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ON THE EXTENSION OF EXPONENTIAL POLYNOMIALS
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Abstract. Exponential polynomials are the building bricks of spectral synthesis. In some
cases it happens that exponential polynomials should be extended from subgroups to whole
groups. To achieve this aim we prove an extension theorem for exponential polynomials
which is based on a classical theorem on the extension of homomorphisms.
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Exponential polynomials are the building bricks of spectral synthesis [2]. In some
cases it happens that exponential polynomials should be extended from subgroups

to whole groups. The aim of this paper is to prove an extension theorem for expo-
nential polynomials. The treatment is based on a well-known theorem from algebra:

subgroup homomorphisms of an abelian group into a divisible abelian group can be
extended to homomorphisms of the whole group.

In this paper � denotes the set of complex numbers.
Let G be an abelian group. Homomorphisms of G into the additive group of

complex numbers are called additive functions and homomorphisms of G into the
multiplicative group of nonzero complex numbers are called exponential functions

or simply exponentials. Products of additive functions and exponentials are called
exponential monomials. As the product of exponentials is an exponential, too, hence

the general form of exponential monomials is

x �→ aα1
1 (x)a

α2
2 (x) . . . a

αn
n (x)m(x),

where a1, a2, . . . , an : G→ � are additive functions,m : G→ � is an exponential and

n, α1, α2, . . . , αn are positive integers. If m is identically 1, then we call the function
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a monomial. Linear combinations of monomials are called polynomials and linear

combination of exponential monomials are called exponential polynomials. Hence
exponential polynomials are the elements of the algebra generated by the additive
and the exponential functions.

In some cases we need a more general concept of exponential polynomials: the so-
called generalized exponential polynomials. Here the point is that we use generalized

polynomials instead of polynomials. A generalized polynomial originates from multi-
additive functions. If A : Gn → � is a function, which is a homomorphism in each

variable and is symmetric, then it is called a multi-additive (symmetric) function.
More precisely, it is called an n-additive function. The diagonalization of A is the

function A∗ : G→ � defined by

A∗(x) = A(x, x, . . . , x)

for all x in G. A linear combination of diagonalizations of multi-additive functions is

called a generalized polynomial. Finally, we define generalized exponential monomials
as functions f : G→ � of the form

f(x) =
n∑

i=1

pi(x)mi(x),

where n is a positive integer, pi : G→ � is a generalized polynomial andmi : G→ �

is an exponential (i = 1, 2, . . . , n). It is easy to see that polynomials are generalized

polynomials and exponential polynomials are generalized exponential polynomials,
but in general, the converse is not true. For more about exponential polynomials

and generalized exponential polynomials we refer to [2].

Our main result is based on a classical theorem given below. We exhibit a simple
proof, too, for the sake of completeness (see [1], Volume I., Theorem A.7).

Theorem 1. Let G be an abelian group and let D be a divisible abelian group.
Furthermore, let H be a subgroup of G, and ψ : H → D a homomorphism. Then ψ

can be extended to a homomorphism of G into D, that is, there exists a homomor-

phism Ψ: G→ D such that Ψ(h) = ψ(h) for all h in H .

�����. Let x0 be any element of G not contained in H . We have two possibili-

ties. If nx0 does not belong to H for any n � 2, then we define ψ0(nx0 + h) = ψ(h)
for any integer n and for any h in H . It is easy to see that this definition extends ψ

to a homomorphism of the subgroup

H0 = {nx0 + h : h is in H and n is an integer}.
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In other words, ψ0 : H0 → D is well-defined, it is a homomorphism of H0 into D and

Ψ0(h) = ψ(h) holds for all h in H .
In the opposite case there exists n � 2 for which nx0 belongs to H . In this case

let k denote the smallest n with this property and let z denote a solution of the

equation kz = ψ(kx0). The existence of a z with this property is guaranteed by the
divisibility of D. Then we define ψ0(nx0 + h) = nz + ψ(h) for any integer n and for

any h in H . Here again we see that ψ0 : H0 → D is a well-defined homomorphism
with the extension property: ψ0(h) = ψ(h) holds for any h in H .

Hence we have seen that if H is different from G then ψ can be extended to
a homomorphism of a subgroup, which properly contains H . By applying Zorn’s

lemma the proof is complete. �

From this result we can derive the following one:

Theorem 2. Let G be an abelian group, n a positive integer and let D be a
divisible abelian group. Furthermore, let H be a subgroup of G, and A : Hn →
D an n-additive symmetric function. Then A can be extended to an n-additive,

symmetric mapping of Gn into D, that is, there exists an n-additive symmetric

function A : Gn → D such that A (h1, h2, . . . , hn) = A(h1, h2, . . . , hn) holds for all

h1, h2, . . . , hn in H .

�����. We fix the elements h2, h3, . . . , hn and consider the homomorphism

h �→ A(h, h2, h3, . . . , hn)

of H into D. By virtue of the previous theorem, there is an extension of this
function to a homomorphism of G into D. In other words, there exists a func-

tion A1 : G×H ×H × . . .×H → D which is additive in each variable and satisfies
A1(h, h2, h3, . . . , hn) = A(h, h2, h3, . . . , hn) for all h, h2, h3, . . . , hn inH . Now we con-

tinue this process. We fix the elements g1 in G and h3, h4, . . . , hn in H and consider
the homomorphism h �→ A1(g1, h, h3, h4, . . . , hn) of H into D. Applying Theorem 1

again we get an extension of this homomorphism to a homomorphism of G into D.
It is obvious that continuing this process we arrive at a function An : Gn → D which

is additive in each variable and satisfies An(h1, h2, . . . , hn) = A(h1, h2, . . . , hn) for
all h1, h2, . . . , hn in H . To achieve symmetry, we define

A (x1, x2, . . . , xn) =
1
n!

∑

σ

An(hσ(1), hσ(2), . . . , hσ(n)),

where σ runs through all permutations of the set {1, 2, . . . , n}. Then A possesses all
the desired properties. �
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As the additive group of complex numbers is divisible, by the definition of gener-

alized polynomials we immediately have a corollary.

Corollary 3. Let G be an abelian group, let H be a subgroup of G and let

P : G → � be a generalized polynomial. Then P can be extended to a generalized

polynomial on Gn, that is, there exists a generalized polynomial P : G → � such

that P(h) = P (h) holds for all h in H .

To treat exponential polynomials we need a similar extension theorem for expo-
nential functions. This is a simple corollary of Theorem 1, because the multiplicative

group of nonzero complex numbers is divisible.

Corollary 4. Let G be an abelian group and let H be a subgroup. If m : H → �

is an exponential function, then it has an extension to G, that is, there exists an

exponential function M : G→ � such that M (h) = m(h) holds for all h in H .

Now we can summarize our results in the following theorem.

Theorem 5. Let G be an abelian group and let H be a subgroup of G. Let
f : H → � be a generalized exponential polynomial. Then there exists a general-

ized exponential polynomial extension of f to G, that is, a generalized exponential

polynomial F : G→ � such that F (h) = f(h) for all h in H .

We can apply our extension results to functional equations. Here we present a
result on the extension of the solution of a linear functional equation.

Theorem 6. Let G be an abelian group and let H be a subgroup of G. Let
further n be a positive integer, ai, bi integers with the property that aibj �= ajbi for

any i �= j, and let ci be nonzero real numbers (i = 1, 2, . . . , n). If f : H → � satisfies

the functional equation

(1)
n+2∑

i=1

cif(aix+ biy) = 0

for all x, y in H , then there exists a function F : G→ � satisfying

(2)
n+2∑

i=1

ciF (aix+ biy) = 0

for all x, y in G and F (h) = f(h) for all h in H .
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�����. From Theorem 9.5 and Theorem 9.1 in [2] it follows that for k =

0, 1, . . . , n there exist k-additive symmetric functions Ak : Hk → � such that

f(x) =
n∑

k=0

A∗
k(x)

and

(3) Ak(x, x, . . . , x; y, y, . . . , y)
n+2∑

i=1

cia
j
i b

k−j
i = 0

for all x, y in H and for j = 0, 1, . . . , n, k = j, j+1, . . . , n. (We remark that for k = 0

Hk = H and Ak is a constant. In the argument of Ak in the latter equation there
are j x’s and k − j y’s.) It follows that for any k we have either

Ak(x, x, . . . , x; y, y, . . . , y) = 0

for all x, y in H , or
n+2∑

i=1

cia
j
i b

k−j
i = 0.

In the first case we have that

Ak(x1, x2, . . . , xk) = 0

for all x1, x2, . . . , xk in H , because the diagonalization determines the multiadditive
function uniquely ([2], Lemma 1.6). In the first case we let Ak(x1, x2, . . . , xk) = 0

for any x1, x2, . . . , xk in G. In the latter case we apply Theorem 2, and we denote
by Ak an arbitrary k-additive symmetric extension of Ak to Gk. Then obviously the

functions Ak, k = 0, 1, . . . , n satisfy the system of equations (3) for all x, y in G.
Then by Theorem 2.5 in [2], the function defined by

F (x) =
n∑

k=0

A ∗
k (x)

for all x in G satisfies the functional equation (2) for all x, y in G, and it is clear that

F (h) = f(h) for all h in H . The theorem is proved. �

Of course, the coefficients ai, bi can also be rational numbers provided the group

G is uniquely divisible, that is, if it is a linear space over the rationals.
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