ORDERED PRIME SPECTRA OF BOUNDED DRl-MONOIDS

Jiňí RaChŮNEK, Olomouc

(Received February 17, 1999)

Abstract. Ordered prime spectra of Boolean products of bounded $D R l$-monoids are described by means of their decompositions to the prime spectra of the components.

Keywords: $D R l$-monoid, prime ideal, spectrum, $M V$-algebra
MSC 2000: 06F05, 03G20
R. Cignoli and A. Torrens in [4] described the ordered prime spectrum of an $M V$ algebra which is a weak Boolean product of $M V$-algebras by means of the ordered spectra of those simpler algebras. In [8] and [9] it is shown that $M V$-algebras are in a one-to-one correspondence with $D R l$-monoids from a subclass of the class of bounded $D R l$-monoids. The boundedness of $D R l$-monoids leads to the fact that in any $M V$-algebra the ideals in the sense of $M V$-algebras coincide with those in the sense of $D R l$-monoids, and by [10], Proposition 4, the analogous relationship is also valid for the prime ideals.

In this paper we generalize the result of Cignoli and Torrens in [4] concerning the prime spectra of weak Boolean products of $M V$-algebras to bounded $D R l$-monoids.

Let us recall the notions of an $M V$-algebra and a $D R l$-monoid.
An algebra $A=(A, \oplus, \neg, 0)$ of signature $\langle 2,1,0\rangle$ is called an $M V$-algebra if it satisfies the following identities:

$$
\begin{aligned}
& \text { (MV1) } x \oplus(y \oplus z)=(x \oplus y) \oplus z \\
& \text { (MV2) } x \oplus y=y \oplus x \\
& \text { (MV3) } x \oplus 0=x \\
& \text { (MV4) } \neg \neg x=x \\
& \text { (MV5) } x \oplus \neg 0=\neg 0
\end{aligned}
$$

[^0]$(\mathrm{MV} 6) \neg(\neg x \oplus y) \oplus y=\neg(x \oplus \neg y) \oplus x$.
It is known that $M V$-algebras were introduced by C. C. Chang in [2] and [3] as an algebraic counterpart of the Lukasiewicz infinite valued propositional logic and that by D. Mundici [6] they can be viewed as intervals of commutative lattice ordered groups (l-groups) with a strong order unit.

If A is an $M V$-algebra, set $x \vee y=\neg(\neg x \oplus y) \oplus y$ and $x \wedge y=\neg(\neg x \vee \neg y)$ for any $x, y \in A$. Then $(A, \vee, \wedge, 0, \neg 0)$ is a bounded distributive lattice and $(A, \oplus, \vee, \wedge)$ is a lattice ordered monoid (l-monoid).

An algebra $A=(A,+, 0, \vee, \wedge,-)$ of signature $\langle 2,0,2,2,2\rangle$ is called a DRl-monoid if it satisfies the following conditions:
(1) $(A,+, 0)$ is a commutative monoid;
(2) (A, \vee, \wedge) is a lattice;
(3) $(A,+, 0, \vee, \wedge)$ is an l-monoid, i.e. A satisfies the identities

$$
\begin{aligned}
& x+(y \vee z)=(x+y) \vee(x+z) \\
& x+(y \wedge z)=(x+y) \wedge(x+z)
\end{aligned}
$$

(4) if \leqslant denotes the order induced by (A, \vee, \wedge) then $x-y$ is the smallest element $z \in A$ such that $y+z \geqslant x$ for each $x, y \in A$;
(5) A satisfies the identity

$$
((x-y) \vee 0)+y=x \vee y
$$

$D R l$-monoids were introduced by K. L. N. Swamy in [11], [12], [13] as a common generalization of, among others, commutative l-groups and Brouwerian and Boolean algebras. By [11], the $D R l$-monoids form a variety of algebras of signature $\langle 2,0,2,2,2\rangle$.

If A is a $D R l$-monoid then by [11], Theorem 2 , the lattice (A, \vee, \wedge) is distributive. Moreover, if there exists a greatest element 1 in A then by [5], Theorem 1.2.3, the lattice (A, \vee, \wedge) is bounded also below and 0 is a least element.

Connections between $M V$-algebras and bounded $D R l$-monoids were described in [8] and [9]. In the sequel we will consider bounded $D R l$-monoids as algebras $A=$ $(A,+, 0, \vee, \wedge,-, 1)$ of signature $\langle 2,0,2,2,2,0\rangle$ enlarged by one nullary operation 1. Denote by $\mathcal{D} \mathcal{R} l_{1(\mathrm{i})}$ the equational category of bounded $D R l$-monoids satisfying the condition

$$
\begin{equation*}
1-(1-x)=x \tag{i}
\end{equation*}
$$

and by $\mathcal{M V}$ the equational category of $M V$-algebras. By [9], Theorem 3, the categories $\mathcal{D R} l_{1(\mathrm{i})}$ and $\mathcal{M V}$ are isomorphic.

If A is a bounded $D R l$-monoid and $\emptyset \neq I \subseteq A$ then I is called an ideal in A if

1. $\forall a, b \in I ; a+b \in I$,
2. $\forall a \in I, x \in A ; x \leqslant a \Longrightarrow x \in I$.

For any elements c and d of a $D R l$-monoid A set $c * d=(c-d) \vee(d-c)$. Then we have

Lemma 1. Let A be a $D R l$-monoid and $I \in \mathcal{I}(A)$. If $a, b \in A, a * b \in I$ and $a \in I$, then $b \in I$.

Proof. For any $a, b \in A$ we have

$$
\begin{aligned}
b & \leqslant((a-b)+a) \vee b \leqslant((a-b)+a) \vee((b-a)+a) \\
& =((a-b) \vee(b-a))+a=(a * b)+a .
\end{aligned}
$$

Hence $a * b \in I$ and $a \in I$ imply $b \in I$.
The $M V$-algebra corresponding to a given $D R l$-monoid $A=(A,+, 0, \vee, \wedge,-)$ from $\mathcal{D R} l_{1(\mathrm{i})}$ is $(A, \oplus, \neg, 0)$, where $x \oplus y=x+y$ and $\neg x=1-x$ for any $x, y \in A$. Hence we have ([8]) that ideals in the mutually corresponding $M V$-algebras and $D R l$-monoids coincide. By [10] this is also true for prime ideals, and by [10], Propositions 4 and 5, prime ideals are in both types of algebras just finitely meet irreducible elements of the lattices of ideals. That means, if $\mathcal{I}(A)$ denotes the lattice of ideals of a bounded $D R l$-monoid A then $I \in \mathcal{I}(A)$ is a prime ideal in A if it satisfies

$$
\forall J, K \in \mathcal{I}(A) ; J \cap K=I \Longrightarrow J=I \text { or } K=I
$$

Equivalently, $I \in \mathcal{I}(A)$ is prime if and only if

$$
\forall x, y \in A ; x \wedge y \in I \Longrightarrow x \in I \text { or } y \in I
$$

Let us denote by $\operatorname{Spec} A$ the prime spectrum of A, i.e. the set of all proper prime ideals of a $D R l$-monoid A. Spec A endowed with the spectral (i.e. hull-kernel) topology is a compact topological space by [7], Corollary 6.

Recall that a weak Boolean product (a Boolean product) of an indexed family (A_{x}; $x \in X)$ of algebras over a Boolean space X is a subdirect product $A \leqslant \prod_{x \in X} A_{x}$ such that
(BP1) if $a, b \in A$ then $[[a=b]]=\{x \in X ; a(x)=b(x)\}$ is open (clopen);
(BP2) if $a, b \in A$ and U is a clopen subset of X, then $\left.\left.a\right|_{U} \cup b\right|_{X \backslash U} \in A$, where $\left(\left.\left.a\right|_{U} \cup b\right|_{X \backslash U}\right)(x)=a$ for $x \in U$ and $\left(\left.\left.a\right|_{U} \cup b\right|_{X \backslash U}\right)=b$ for $x \in X \backslash U$. (See [1] or [4].)

The following theorem makes it possible to compose the ordered prime spectrum of a weak Boolean product of bounded $D R l$-monoids from the prime spectra of the
components of this product and so it is a generalization of Theorem 2.3 in [4] for $M V$-algebras.

Theorem 2. Let a $D R l$-monoid A with a greatest element 1 be a weak Boolean product over a Boolean space X of a system $\left(A_{x} ; x \in X\right)$ of DRl-monoids with greatest elements. Then the ordered prime spectrum ($\mathrm{Spec} A, \subseteq$) is isomorphic to the cardinal sum of the ordered prime spectra ($\operatorname{Spec} A_{x}, \subseteq$), $x \in X$.

Proof. Let us denote $I_{x}=\{c \in A ; c(x)=0\}$ for any $x \in X$. Let $P \in \operatorname{Spec} A$ and let us suppose that $I_{x} \nsubseteq P$ for each $x \in X$. Then for any $x \in X$ there exists $b_{x} \in I_{x} \backslash P$. Obviously $X=\bigcup_{x \in X}\left[\left[b_{x}=0\right]\right]$. Hence by condition (BP1) there is a finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X$ such that $X=\bigcup_{i=1}^{n}\left[\left[b_{x_{i}}=0\right]\right]$. Since $0 \leqslant b_{x_{1}} \wedge$ $\ldots \wedge b_{x_{n}} \leqslant b_{x_{i}}$ for each $i=1, \ldots, n$, we have $\left[\left[b_{x_{i}}=0\right]\right] \subseteq\left[\left[b_{x_{1}} \wedge \ldots \wedge b_{x_{n}}=0\right]\right]$, hence $\bigcup_{i=1}^{n}\left[\left[b_{x_{i}}=0\right]\right] \subseteq\left[\left[b_{x_{1}} \wedge \ldots \wedge b_{x_{n}}=0\right]\right]$, and thus $b_{x_{1}} \wedge \ldots \wedge b_{x_{n}}=0 \in P$. By the assumption P is prime, therefore $b_{x_{k}} \in P$ for some $k=1, \ldots, n$, a contradiction. This implies that there exists at least one $x \in X$ such that $I_{x} \subseteq P$. We will show that such x is unique for P. For this, let $x, y \in X, x \neq y$, be such that $I_{x} \subseteq P, I_{y} \subseteq P$. The space X is Boolean, hence there is a clopen subset $V \subseteq X$ such that $x \in V$ and $y \in X \backslash V . A$ is a subalgebra of $\prod_{x \in X} A_{x}$, thus $0=(\ldots, 0, \ldots), 1=(\ldots, 1, \ldots) \in A$. Hence by (BP2), $\left.\left.0\right|_{V} \cup 1\right|_{X \backslash V} \in A$, and so $\left.\left.0\right|_{V} \cup 1\right|_{X \backslash V} \in I_{x} \subseteq P$. Analogously $\left.\left.1\right|_{V} \cup 0\right|_{X \backslash V} \in I_{y} \subseteq P$. Moreover, $\left(\left.\left.0\right|_{V} \cup 1\right|_{X \backslash V}\right)+\left(\left.\left.1\right|_{V} \cup 0\right|_{X \backslash V}\right)=1$, hence $1 \in P$, and therefore $P=A$, a contradiction.

Let us now set $H\left(I_{x}\right)=\left\{P \in \operatorname{Spec} A ; I_{x} \subseteq P\right\}$ for any $x \in X$. Then from the preceding part it is clear that ($\operatorname{Spec} A, \subseteq$) is isomorphic to the cardinal sum of the ordered sets $\left(H\left(I_{x}\right), \subseteq\right), x \in X$. We will show that the ordered sets $\left(H\left(I_{x}\right), \subseteq\right)$ and (Spec A_{x}, \subseteq) are isomorphic for any $x \in X$.

Let $P \in H\left(I_{x}\right)$ and $\varphi_{x}(P)=\{c(x) ; c \in P\}$. We will show that $\varphi_{x}(P) \in \operatorname{Spec} A_{x}$. Since $P \in \mathcal{I}(A)$ and A is a subdirect product of A_{x}, it is obvious that $\varphi_{x}(P) \in \mathcal{I}\left(A_{x}\right)$.

Suppose $1 \in \varphi_{x}(P)$. Then there exists $c \in P$ such that $c(x)=1$. Hence $(c * 1)(x)=$ 0 , thus $c * 1 \in I_{x} \subseteq P$. Moreover, $c \in P$, therefore $1 \in P$ by Lemma 1 , a contradiction with $P \in \operatorname{Spec} A$. Hence $\varphi_{x}(P)$ is a proper ideal in A_{x}.

Let $v, z \in A_{x}$ and $v \wedge z \in \varphi_{x}(P)$. Then there exist $c, d \in A$ and $a \in P$ such that $c(x)=v, d(x)=z$ and $a(x)=v \wedge z=(c \wedge d)(x)$. Hence $((c \wedge d) * a)(x)=0$, that means $(c \wedge d) * a \in I_{x} \subseteq P$, and since $a \in P$, we get $c \wedge d \in P$ by Lemma 1. Therefore $c \in P$ or $d \in P$, and so $v \in \varphi_{x}(P)$ or $z \in \varphi_{x}(P)$. That means $\varphi_{x}(P)$ is a prime ideal in A_{x}.

Therefore the assignment $\varphi_{x}: P \longmapsto \varphi_{x}(P)$ is a mapping from $H\left(I_{x}\right)$ into Spec A_{x}.

Let $Q \in \operatorname{Spec} A_{x}$. Put $\psi_{x}(Q)=\{a \in A ; a(x) \in Q\}$. Clearly $\psi_{x}(Q) \neq A$ and hence it is obvious that $\psi_{x}(Q)$ is a proper ideal in A. Moreover, $I_{x} \subseteq \psi_{x}(Q)$. Let $c, d \in A$ be such that $c \wedge d \in \psi_{x}(Q)$. Then $c(x) \in Q$ or $d(x) \in Q$, therefore $c \in \psi_{x}(Q)$ or $d \in \psi_{x}(Q)$. That means $\psi_{x}(Q) \in H\left(I_{x}\right)$.

From this we get that φ_{x} is a bijection of $H\left(I_{x}\right)$ onto Spec A_{x} and that $\psi_{x}=\varphi_{x}^{-1}$. Moreover, both the bijections respect set inclusion, hence they are order isomorphisms.

Remark. It is obvious that the assertion of Theorem 2 can be modified for any subvariety of the variety $\mathcal{D} \mathcal{R} l_{1}$ of all bounded $D R l$-monoids. For instance, it is valid for $M V$-algebras (see [4], Theorem 2.3) and Brouwerian algebras.

References

[1] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, Berlin, 1977.
[2] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[3] C. C. Chang: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
[4] R. Cignoli, A. Torrens: The poset of prime l-ideals of an abelian l-group with a strong unit. J. Algebra 184 (1996), 604-614.
[5] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký Univ. Olomouc, 1996.
[6] D. Mundici: Interpretation of AF C^{*}-algebras in Lukasiewicz sentential calculus. J. Funct. Analys. 65 (1986), 15-63.
[7] J. Rachůnek: Spectra of autometrized lattice algebras. Math. Bohem. 123 (1998), 87-94.
[8] J. Rachůnek: DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48 (1998), 365-372.
[9] J. Rachuinek: $M V$-algebras are categorically equivalent to a class of $\mathcal{D} \mathcal{R} l_{1(\mathrm{i})}$-semigroups. Math. Bohem. 123 (1998), 437-441.
[10] J. Rachionek: Polars and annihilators in representable $D R l$-monoids and $M V$-algebras (submitted).
[11] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.
[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups II. Math. Ann. 160 (1965), 64-71.
[13] K. L. N. Swamy: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71-74.

Author's address: Jiří Rachůnek, Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: rachunek@risc.upol.cz.

[^0]: Supported by the Council of Czech Government, J 14/98:153100011.

