ORDERED PRIME SPECTRA OF BOUNDED DRI-MONOIDS

JIŘÍ RACHŮNEK, Olomouc

(Received February 17, 1999)

Abstract. Ordered prime spectra of Boolean products of bounded DRl-monoids are described by means of their decompositions to the prime spectra of the components.

Keywords: DRl-monoid, prime ideal, spectrum, MV-algebra

MSC 2000: 06F05, 03G20

R. Cignoli and A. Torrens in [4] described the ordered prime spectrum of an MValgebra which is a weak Boolean product of MV-algebras by means of the ordered spectra of those simpler algebras. In [8] and [9] it is shown that MV-algebras are in a one-to-one correspondence with DRl-monoids from a subclass of the class of bounded DRl-monoids. The boundedness of DRl-monoids leads to the fact that in any MV-algebra the ideals in the sense of MV-algebras coincide with those in the sense of DRl-monoids, and by [10], Proposition 4, the analogous relationship is also valid for the prime ideals.

In this paper we generalize the result of Cignoli and Torrens in [4] concerning the prime spectra of weak Boolean products of MV-algebras to bounded DRl-monoids.

Let us recall the notions of an MV-algebra and a DRl-monoid.

An algebra $A = (A, \oplus, \neg, 0)$ of signature (2, 1, 0) is called an *MV*-algebra if it satisfies the following identities:

Supported by the Council of Czech Government, J 14/98:153100011.

(MV6) $\neg(\neg x \oplus y) \oplus y = \neg(x \oplus \neg y) \oplus x.$

It is known that MV-algebras were introduced by C. C. Chang in [2] and [3] as an algebraic counterpart of the Lukasiewicz infinite valued propositional logic and that by D. Mundici [6] they can be viewed as intervals of commutative lattice ordered groups (*l*-groups) with a strong order unit.

If A is an MV-algebra, set $x \lor y = \neg(\neg x \oplus y) \oplus y$ and $x \land y = \neg(\neg x \lor \neg y)$ for any $x, y \in A$. Then $(A, \lor, \land, 0, \neg 0)$ is a bounded distributive lattice and (A, \oplus, \lor, \land) is a lattice ordered monoid (*l*-monoid).

An algebra $A = (A, +, 0, \lor, \land, -)$ of signature $\langle 2, 0, 2, 2, 2 \rangle$ is called a *DRl-monoid* if it satisfies the following conditions:

(1) (A, +, 0) is a commutative monoid;

(2) (A, \lor, \land) is a lattice;

(3) $(A, +, 0, \lor, \land)$ is an *l*-monoid, i.e. A satisfies the identities

$$x + (y \lor z) = (x + y) \lor (x + z);$$

$$x + (y \land z) = (x + y) \land (x + z);$$

(4) if \leq denotes the order induced by (A, \lor, \land) then x - y is the smallest element $z \in A$ such that $y + z \geq x$ for each $x, y \in A$;

(5) A satisfies the identity

$$((x-y) \lor 0) + y = x \lor y$$

DRl-monoids were introduced by K. L. N. Swamy in [11], [12], [13] as a common generalization of, among others, commutative *l*-groups and Brouwerian and Boolean algebras. By [11], the DRl-monoids form a variety of algebras of signature $\langle 2, 0, 2, 2, 2 \rangle$.

If A is a DRl-monoid then by [11], Theorem 2, the lattice (A, \lor, \land) is distributive. Moreover, if there exists a greatest element 1 in A then by [5], Theorem 1.2.3, the lattice (A, \lor, \land) is bounded also below and 0 is a least element.

Connections between MV-algebras and bounded DRl-monoids were described in [8] and [9]. In the sequel we will consider bounded DRl-monoids as algebras $A = (A, +, 0, \lor, \land, -, 1)$ of signature $\langle 2, 0, 2, 2, 2, 0 \rangle$ enlarged by one nullary operation 1. Denote by $\mathcal{DR}l_{1(i)}$ the equational category of bounded DRl-monoids satisfying the condition

(i)
$$1 - (1 - x) = x$$

and by \mathcal{MV} the equational category of MV-algebras. By [9], Theorem 3, the categories $\mathcal{DR}l_{1(i)}$ and \mathcal{MV} are isomorphic.

If A is a bounded DRl-monoid and $\emptyset \neq I \subseteq A$ then I is called an *ideal* in A if

1. $\forall a, b \in I; a + b \in I$,

 $2. \ \forall a \in I, x \in A; \, x \leqslant a \Longrightarrow x \in I.$

For any elements c and d of a DRl-monoid A set $c * d = (c - d) \lor (d - c)$. Then we have

Lemma 1. Let A be a DRl-monoid and $I \in \mathcal{I}(A)$. If $a, b \in A$, $a * b \in I$ and $a \in I$, then $b \in I$.

Proof. For any $a, b \in A$ we have

$$b \le ((a-b) + a) \lor b \le ((a-b) + a) \lor ((b-a) + a)$$

= ((a-b) \le (b-a)) + a = (a * b) + a.

Hence $a * b \in I$ and $a \in I$ imply $b \in I$.

The MV-algebra corresponding to a given DRl-monoid $A = (A, +, 0, \lor, \land, -)$ from $\mathcal{DR}l_{1(i)}$ is $(A, \oplus, \neg, 0)$, where $x \oplus y = x + y$ and $\neg x = 1 - x$ for any $x, y \in A$. Hence we have ([8]) that ideals in the mutually corresponding MV-algebras and DRl-monoids coincide. By [10] this is also true for prime ideals, and by [10], Propositions 4 and 5, prime ideals are in both types of algebras just finitely meet irreducible elements of the lattices of ideals. That means, if $\mathcal{I}(A)$ denotes the lattice of ideals of a bounded DRl-monoid A then $I \in \mathcal{I}(A)$ is a prime ideal in A if it satisfies

$$\forall J, K \in \mathcal{I}(A); J \cap K = I \Longrightarrow J = I \text{ or } K = I.$$

Equivalently, $I \in \mathcal{I}(A)$ is prime if and only if

$$\forall x, y \in A; x \land y \in I \Longrightarrow x \in I \text{ or } y \in I.$$

Let us denote by Spec A the prime spectrum of A, i.e. the set of all proper prime ideals of a DRl-monoid A. Spec A endowed with the spectral (i.e. hull-kernel) topology is a compact topological space by [7], Corollary 6.

Recall that a weak Boolean product (a Boolean product) of an indexed family $(A_x; x \in X)$ of algebras over a Boolean space X is a subdirect product $A \leq \prod_{x \in X} A_x$ such that

(BP1) if $a, b \in A$ then $[[a = b]] = \{x \in X; a(x) = b(x)\}$ is open (clopen);

(BP2) if $a, b \in A$ and U is a clopen subset of X, then $a|_U \cup b|_{X\setminus U} \in A$, where $(a|_U \cup b|_{X\setminus U})(x) = a$ for $x \in U$ and $(a|_U \cup b|_{X\setminus U}) = b$ for $x \in X \setminus U$. (See [1] or [4].)

The following theorem makes it possible to compose the ordered prime spectrum of a weak Boolean product of bounded DRl-monoids from the prime spectra of the

507

components of this product and so it is a generalization of Theorem 2.3 in [4] for MV-algebras.

Theorem 2. Let a DRl-monoid A with a greatest element 1 be a weak Boolean product over a Boolean space X of a system $(A_x; x \in X)$ of DRl-monoids with greatest elements. Then the ordered prime spectrum (Spec A, \subseteq) is isomorphic to the cardinal sum of the ordered prime spectra (Spec A_x, \subseteq), $x \in X$.

Proof. Let us denote $I_x = \{c \in A; c(x) = 0\}$ for any $x \in X$. Let $P \in \text{Spec } A$ and let us suppose that $I_x \not\subseteq P$ for each $x \in X$. Then for any $x \in X$ there exists $b_x \in I_x \setminus P$. Obviously $X = \bigcup_{x \in X} [[b_x = 0]]$. Hence by condition (BP1) there is a finite subset $\{x_1, \ldots, x_n\} \subseteq X$ such that $X = \bigcup_{i=1}^n [[b_{x_i} = 0]]$. Since $0 \leq b_{x_1} \land \ldots \land b_{x_n} \leq b_{x_i}$ for each $i = 1, \ldots, n$, we have $[[b_{x_i} = 0]] \subseteq [[b_{x_1} \land \ldots \land b_{x_n} = 0]]$, hence $\bigcup_{i=1}^n [[b_{x_i} = 0]] \subseteq [[b_{x_1} \land \ldots \land b_{x_n} = 0]]$, and thus $b_{x_1} \land \ldots \land b_{x_n} = 0 \in P$. By the assumption P is prime, therefore $b_{x_k} \in P$ for some $k = 1, \ldots, n$, a contradiction. This implies that there exists at least one $x \in X$ such that $I_x \subseteq P$. We will show that such x is unique for P. For this, let $x, y \in X, x \neq y$, be such that $I_x \subseteq P$, $I_y \subseteq P$. The space X is Boolean, hence there is a clopen subset $V \subseteq X$ such that $x \in V$ and $y \in X \setminus V$. A is a subalgebra of $\prod_{x \in X} A_x$, thus $0 = (\ldots, 0, \ldots), 1 = (\ldots, 1, \ldots) \in A$. Hence by (BP2), $0|_V \cup 1|_{X \setminus V} \in A$, and so $0|_V \cup 1|_{X \setminus V} \in I_x \subseteq P$. Analogously $1|_V \cup 0|_{X \setminus V} \in I_y \subseteq P$. Moreover, $(0|_V \cup 1|_{X \setminus V}) + (1|_V \cup 0|_{X \setminus V}) = 1$, hence $1 \in P$, and therefore P = A, a contradiction.

Let us now set $H(I_x) = \{P \in \text{Spec } A; I_x \subseteq P\}$ for any $x \in X$. Then from the preceding part it is clear that $(\text{Spec } A, \subseteq)$ is isomorphic to the cardinal sum of the ordered sets $(H(I_x), \subseteq), x \in X$. We will show that the ordered sets $(H(I_x), \subseteq)$ and $(\text{Spec } A_x, \subseteq)$ are isomorphic for any $x \in X$.

Let $P \in H(I_x)$ and $\varphi_x(P) = \{c(x); c \in P\}$. We will show that $\varphi_x(P) \in \text{Spec } A_x$. Since $P \in \mathcal{I}(A)$ and A is a subdirect product of A_x , it is obvious that $\varphi_x(P) \in \mathcal{I}(A_x)$.

Suppose $1 \in \varphi_x(P)$. Then there exists $c \in P$ such that c(x) = 1. Hence (c*1)(x) = 0, thus $c*1 \in I_x \subseteq P$. Moreover, $c \in P$, therefore $1 \in P$ by Lemma 1, a contradiction with $P \in \text{Spec } A$. Hence $\varphi_x(P)$ is a proper ideal in A_x .

Let $v, z \in A_x$ and $v \wedge z \in \varphi_x(P)$. Then there exist $c, d \in A$ and $a \in P$ such that c(x) = v, d(x) = z and $a(x) = v \wedge z = (c \wedge d)(x)$. Hence $((c \wedge d) * a)(x) = 0$, that means $(c \wedge d) * a \in I_x \subseteq P$, and since $a \in P$, we get $c \wedge d \in P$ by Lemma 1. Therefore $c \in P$ or $d \in P$, and so $v \in \varphi_x(P)$ or $z \in \varphi_x(P)$. That means $\varphi_x(P)$ is a prime ideal in A_x .

Therefore the assignment $\varphi_x \colon P \longmapsto \varphi_x(P)$ is a mapping from $H(I_x)$ into Spec A_x .

Let $Q \in \text{Spec } A_x$. Put $\psi_x(Q) = \{a \in A; a(x) \in Q\}$. Clearly $\psi_x(Q) \neq A$ and hence it is obvious that $\psi_x(Q)$ is a proper ideal in A. Moreover, $I_x \subseteq \psi_x(Q)$. Let $c, d \in A$ be such that $c \land d \in \psi_x(Q)$. Then $c(x) \in Q$ or $d(x) \in Q$, therefore $c \in \psi_x(Q)$ or $d \in \psi_x(Q)$. That means $\psi_x(Q) \in H(I_x)$.

From this we get that φ_x is a bijection of $H(I_x)$ onto Spec A_x and that $\psi_x = \varphi_x^{-1}$. Moreover, both the bijections respect set inclusion, hence they are order isomorphisms.

R e m a r k. It is obvious that the assertion of Theorem 2 can be modified for any subvariety of the variety $\mathcal{DR}l_1$ of all bounded DRl-monoids. For instance, it is valid for MV-algebras (see [4], Theorem 2.3) and Brouwerian algebras.

References

- S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Springer-Verlag, Berlin, 1977.
- [2] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [3] C. C. Chang: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80.
- [4] R. Cignoli, A. Torrens: The poset of prime l-ideals of an abelian l-group with a strong unit. J. Algebra 184 (1996), 604–614.
- [5] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký Univ. Olomouc, 1996.
- [6] D. Mundici: Interpretation of AF C^{*}-algebras in Łukasiewicz sentential calculus. J. Funct. Analys. 65 (1986), 15–63.
- [7] J. Rachunek: Spectra of autometrized lattice algebras. Math. Bohem. 123 (1998), 87-94.
- [8] J. Rachůnek: DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48 (1998), 365–372.
- [9] J. Rachůnek: MV-algebras are categorically equivalent to a class of DRl_{1(i)}-semigroups. Math. Bohem. 123 (1998), 437–441.
- [10] J. Rachůnek: Polars and annihilators in representable DRl-monoids and MV-algebras (submitted).
- [11] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114.
- [12] K. L. N. Swamy: Dually residuated lattice ordered semigroups II. Math. Ann. 160 (1965), 64–71.
- [13] K. L. N. Swamy: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74.

Author's address: Jiří Rachůnek, Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: rachunek@risc.upol.cz.