DIRECT PRODUCT DECOMPOSITIONS OF INFINITELY DISTRIBUTIVE LATTICES

JÁN JAKUBÍK, Košice

(Received August 17, 1998)

Abstract. Let α be an infinite cardinal. Let \mathcal{T}_{α} be the class of all lattices which are conditionally α -complete and infinitely distributive. We denote by \mathcal{T}'_{σ} the class of all lattices X such that X is infinitely distributive, σ -complete and has the least element. In this paper we deal with direct factors of lattices belonging to \mathcal{T}_{α} . As an application, we prove a result of Cantor-Bernstein type for lattices belonging to the class \mathcal{T}'_{σ} .

Keywords: direct product decomposition, infinite distributivity, conditional $\alpha\text{-completeness}$

MSC 2000: 06B35, 06D10

1. INTRODUCTION

Let L be a partially ordered set and $s^0 \in L$. The notion of the internal direct product decomposition of L with the central element s^0 was investigated in [10] (the definition is recalled in Section 2 below).

We denote by $F(L, s^0)$ the set of all internal direct factors of L with the central element s^0 ; this set is partially ordered by the set-theoretical inclusion. In the present paper we suppose that L is a lattice. Then $F(L, s^0)$ is a Boolean algebra (cf. Section 3).

Let α be an infinite cardinal. We denote by \mathcal{T}_{α} the class of all lattices which are conditionally α -complete and infinitely distributive. We prove

Theorem 1. Let $L \in \mathcal{T}_{\alpha}$ and $s^0 \in L$. Then the Boolean algebra $F(L, s^0)$ is α -complete.

In the particular case when the lattice L is bounded we denote by Cen L the center of L. For each $s^0 \in L$, $F(L, s^0)$ is α -complete and if Cen L is a closed sublattice of

L, then Cen L is α -complete and thus $F(L, s^0)$ is α -complete as well. Some sufficient conditions under which the center of a complete lattice is closed were found in [2], [11], [12], [13], [14]; these results were generalized in [4]. For related results cf. also [3].

We denote by \mathcal{T}'_{σ} the class of all lattices L belonging to \mathcal{T}_{\aleph_0} which have the least element and are σ -complete.

As an application of Theorem 1 we prove the following result of Cantor-Bernstein type:

Theorem 2. Let L_1 and L_2 be lattices belonging to \mathcal{T}'_{σ} . Suppose that

(i) L_1 is isomorphic to a direct factor of L_2 ;

(ii) L_2 is isomorphic to a direct factor of L_1 .

Then L_1 is isomorphic to L_2 .

This generalizes a theorem of Sikorski [15] on σ -complete Boolean algebras (proven independently also by Tarski [17]).

Some results of Cantor-Bernstein type for lattice ordered groups and for MV-algebras were proved in [5], [6], [7], [8].

2. INTERNAL DIRECT FACTORS

Assume that L and L_i $(i \in I)$ are lattices and that φ is an isomorphism of L onto the direct product of lattices L_i ; then we say that

(1)
$$\varphi \colon L \to \prod_{i \in I} L_i$$

is a direct product decomposition of L; the lattices L_i are called direct factors of L.

For $x \in L$ and $i \in I$ we denote by $x(L_i, \varphi)$ the component of x in L_i , i.e.,

$$x(L_i,\varphi) = (\varphi(x))_i.$$

Let $s^0 \in L$ and $i \in I$. Put

$$L_i^{s^0} = \{y \in L \colon y(L_j, \varphi) = s^0(L_j, \varphi) \text{ for each } j \in I \setminus \{i\}\}.$$

Then for each $x \in L$ and each $i \in I$ there exists a uniquely determined element y_i in $L_i^{s^0}$ such that

$$x(L_i,\varphi) = y_i(L_i,\varphi).$$

The mapping

(2)
$$\varphi^{s^0} \colon L \to \prod_{i \in I} L_i^{s^0}$$

defined by

$$\varphi^{s^0}(x) = (\dots, y_i, \dots)_{i \in I}$$

is also a direct product decomposition of L. Moreover, the following conditions are valid:

(i) For each $i \in I$, $L_i^{s^0}$ is a closed convex sublattice of L and $s^0 \in L_i^{s^0}$.

(ii) For each $i \in I$, $L_i^{s^0}$ is isomorphic to L_i .

(ii) If $i \in I$ and $x \in L_i^{s^0}$, then $x(L_i^{s^0}, \varphi^{s^0}) = x$. (iv) If $i \in I$, $j \in I \setminus \{i\}$ and $x \in L_j^{s^0}$, then $x(L_i^{s^0}, \varphi^{s^0}) = s^0$.

We say that (2) is an internal direct product decomposition of L with the central element s^0 ; the sublattices $L_i^{s^0}$ are called internal direct factors of L with the central element s^0 .

The condition (ii) yields that if we are interested only in considerations "up to isomorphisms", then we need not distinguish between (1) and (2).

We denote by $F(L, s^0)$ the collection of all internal direct factors of L with the central element s^0 . Then in view of (i), $F(L, s^0)$ is a set. On the other hand, it is obvious that the collection of all direct factors of L is a proper class.

3. AUXILIARY RESULTS

Assume that the relation (2) is valid. Let I_1 and I_2 be nonempty subsets of I such that $I_1 \cap I_2 = \emptyset$ and $I_1 \cup I_2 = I$. Denote

$$L(I_1) = \{ x \in L : \ x(L_i^{s^0}, \varphi^{s^0}) = s^0 \text{ for each } i \in I_2 \},\$$
$$L(I_2) = \{ x \in L : \ x(L_i^{s^0}, \varphi^{s^0}) = s^0 \text{ for each } i \in I_1 \}.$$

Consider the mapping

(3)
$$\psi \colon L \to L(I_1) \times L(I_2)$$

defined by $\psi(x) = (x^1, x^2)$, where

$$x^{1} = (\dots, x(L_{i}^{s^{0}}, \varphi^{s^{0}}), \dots)_{i \in I_{1}}, \quad x^{2} = (\dots, x(L_{i}^{s^{0}}, \varphi^{s^{0}}), \dots)_{i \in I_{2}}.$$

Then (3) is also an internal direct product decomposition of L with the central element s^0 .

Further suppose that we have another internal direct product decomposition of Lwith the central element s^0 ,

(4)
$$\psi^{s^0} \colon L \to \prod_{j \in J} P_j^{s^0}.$$

3.1. Proposition. Let (2) and (4) be valid. Suppose that there are $i(1) \in I$ and $j(1) \in J$ such that $L_{i(1)}^{s^0} = P_{j(1)}^{s^0}$. Then for each $x \in L$ the components of x in $L_{i(1)}^{s^0}$ and $P_{i(1)}^{s^0}$ are equal, i.e.,

$$x(L^{s^0}_{i(1)}, \varphi^{s^0}) = x(P^{s^0}_{j(1)}, \psi^{s^0}).$$

Proof. This is a consequence of Theorem (A) in [10].

We denote by Con L the set of all congruence relations on L; this set is partially ordered in the usual way. R_{\min} and R_{\max} denote the least element of Con L or the greatest element of Con L, respectively. For $x \in L$ and $R \in \text{Con } L$ we put $x_R = \{y \in L : yRx\}.$

From the well-known theorem concerning direct products and congruence relations of universal algebras and from the definition of the internal direct product decomposition of a lattice we immediately obtain:

3.2. Proposition. Let R(1) and R(2) be elements of Con L such that they are permutable, $R(1) \wedge R(2) = R_{\min}$, $R(1) \vee R(2) = R_{\max}$. Then the mapping

$$\varphi\colon L \to s^0_{R(1)} \times s^0_{R(2)}$$

defined by

$$\varphi(x) = (x^1, x^2), \text{ where } \{x^1\} = x_{R(2)} \cap s^0_{R(1)}, \{x^2\} = x_{R(1)} \cap s^0_{R(2)}$$

is an internal direct product decomposition of L with the central element s^0 .

3.3. Definition. Congruence relations R(1) and R(2) on L are called *interval* permutable if, whenever [a, b] is an interval in L, then there are $x_1, x_2 \in [a, b]$ such that $aR(1)x_1R(2)b$ and $aR(2)x_2R(1)b$.

The following assertion is easy to verify (cf. also [1], p. 15, Exercise 13).

3.4. Lemma. Let R(1) and R(2) be interval permutable congruence relations on L. Then

(i) $R(1) \lor R(2) = R_{\max};$

(ii) R(1) and R(2) are permutable.

If the relation (2) from Section 2 above is valid, then in view of 2.1, it suffices to express this fact by writing

(5)
$$L = (s^0) \prod_{i \in I} L_i,$$

where L_i has the same meaning as $L_i^{s^0}$ in (2) of Section 2.

344

Also, if $x \in L$, then instead of $x(L_i^{s^0}, \varphi^{s^0})$ we write simply $x(L_i)$.

If A, B are elements of $F(L, s^0)$ and $x \in L$, then the symbol x(A)(B) means (x(A))(B).

Let the system (F, L, s^0) be partially ordered by the set-theoretical inclusion.

3.5. Lemma. $F(L, s^0)$ is a Boolean algebra.

P r o o f. This is a consequence of Proposition 3.14 in [9].

It is obvious that if L is bounded, then $F(L, s^0)$ is isomorphic to the center of L. Further, it is easy to verify that if $A, B \in F(L, s^0)$ and $L = (s^0)A \times B$, then B is the complement of A in the Boolean algebra $F(L, s^0)$; we denote B = A'.

4. α -completeness and infinite distributivity

Let α be an infinite cardinal. In this section we suppose that L is a lattice belonging to \mathcal{T}_{α} and that s^0 is an element of L.

Let I be a set with card $I = \alpha$ and for each $i \in I$ let L_i be an element of $F(L, s^0)$. Thus for each $i \in I$ we have

(1)
$$L = (s^0)L_i \times L'_i$$

For each $x \in L$ and each $i \in L$ we denote

$$x_i = x(L_i), \quad x'_i = x(L'_i).$$

Let $x, y \in L$ and $i \in I$. We put xR_iy if $x'_i = y'_i$, similarly we set xR'_iy if $x_i = y_i$. Then R_i and R'_i belong to Con L, $R_i \wedge R'_i = R_{\min}$ and $R_i \vee R'_i = R_{\max}$. Moreover, R_i and R'_i are permutable.

4.1. Lemma. Let $a, b \in L$, $a \leq b$. There exist elements x, y, x^i $(i \in I)$ in [a, b] such that

- (i) $x^i R_i a$ for each $i \in I$;
- (ii) yR'_ia for each $i \in I$;
- (iii) $x = \bigvee_{i \in I} x^i$, $x \wedge y = a$ and $x \vee y = b$.

Proof. Let $i \in I$. There exist uniquely determined elements x^i and y^i in L such that

$$x^i \in a_{R_i} \cap b_{R'_i}, \quad y^i \in a_{R'_i} \cap b_{R_i}.$$

345

Hence

$$(x^i)'_i = a'_i, \quad (x^i)_i = b_i,$$

 $(y^i)'_i = b'_i, \quad (y^i)_i = a_i.$

Then clearly

(2)
$$x^i \wedge y^i = a,$$

$$(3) x^i \vee y^i = b.$$

Denote

$$x = \bigvee_{i \in I} x^i, \quad y = \bigwedge_{i \in I} y^i;$$

these elements exist in L since L is α -complete. By applying the infinite distributivity of L we get

$$y \wedge x = y \wedge \left(\bigvee_{i \in I} x^i\right) = \bigvee_{i \in I} (y \wedge x^i) = \bigvee_{i \in I} \bigwedge_{j \in I} (y^j \wedge x^i).$$

For j = i we have $y^j \wedge x^i = a$ (cf. (2)). Hence for each $i \in I$ the relation

$$\bigwedge_{j\in I} (y^j \wedge x^i) = a$$

is valid. Thus

$$(4) y \wedge x = a$$

Further we obtain

$$x \lor y = x \lor \left(\bigwedge_{i \in I} y^i\right) = \bigwedge_{i \in I} (x \lor y^i) = \bigwedge_{i \in I} \bigvee_{j \in I} (x^j \lor y^i).$$

For j = i we have $x^j \vee y^i = b$ (cf. (3)). Hence

$$\bigvee_{j \in I} (x^j \lor y^i) = b$$

for each $i \in I$. Therefore

(5)
$$x \lor y = b.$$

The definition of x and the relations (4), (5) yield that (iii) is valid. Now, in view of the definition of x^i , the condition (i) is satisfied. Let $i \in I$; then $y^i R'_i a$. Since $y \in [a, y^i]$, we obtain $yR'_i a$. Thus (ii) holds.

By an argument dual to that applied in the proof of 4.1 we obtain:

4.2. Lemma. Let $a, b \in L$, $a \leq b$. There exist elements z, t, z^i $(i \in I)$ in [a, b] such that

- (i) $z^i R_i b$ for each $i \in I$;
- (ii) $tR'_i b$ for each $i \in I$;
- (iii) $z = \bigwedge_{i \in I} z^i$, $z \lor t = b$ and $z \land t = a$.

4.3. Lemma. Let a, b, x and x^i $(i \in I)$ be as in 4.1. Suppose that $u, v \in [a, x]$, $u \leq v$ and uR'_iv for each $i \in I$. Then u = v.

Proof. By way of contradiction, assume that u < v. From the definition of x we conclude that

$$v = u \lor (v \land x) = u \lor \left(v \land \bigvee_{i \in I} x^i \right) = \bigvee_{i \in I} (u \lor (v \land x^i)).$$

Hence there exists $i \in I$ such that $u < u \lor (v \land x^i)$. From $aR_i x^i$ we obtain

$$u \lor (v \land a) R_i(u \lor (v \land x^i)),$$

whence $uR_i(u \vee (v \wedge x^i))$. At the same time, since $u \vee (v \wedge x^i)$ belongs to the interval [u, v] and uR'_iv , we get $rR'_i(u \vee (v \wedge x^i))$. Therefore $u = u \vee (v \wedge x^i)$, which is a contradiction.

Analogously, by applying 4.2 we obtain

4.4. Lemma. Let a, b and z be as in 4.2. Suppose that $u, v \in [z, b]$, $u \leq v$ and uR'_iv for each $i \in I$. Then u = v.

4.5. Lemma. Let a, b, x, y, z and t be as in 4.1 and 4.2. Then t = x and z = y. Proof. a) We have

$$t = t \land b = t \land (x \lor y) = (t \land x) \lor (t \land y)$$

The interval $[t \wedge x, x]$ is projectable to the interval $[t, t \vee x]$ and $[t, t \vee x] \subseteq [t, b]$. Hence in view of 4.2, $(t \wedge x)R'_i x$ for each $i \in I$. Thus according to 4.3, $t \wedge x = x$ and therefore $t \ge x$.

b) Analogously,

$$y = y \lor a = y \lor (t \land z) = (y \lor t) \land (y \lor z).$$

The interval $[y \land z, y]$ is projectable to the interval $[z, z \lor y]$ and $y \land z, y] \subseteq [a, y]$. Hence in view of 4.1, $zR'_i(z \lor y)$ for each $i \in I$. Then by applying 4.4 we get $y = z \lor y$, whence $z \ge y$.

c) Since L is distributive, if either t > x or z > y then $t \land z > a$, which is impossible in view of 4.2 (iii). Thus t = x and z = y.

5. The relations R and R'

We apply the same assumptions and the same notation as in the previous section. If $a, b \in L$, $a \leq b$ and if x, y are as in 4.1, then we write

$$x = x(a, b), \quad y = y(a, b).$$

Let $p, q \in L$. We put pRq if

$$x(p \land q, p \lor q) = p \lor q.$$

Further we put pR'q if

$$y(p \land q, p \lor q) = p \lor q.$$

Thus pR'q if and only if pR'_iq for each $i \in I$. Hence we have

5.1. Lemma. R' is a congruence relation on L.

In view of the definition, the relation R is reflexive and symmetric.

5.2. Lemma. Let $p, q \in L$. Then the following conditions are equivalent: (i) pRq.

(ii) There exists no interval $[u, v] \subseteq L$ such that $[u, v] \subseteq [p, \land q, p \lor q]$, u < v and $uR'_i v$ for each $i \in I$.

Proof. Denote $p \wedge q = a$, $p \vee q = b$. Let (i) be valid. Then in view of 4.2, the condition (ii) is satisfied. Conversely, assume that (ii) holds. Put x(a, b) = x, y(a, b) = y. If y > a, then by putting [u, v] = [a, y] we arrive at a contradiction with the condition (ii). Hence y = a. Then 4.1 yields that x = b, whence (i) is valid. \Box

5.2.1. Corollary. Let $a_1, a_2, b_1, b_2 \in L$, $a_1 \leq b_1 \leq b_2 \leq a_2$, a_1Ra_2 . Then b_1Rb_2 .

5.3. Lemma. Let $a_1, a_2, a_3 \in L$, $a_1 \leq a_2 \leq a_3$, a_1Ra_2 , a_2Ra_3 . Then a_1Ra_3 .

Proof. Suppose that $[u, v] \subseteq [a_1, a_3]$ and uR'v. Denote

$$u_1 = u \wedge a_2, \quad v_1 = v \wedge a_2, \quad u_2 = u \vee a_2, \quad v_2 = v \vee a_2,$$
$$s = v_1 \vee u.$$

Thus $u \leq s \leq v$. Hence if u < v, then either u < s or s < v.

It is easy to verify that [u, s] is projectable to a subinterval of $[a_1, a_2]$ (namely, to the interval $[v_1 \wedge u, v_1]$). Hence $(v_1 \wedge u)R'v_i$ and thus $v_1 \wedge u = v_1$. Therefore u = s. Analogously we obtain the relation s = v. Thus u = v. According to 5.2, a_1Ra_2 .

5.4. Lemma. Let $a_1, a_2 \in L$, $s \in L$, a_1Ra_2 . Then $(a_1 \vee s)R(a_2 \vee s)$ and $(a_1 \wedge s)R(a_2 \wedge s)$.

Proof. If [u, v] is a subinterval of $[a_1 \lor s, a_2 \lor s]$, then [u, v] is projectable to the interval $[a_2 \land u, a_2 \land v]$ and this is a subinterval of $[a_1, a_2]$. Hence in view of 5.2, if uR'v, then u = v. Therefore $(a_1 \lor s)R(a_2 \lor s)$. Similarly we verify that $(a_1 \land s)R(a_2 \land s)$.

5.5. Lemma. The relation R is transitive.

Proof. Let $p_1, p_2, p_3 \in L$, p_1Rp_2, p_2Rp_3 . Denote

$$p_1 \wedge p_2 = u_1, \quad p_2 \wedge p_3 = u_2, \quad u_1 \wedge u_2 = u_3,$$

 $p_1 \vee p_2 = v_1, \quad p_2 \vee p_3 = v_2, \quad v_1 \vee v_2 = v_3.$

In view of 5.4 we have $p_1Rp_1 \wedge p_2$, thus p_1Ru_1 . Analogously we obtain p_2Ru_2 . The interval $[u_3, u_1]$ is projectable to some subinterval of $[u_2, p_2]$, hence u_3Ru_1 . Similarly we verify that p_1Rv_1 and v_3Rv_1 . Thus u_3Rv_3 by 5.2.1. Since $[p_1 \wedge p_3, p_1 \vee p_3] \subseteq [u_3, v_3]$, 5.2 yields that p_1Rp_3 .

From 5.4 and 5.5 we infer

5.6. Lemma. R is a congruence relation on L.

5.7. Lemma. $R \wedge R' = R_{\min}, R \vee R' = R_{\max}$ and R, R' are permutable.

Proof. In view of 5.2 we have $R \wedge R' = R_{\min}$. Let $a, b \in L$, $a \leq b$. Let x and y be as in 4.1. Then we have

Further, $x \wedge y = a$ and $x \vee y = b$. Thus in view of the projectability we obtain

Hence $a(R \vee R')b$. From this we easily obtain $R \vee R' = R_{\text{max}}$. Further, from (1), (2) and 3.4 we conclude that R and R' are permutable.

Proof of Theorem 1. Let $L \in \mathcal{T}_{\alpha}$ and $s^0 \in L$. Let $\{L_i\}_{i \in I}$ be a subset of $F(L, s^0)$ such that card $I \leq \alpha$. First we verify that $\bigvee_{i \in I} L_i$ exists in the Boolean algebra $F(L, s^0)$. Let us apply the notation as above.

Consider the lattices s_R^0 and $s_{R'}^0$. According to 5.1, 5.6, 5.7 and 3.2 we have

$$L = (s^0)s^0_R \times s^0_{R'}.$$

According to the definition of R' we obviously have

(4)
$$s_{R'}^0 = \bigcap_{i \in I} L'_i.$$

Then (3) and (4) yield

(5)
$$s_{R'}^0 = \bigwedge_{i \in I} L'_i.$$

Further, in view of the definition of R, $L_i \subseteq s_R^0$ for each $i \in I$. Let $X \in F(L, s^0)$ and suppose that $L_i \subseteq X$ for each $i \in I$. Put $Y = X \cap s_R^0$. Then $Y \in F(L, s^0)$ and $L_i \subseteq Y$ for each $i \in I$. Moreover, Y is a closed sublattice of L.

Let $p \in s_R^0$. Put $a = p \wedge s^0$ and $b = p \vee s^0$. Thus $a, b \in s_R^0$. Hence s^0Rb . In view of the definition of R there exist $x^i \in [s^0, b]$ $(i \in I)$ such that $x^i \in L_i$ and $\bigvee_{i \in I} x^i = b$.

Then all x^i belong to Y; since Y is closed, we get $b \in Y$. By a dual argument (using Lemma 4.2) we obtain the relation $a \in Y$. Hence, by the convexity of Y, the element p belongs to Y. Therefore, $s_R^0 \subseteq Y$. Thus

(6)
$$s_R^0 = \bigvee_{i \in I} L_i.$$

Further, we have to verify that each subset of $F(L, s^0)$ having the cardinality $\leq \alpha$ possesses the infimum. But this is a consequence of the just proved result concerning the existence of suprema and of the fact that each Boolean algebra is self-dual. \Box

5.8. Corollary. Under the assumptions as in Theorem 1 and under the notation as above we have

$$L = (s^0) \left(\bigvee_{i \in I} L_i \right) \times \left(\bigwedge_{i \in I} L'_i \right).$$

Proof. This is a consequence of (3)-(6).

Let L be a lattice which belongs to the class \mathcal{T}'_{σ} . The least element of L will be denoted by s^0 . Suppose that for each $n \in \mathbb{N}$ we have

(1)
$$L = (s^0)L_n \times L'_n.$$

We apply analogous notation as in Sections 4 and 5 above (with the distinction that we now have \mathbb{N} instead of I).

6.1. Lemma. Suppose that $L_{n(1)} \cap L_{n(2)} = \{s^0\}$ whenever n(1) and n(2) are distinct positive integers. For each $n \in \mathbb{N}$ let $x^n \in L_n$ and let $x = \bigvee_{n \in \mathbb{N}} x^n$. Then $x(L_n) = x^n$.

Proof. We have $x^n(L_n) = x^n$. Since $x^n \leq x$, we obtain $x^n \leq x(L_n)$. Further, from $x = x(L_n) \lor x(L'_n)$ we get $x(L_n) \leq x$.

Clearly, $x(L_n) \wedge x^m = s^0$ for each $m \in \mathbb{N} \setminus \{n\}$, thus

$$x(L_n) = x(L_n) \land x = x(L_n) \land \left(\bigvee_{m \in \mathbb{N}} x^m\right) = \bigvee_{m \in \mathbb{N}} (x(L_n) \land x^m) = x(L_n) \land x^n.$$

Summarizing, we obtain $x(L_n) = x^n$.

6.2. Lemma. s_R^0 is the set of all elements $x \in L$ which can be expressed in the form $x = \bigvee_{n \in \mathbb{N}} x^n$, where $x^n \in L_n$ for each $n \in \mathbb{N}$.

Proof. This is a consequence of 5.6 and of the fact that s^0 is the least element of s_R^0 .

6.3. Lemma. Let $(L_n)_{n \in \mathbb{N}}$ be as in 6.1. Then the mapping

$$\varphi^0\colon s_R^0 \to \prod_{n \in \mathbb{N}} L_n,$$

where $\varphi^0(x) = (\dots, x(L_n), \dots)_{n \in \mathbb{N}}$, is an internal direct product decomposition of s_R^0 with the central element s^0 .

Proof. In view of the definition, φ^0 is a homomorphism. According to 6.1 and 6.2, φ^0 is surjective and injective.

351

If A and B are elements of $F(L, s^0)$ such that $A \subseteq B$, then there exists $C \in F(L, s^0)$ with $B = (s^0)A \times C$; moreover, C is uniquely determined. We denote

$$C = B - A.$$

In fact, C is the relative complement of the element A in the interval $[\{s^0\}, B]$ of the Boolean algebra $F(L, s^0)$.

We will use Theorem 1 and apply the method which is analogous to the well-known argument of the proof of Cantor-Bernstein Theorem of set theory.

6.4. Lemma. Let A, B be elements of $F(L, s^0)$ such that $A \supseteq B$. Assume that B is isomorphic to L. Then A is isomorphic to L as well.

Proof. There exists an isomorphism f of L onto B. Put $A_1 = L$, $A_2 = A$. Inductively we define

$$A_{n+2} = f(A_n)$$

for each $n \in \mathbb{N}$. Hence

(2)
$$A_{n+2} \simeq A_n \quad \text{for each } n \in \mathbb{N}$$

where \simeq is the relation of isomorphism between lattices.

By induction we can verify that $A_n \in F(L, s^0)$ and

(3)
$$A_n \supseteq A_{n+1}$$
 for each $n \in \mathbb{N}$

For $n \in \mathbb{N}$ we denote

$$(4) L_n = A_n - A_{n+1}.$$

Then (2) yields

(5)
$$L_{n+2} \simeq L_n \quad \text{for each } n \in \mathbb{N}.$$

If n(1) and n(2) are distinct positive integers, then

(6)
$$L_{n(1)} \cap L_{n(2)} = \{s^0\}.$$

Put

$$C = \bigcap_{n=1}^{\infty} A_n.$$

According to Theorem 1, C belongs to $F(L, s^0)$. Consider the complement C' of C in $F(L, s^0)$.

From (4) we obtain

$$A_{n+1} \subseteq L'_n$$
 for each $m \in \mathbb{N}$.

Hence according to (3),

$$C \subseteq \bigcap_{n \in \mathbb{N}} L'_n$$

Let $x \in \bigcap_{n \in \mathbb{N}} L'_n$. Then $x \in A_1$. Suppose that $x \in A_n$ for some $n \in \mathbb{N}$. Since $x \in L'_n$ we get $x(L_n) = s^0$ and thus, in view of (4), $x \in A_{n+1}$. Therefore we obtain by induction that x belongs to C. Summarizing we have

$$C = \bigcap_{n \in \mathbb{N}} L'_n$$

Hence according to Theorem 1 we obtain

$$L = (s^0)s_R^0 \times C.$$

Moreover, in view of 6.3, we get an internal direct product decomposition with the central element s^0

(7)
$$\varphi^1 \colon L \to \left(\prod_{n \in \mathbb{N}}^{\infty} L_n\right) \times C.$$

Since $A = A_1$, we obtain analogously an internal direct product decomposition with the central element s^0 ,

(8)
$$\varphi^2 \colon A \to \left(\prod_{n=2}^{\infty} L_n\right) \times C$$

Now, (7), (8) and (5) yield that L and A are isomorphic.

Proof of Theorem 2. Let the assumptions of Theorem 2 be valid. The least element of L_1 and L_2 will be denoted by s^0 or by t^0 , respectively. In view of the assumption there exist $A_1 \in F(L_1, s^0)$, $B_1 \in F(L_2, t^0)$, an isomorphism f of L_1 onto B_1 and an isomorphism g of L_2 onto A_1 . Put $A_2 = g(B_1)$. Then $A_2 \in F(A_1, s^0)$, whence $A_2 \in F(L_1, s^0)$ and A_2 is isomorphic to B_1 . Thus A_2 is isomorphic to L_1 . Then in view of 6.4, A_1 is isomorphic to L_1 . Hence L_1 is isomorphic to L_2 .

353

If L is a Boolean algebra, then each interval of L is isomorphic to a direct factor of L. Further, each Boolean algebra is infinitely distributive and contains the least element. Hence Theorem 2 yields as a corollary the following result:

6.5. Theorem. (Sikorski [13]; cf. also Sikorski [14] and Tarski [15].) Let L_1 and L_2 be σ -complete Boolean algebras. Suppose that

(i) there exists $a_2 \in L_2$ such that L_1 is isomorphic to the interval $[0, a_2]$ of L_2 ;

(ii) there exists $a_1 \in L_1$ such that L_2 is isomorphic to the interval $[0, a_1]$ of L_1 . Then L_1 and L_2 are isomorphic.

References

- [1] G. Grätzer: General Lattice Theory. Akademie Verlag, Berlin, 1972.
- [2] S. S. Holland: On Radon-Nikodym Theorem in dimension lattices. Trans. Amer. Math. Soc. 108 (1963), 66–87.
- [3] J. Jakubik: Center of a complete lattice. Czechoslovak Math. J. 23 (1973), 125–138.
- [4] J. Jakubik: Center of a bounded lattice. Matem. časopis 25 (1975), 339–343.
- [5] J. Jakubik: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159–175.
- [6] J. Jakubik: On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221–230.
- [7] J. Jakubik: Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49–56.
- [8] J. Jakubik: Cantor-Bernstein theorem for complete MV-algebras. Czechoslovak Math. J. 49 (1999), 517–526.
- [9] J. Jakubik: Atomicity of the Boolean algebra of direct factors of a directed set. Math. Bohem. 123 (1998), 145–161.
- [10] J. Jakubík, M. Csontóová: Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–378.
- [11] M. F. Janowitz: The center of a complete relatively complemented lattice is a complete sublattice. Proc. Amer. Math. Soc. 18 (1967), 189–190.
- [12] J. Kaplansky: Any orthocomplemented complete modular lattice is a continuous geometry. Ann. Math. 61 (1955), 524–541.
- [13] S. Maeda: On relatively semi-orthocomplemented lattices. Hiroshima Univ. J. Sci. Ser. A 24 (1960), 155–161.
- [14] J. von Neumann: Continuous Geometry. Princeton Univ. Press, New York, 1960.
- [15] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Colloquium Math. 1 (1948), 140–144.
- [16] R. Sikorski: Boolean Algebras. Second Edition, Springer Verlag, Berlin, 1964.
- [17] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@mail.saske.sk.