; the sublattices Ls0

i are called internal direct factors of L with the central
element s0.

The condition (ii) yields that if we are interested only in considerations “up to
isomorphisms”, then we need not distinguish between (1) and (2).

We denote by F (L, s0) the collection of all internal direct factors of L with the
central element s0. Then in view of (i), F (L, s0) is a set. On the other hand, it is

obvious that the collection of all direct factors of L is a proper class.

3. Auxiliary results

Assume that the relation (2) is valid. Let I1 and I2 be nonempty subsets of I such

that I1 ∩ I2 = ∅ and I1 ∪ I2 = I. Denote

L(I1) = {x ∈ L : x(Ls0

i , ϕ
s0 ) = s0 for each i ∈ I2},

L(I2) = {x ∈ L : x(Ls0

i , ϕ
s0 ) = s0 for each i ∈ I1}.

Consider the mapping

(3) ψ : L→ L(I1)× L(I2)

defined by ψ(x) = (x1, x2), where

x1 = (. . . , x(Ls0

i , ϕ
s0), . . .)i∈I1 , x2 = (. . . , x(Ls0

i , ϕ
s0), . . .)i∈I2 .

Then (3) is also an internal direct product decomposition of L with the central

element s0.
Further suppose that we have another internal direct product decomposition of L

with the central element s0,

(4) ψs0 : L→
∏
j∈J

P s0

j .
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3.1. Proposition. Let (2) and (4) be valid. Suppose that there are i(1) ∈ I and

j(1) ∈ J such that Ls0

i(1) = P s0

j(1). Then for each x ∈ L the components of x in Ls0

i(1)

and P s0

j(1) are equal, i.e.,

x(Ls0

i(1), ϕ
s0) = x(P s0

j(1), ψ
s0).

�����. This is a consequence of Theorem (A) in [10]. �

We denote by ConL the set of all congruence relations on L; this set is partially
ordered in the usual way. Rmin and Rmax denote the least element of ConL or

the greatest element of ConL, respectively. For x ∈ L and R ∈ ConL we put
xR = {y ∈ L : yRx}.
From the well-known theorem concerning direct products and congruence rela-

tions of universal algebras and from the definition of the internal direct product

decomposition of a lattice we immediately obtain:

3.2. Proposition. Let R(1) and R(2) be elements of ConL such that they are
permutable, R(1) ∧R(2) = Rmin, R(1) ∨R(2) = Rmax. Then the mapping

ϕ : L→ s0R(1) × s0R(2)

defined by

ϕ(x) = (x1, x2), where {x1} = xR(2) ∩ s0R(1), {x2} = xR(1) ∩ s0R(2)

is an internal direct product decomposition of L with the central element s0.

3.3. Definition. Congruence relations R(1) and R(2) on L are called interval

permutable if, whenever [a, b] is an interval in L, then there are x1, x2 ∈ [a, b] such
that aR(1)x1R(2)b and aR(2)x2R(1)b.

The following assertion is easy to verify (cf. also [1], p. 15, Exercise 13).

3.4. Lemma. Let R(1) and R(2) be interval permutable congruence relations on
L. Then

(i) R(1) ∨R(2) = Rmax;
(ii) R(1) and R(2) are permutable.

If the relation (2) from Section 2 above is valid, then in view of 2.1, it suffices to
express this fact by writing

(5) L = (s0)
∏
i∈I

Li,

where Li has the same meaning as Ls0

i in (2) of Section 2.
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Also, if x ∈ L, then instead of x(Ls0

i , ϕ
s0) we write simply x(Li).

If A,B are elements of F (L, s0) and x ∈ L, then the symbol x(A)(B) means
(x(A))(B).

Let the system (F,L, s0) be partially ordered by the set-theoretical inclusion.

3.5. Lemma. F (L, s0) is a Boolean algebra.

�����. This is a consequence of Proposition 3.14 in [9]. �

It is obvious that if L is bounded, then F (L, s0) is isomorphic to the center of L.

Further, it is easy to verify that if A,B ∈ F (L, s0) and L = (s0)A×B, then B is
the complement of A in the Boolean algebra F (L, s0); we denote B = A′.

4. α-completeness and infinite distributivity

Let α be an infinite cardinal. In this section we suppose that L is a lattice belonging
to Tα and that s0 is an element of L.

Let I be a set with card I = α and for each i ∈ I let Li be an element of F (L, s0).

Thus for each i ∈ I we have

(1) L = (s0)Li × L′
i.

For each x ∈ L and each i ∈ L we denote

xi = x(Li), x′i = x(L
′
i).

Let x, y ∈ L and i ∈ I. We put xRiy if x′i = y′i, similarly we set xR
′
iy if xi = yi.

Then Ri and R′
i belong to ConL, Ri ∧ R′

i = Rmin and Ri ∨ R′
i = Rmax. Moreover,

Ri and R′
i are permutable.

4.1. Lemma. Let a, b ∈ L, a � b. There exist elements x, y, xi (i ∈ I) in [a, b]

such that

(i) xiRia for each i ∈ I;

(ii) yR′
ia for each i ∈ I;

(iii) x =
∨
i∈I

xi, x ∧ y = a and x ∨ y = b.

�����. Let i ∈ I. There exist uniquely determined elements xi and yi in L

such that

xi ∈ aRi ∩ bR′
i
, yi ∈ aR′

i
∩ bRi .
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Hence

(xi)′i = a
′
i, (xi)i = bi,

(yi)′i = b
′
i, (yi)i = ai.

Then clearly

xi ∧ yi = a,(2)

xi ∨ yi = b.(3)

Denote
x =

∨
i∈I

xi, y =
∧
i∈I

yi;

these elements exist in L since L is α-complete. By applying the infinite distributivity

of L we get

y ∧ x = y ∧
(∨

i∈I

xi

)
=

∨
i∈I

(y ∧ xi) =
∨
i∈I

∧
j∈I

(yj ∧ xi).

For j = i we have yj ∧ xi = a (cf. (2)). Hence for each i ∈ I the relation
∧
j∈I

(yj ∧ xi) = a

is valid. Thus

(4) y ∧ x = a.

Further we obtain

x ∨ y = x ∨
(∧

i∈I

yi

)
=

∧
i∈I

(x ∨ yi) =
∧
i∈I

∨
j∈I

(xj ∨ yi).

For j = i we have xj ∨ yi = b (cf. (3)). Hence
∨
j∈I

(xj ∨ yi) = b

for each i ∈ I. Therefore

(5) x ∨ y = b.

The definition of x and the relations (4), (5) yield that (iii) is valid. Now, in view

of the definition of xi, the condition (i) is satisfied. Let i ∈ I; then yiR′
ia. Since

y ∈ [a, yi], we obtain yR′
ia. Thus (ii) holds. �
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By an argument dual to that applied in the proof of 4.1 we obtain:

4.2. Lemma. Let a, b ∈ L, a � b. There exist elements z, t, zi (i ∈ I) in [a, b]

such that

(i) ziRib for each i ∈ I;

(ii) tR′
ib for each i ∈ I;

(iii) z =
∧
i∈I

zi, z ∨ t = b and z ∧ t = a.

4.3. Lemma. Let a, b, x and xi (i ∈ I) be as in 4.1. Suppose that u, v ∈ [a, x],
u � v and uR′

iv for each i ∈ I. Then u = v.

�����. By way of contradiction, assume that u < v. From the definition of x
we conclude that

v = u ∨ (v ∧ x) = u ∨
(
v ∧

∨
i∈I

xi

)
=

∨
i∈I

(u ∨ (v ∧ xi)).

Hence there exists i ∈ I such that u < u ∨ (v ∧ xi). From aRix
i we obtain

u ∨ (v ∧ a)Ri(u ∨ (v ∧ xi)),

whence uRi(u∨ (v ∧ xi). At the same time, since u∨ (v ∧ xi) belongs to the interval
[u, v] and uR′

iv, we get rR
′
i(u ∨ (v ∧ xi)). Therefore u = u ∨ (v ∧ xi), which is a

contradiction. �

Analogously, by applying 4.2 we obtain

4.4. Lemma. Let a, b and z be as in 4.2. Suppose that u, v ∈ [z, b], u � v and

uR′
iv for each i ∈ I. Then u = v.

4.5. Lemma. Let a, b, x, y, z and t be as in 4.1 and 4.2. Then t = x and z = y.

�����. a) We have

t = t ∧ b = t ∧ (x ∨ y) = (t ∧ x) ∨ (t ∧ y).

The interval [t ∧ x, x] is projectable to the interval [t, t ∨ x] and [t, t ∨ x] ⊆ [t, b].
Hence in view of 4.2, (t∧ x)R′

ix for each i ∈ I. Thus according to 4.3, t∧ x = x and
therefore t � x.
b) Analogously,

y = y ∨ a = y ∨ (t ∧ z) = (y ∨ t) ∧ (y ∨ z).
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The interval [y ∧ z, y] is projectable to the interval [z, z ∨ y] and y ∧ z, y] ⊆ [a, y].
Hence in view of 4.1, zR′

i(z∨y) for each i ∈ I. Then by applying 4.4 we get y = z∨y,
whence z � y.

c) Since L is distributive, if either t > x or z > y then t∧z > a, which is impossible

in view of 4.2 (iii). Thus t = x and z = y. �

5. The relations R and R′

We apply the same assumptions and the same notation as in the previous section.

If a, b ∈ L, a � b and if x, y are as in 4.1, then we write

x = x(a, b), y = y(a, b).

Let p, q ∈ L. We put pRq if

x(p ∧ q, p ∨ q) = p ∨ q.

Further we put pR′q if
y(p ∧ q, p ∨ q) = p ∨ q.

Thus pR′q if and only if pR′
iq for each i ∈ I. Hence we have

5.1. Lemma. R′ is a congruence relation on L.

In view of the definition, the relation R is reflexive and symmetric.

5.2. Lemma. Let p, q ∈ L. Then the following conditions are equivalent:

(i) pRq.

(ii) There exists no interval [u, v] ⊆ L such that [u, v] ⊆ [p,∧q, p ∨ q], u < v and

uR′
iv for each i ∈ I.

�����. Denote p ∧ q = a, p ∨ q = b. Let (i) be valid. Then in view of 4.2,

the condition (ii) is satisfied. Conversely, assume that (ii) holds. Put x(a, b) = x,
y(a, b) = y. If y > a, then by putting [u, v] = [a, y] we arrive at a contradiction with

the condition (ii). Hence y = a. Then 4.1 yields that x = b, whence (i) is valid. �

5.2.1. Corollary. Let a1, a2, b1, b2 ∈ L, a1 � b1 � b2 � a2, a1Ra2. Then b1Rb2.

5.3. Lemma. Let a1, a2, a3 ∈ L, a1 � a2 � a3, a1Ra2, a2Ra3. Then a1Ra3.
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�����. Suppose that [u, v] ⊆ [a1, a3] and uR′v. Denote

u1 = u ∧ a2, v1 = v ∧ a2, u2 = u ∨ a2, v2 = v ∨ a2,
s = v1 ∨ u.

Thus u � s � v. Hence if u < v, then either u < s or s < v.

It is easy to verify that [u, s] is projectable to a subinterval of [a1, a2] (namely, to
the interval [v1 ∧ u, v1]). Hence (v1 ∧ u)R′vi and thus v1 ∧ u = v1. Therefore u = s.
Analogously we obtain the relation s = v. Thus u = v. According to 5.2, a1Ra2. �

5.4. Lemma. Let a1, a2 ∈ L, s ∈ L, a1Ra2. Then (a1 ∨ s)R(a2 ∨ s) and
(a1 ∧ s)R(a2 ∧ s).

�����. If [u, v] is a subinterval of [a1 ∨ s, a2 ∨ s], then [u, v] is projectable
to the interval [a2 ∧ u, a2 ∧ v] and this is a subinterval of [a1, a2]. Hence in view

of 5.2, if uR′v, then u = v. Therefore (a1 ∨ s)R(a2 ∨ s). Similarly we verify that
(a1 ∧ s)R(a2 ∧ s). �

5.5. Lemma. The relation R is transitive.

�����. Let p1, p2, p3 ∈ L, p1Rp2, p2Rp3. Denote

p1 ∧ p2 = u1, p2 ∧ p3 = u2, u1 ∧ u2 = u3,

p1 ∨ p2 = v1, p2 ∨ p3 = v2, v1 ∨ v2 = v3.
In view of 5.4 we have p1Rp1 ∧ p2, thus p1Ru1. Analogously we obtain p2Ru2. The
interval [u3, u1] is projectable to some subinterval of [u2, p2], hence u3Ru1. Similarly

we verify that p1Rv1 and v3Rv1. Thus u3Rv3 by 5.2.1. Since [p1 ∧ p3, p1 ∨ p3] ⊆
[u3, v3], 5.2 yields that p1Rp3. �
From 5.4 and 5.5 we infer

5.6. Lemma. R is a congruence relation on L.

5.7. Lemma. R ∧R′ = Rmin, R ∨R′ = Rmax and R,R′ are permutable.

�����. In view of 5.2 we have R ∧R′ = Rmin. Let a, b ∈ L, a � b. Let x and y
be as in 4.1. Then we have

(1) aRx, aR′y.

Further, x ∧ y = a and x ∨ y = b. Thus in view of the projectability we obtain

(2) xR′b, yRb.

Hence a(R∨R′)b. From this we easily obtain R∨R′ = Rmax. Further, from (1), (2)
and 3.4 we conclude that R and R′ are permutable. �
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����� �� ������� �. Let L ∈ Tα and s0 ∈ L. Let {Li}i∈I be a subset

of F (L, s0) such that card I � α. First we verify that
∨
i∈I

Li exists in the Boolean

algebra F (L, s0). Let us apply the notation as above.

Consider the lattices s0R and s
0
R′ . According to 5.1, 5.6, 5.7 and 3.2 we have

(3) L = (s0)s0R × s0R′ .

According to the definition of R′ we obviously have

(4) s0R′ =
⋂
i∈I

L′
i.

Then (3) and (4) yield

(5) s0R′ =
∧
i∈I

L′
i.

Further, in view of the definition of R, Li ⊆ s0R for each i ∈ I. Let X ∈ F (L, s0)
and suppose that Li ⊆ X for each i ∈ I. Put Y = X ∩ s0R. Then Y ∈ F (L, s0) and

Li ⊆ Y for each i ∈ I. Moreover, Y is a closed sublattice of L.
Let p ∈ s0R. Put a = p ∧ s0 and b = p ∨ s0. Thus a, b ∈ s0R. Hence s

0Rb. In view

of the definition of R there exist xi ∈ [s0, b] (i ∈ I) such that xi ∈ Li and
∨
i∈I

xi = b.

Then all xi belong to Y ; since Y is closed, we get b ∈ Y . By a dual argument (using

Lemma 4.2) we obtain the relation a ∈ Y . Hence, by the convexity of Y , the element
p belongs to Y . Therefore, s0R ⊆ Y . Thus

(6) s0R =
∨
i∈I

Li.

Further, we have to verify that each subset of F (L, s0) having the cardinality � α

possesses the infimum. But this is a consequence of the just proved result concerning

the existence of suprema and of the fact that each Boolean algebra is self-dual. �

5.8. Corollary. Under the assumptions as in Theorem 1 and under the notation
as above we have

L = (s0)

(∨
i∈I

Li

)
×

(∧
i∈I

L′
i

)
.

�����. This is a consequence of (3)−(6). �
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6. On lattices belonging to T ′
σ

Let L be a lattice which belongs to the class T ′
σ. The least element of L will be

denoted by s0. Suppose that for each n ∈ � we have

(1) L = (s0)Ln × L′
n.

We apply analogous notation as in Sections 4 and 5 above (with the distinction that

we now have � instead of I).

6.1. Lemma. Suppose that Ln(1) ∩ Ln(2) = {s0} whenever n(1) and n(2) are
distinct positive integers. For each n ∈ � let xn ∈ Ln and let x =

∨
n∈�

xn. Then

x(Ln) = xn.

�����. We have xn(Ln) = xn. Since xn � x, we obtain xn � x(Ln). Further,
from x = x(Ln) ∨ x(L′

n) we get x(Ln) � x.

Clearly, x(Ln) ∧ xm = s0 for each m ∈ � \ {n}, thus

x(Ln) = x(Ln) ∧ x = x(Ln) ∧
( ∨

m∈�
xm

)
=

∨
m∈�
(x(Ln) ∧ xm) = x(Ln) ∧ xn.

Summarizing, we obtain x(Ln) = xn. �

6.2. Lemma. s0R is the set of all elements x ∈ L which can be expressed in the

form x =
∨

n∈�
xn, where xn ∈ Ln for each n ∈ �.

�����. This is a consequence of 5.6 and of the fact that s0 is the least element
of s0R. �

6.3. Lemma. Let (Ln)n∈� be as in 6.1. Then the mapping

ϕ0 : s0R →
∏
n∈�

Ln,

where ϕ0(x) = (. . . , x(Ln), . . .)n∈�, is an internal direct product decomposition of
s0R with the central element s

0.

�����. In view of the definition, ϕ0 is a homomorphism. According to 6.1 and
6.2, ϕ0 is surjective and injective. �
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If A and B are elements of F (L, s0) such that A ⊆ B, then there exists C ∈
F (L, s0) with B = (s0)A× C; moreover, C is uniquely determined. We denote

C = B −A.

In fact, C is the relative complement of the element A in the interval [{s0}, B] of the
Boolean algebra F (L, s0).

We will use Theorem 1 and apply the method which is analogous to the well-known
argument of the proof of Cantor-Bernstein Theorem of set theory.

6.4. Lemma. Let A,B be elements of F (L, s0) such that A ⊇ B. Assume that

B is isomorphic to L. Then A is isomorphic to L as well.

�����. There exists an isomorphism f of L onto B. Put A1 = L, A2 = A.
Inductively we define

An+2 = f(An)

for each n ∈ �. Hence

(2) An+2 
 An for each n ∈ � ,

where 
 is the relation of isomorphism between lattices.
By induction we can verify that An ∈ F (L, s0) and

(3) An ⊇ An+1 for each n ∈ � .

For n ∈ � we denote

(4) Ln = An −An+1.

Then (2) yields

(5) Ln+2 
 Ln for each n ∈ � .

If n(1) and n(2) are distinct positive integers, then

(6) Ln(1) ∩ Ln(2) = {s0}.

Put

C =
∞⋂

n=1

An.
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According to Theorem 1, C belongs to F (L, s0). Consider the complement C′ of C
in F (L, s0).

From (4) we obtain

An+1 ⊆ L′
n for each m ∈ � .

Hence according to (3),

C ⊆
⋂
n∈�

L′
n.

Let x ∈
⋂

n∈�
L′

n. Then x ∈ A1. Suppose that x ∈ An for some n ∈ �. Since x ∈ L′
n

we get x(Ln) = s0 and thus, in view of (4), x ∈ An+1. Therefore we obtain by
induction that x belongs to C. Summarizing we have

C =
⋂
n∈�

L′
n.

Hence according to Theorem 1 we obtain

L = (s0)s0R × C.

Moreover, in view of 6.3, we get an internal direct product decomposition with the

central element s0

(7) ϕ1 : L→
( ∞∏

n∈�
Ln

)
× C.

Since A = A1, we obtain analogously an internal direct product decomposition

with the central element s0,

(8) ϕ2 : A→
( ∞∏

n=2

Ln

)
× C.

Now, (7), (8) and (5) yield that L and A are isomorphic. �

����� �� ������� 	. Let the assumptions of Theorem 2 be valid. The
least element of L1 and L2 will be denoted by s0 or by t0, respectively. In view of the

assumption there exist A1 ∈ F (L1, s0), B1 ∈ F (L2, t0), an isomorphism f of L1 onto
B1 and an isomorphism g of L2 onto A1. Put A2 = g(B1). Then A2 ∈ F (A1, s0),

whence A2 ∈ F (L1, s0) and A2 is isomorphic to B1. Thus A2 is isomorphic to L1.
Then in view of 6.4, A1 is isomorphic to L1. Hence L1 is isomorphic to L2. �
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If L is a Boolean algebra, then each interval of L is isomorphic to a direct factor

of L. Further, each Boolean algebra is infinitely distributive and contains the least
element. Hence Theorem 2 yields as a corollary the following result:

6.5. Theorem. (Sikorski [13]; cf. also Sikorski [14] and Tarski [15].) Let L1 and
L2 be σ-complete Boolean algebras. Suppose that

(i) there exists a2 ∈ L2 such that L1 is isomorphic to the interval [0, a2] of L2;

(ii) there exists a1 ∈ L1 such that L2 is isomorphic to the interval [0, a1] of L1.
Then L1 and L2 are isomorphic.
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