A TREE AS A FINITE NONEMPTY SET
 WITH A BINARY OPERATION

Ladislav Nebeský, Praha

(Received October 8, 1998)

Abstract. A (finite) acyclic connected graph is called a tree. Let W be a finite nonempty set, and let $\mathbf{H}(W)$ be the set of all trees T with the property that W is the vertex set of T. We will find a one-to-one correspondence between $\mathbf{H}(W)$ and the set of all binary operations on W which satisfy a certain set of three axioms (stated in this note).

Keywords: trees, geodetic graphs, binary operations
MSC 2000: 05C05, 05C75, 20N02

By a graph we mean a finite undirected graph with no loops or multiple edges (i.e. a graph in the sense of [1], for example). If G is a graph, then $V(G)$ and $E(G)$ denote its vertex set and its edge set, respectively.

Let G be a connected graph. We denote by d_{G} the distance function of G. For every ordered pair of distinct $u, v \in V(G)$ we denote

$$
A_{G}(u, v)=\left\{w \in V(G) ; d_{G}(u, w)=1 \text { and } d_{G}(w, v)=d_{G}(u, v)-1\right\}
$$

A graph G is said to be geodetic if it is connected and there exists exactly one shortest $u-v$ path in G for every ordered pair of $u, v \in V(G)$. It is not difficult to show that

> a connected graph H is geodetic if and only if
> $\left|A_{H}(x, y)\right|=1$ for all distinct $x, y \in V(H)$.

A graph is called a tree if it is connected and acyclic. It is well-known that a graph G is a tree if and only if there exists exactly one $x-y$ path in G for every ordered pair of $x, y \in V(G)$. Thus, every tree is a geodetic graph.

In [2], the present author proved that a connected graph G is geodetic if and only if there exists a binary operation which "defines" G (in a certain sense) and satisfies a certain set of (four) axioms; the assumption that G is connected cannot be omitted. In the present note we will prove that a graph G is a tree if and only if there exists a binary operation which "defines" G (in the same sense) and satisfies a certain set of (three) axioms. The assumption that G is connected is not needed. Thus our result obtained for trees is stronger than that obtained for geodetic graphs in [2].

Let G be a geodetic graph, and let + be a binary operation on $V(G)$. Following [2] we say that + is the proper operation of G if for every ordered pair of $u, v \in V(G)$ we have

$$
u+v=u, \quad \text { if } \quad u=v
$$

$u+v$ is the second vertex of the shortest $u-v$ path provided $u \neq v$.
This means that if x and y are distinct vertices of G, then $x+y$ is the only element of $A_{G}(x, y)$.

Lemma 1. Let T be a tree, and let + be the proper operation of T. Put $W=$ $V(G)$. Then + satisfies the following three Axioms (A), (B), and (C):
(A) $(u+v)+u=u \quad$ (for all $u, v \in W)$;
(B) if $(u+v)+v=u$, then $u=v \quad$ (for all $u, v \in W)$;
(C) if $u \neq u+v=v \neq u+w$, then $v+w=u \quad$ (for all $u, v, w \in W)$.

Proof. That is very easy.
Note that the proper operation of any geodetic graph satisfies Axioms (A) and (B).

Let + be a binary operation on a finite nonempty set W, and let + satisfy Axioms (A), (B) and (C). Then we will say that an ordered pair $(W,+)$ is a tree groupoid. If $\Gamma=(W,+)$ is a tree groupoid, then we write $V(\Gamma)=W$.

In this note we will show that-roughly speaking-every tree can be considered a tree groupoid, and every tree grupoid can be considered a tree.

Lemma 2. Let $(W,+)$ be a tree groupoid. Then

$$
\begin{equation*}
u+v=v \text { if and only if } v+u=u \quad \text { for all } u, v \in W \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
u+v=u \text { if and only if } u=v \quad \text { for all } u, v \in W \tag{3}
\end{equation*}
$$

Proof. (2) follows from Axiom (A).
Let $u, v \in W$. By Axiom (A), $((u+u)+u)+u=u+u$; and, by Axiom (B), $u+u=u$. Thus, if $u=v$, then $u+v=u$. Conversely, if $u+v=u$, then $(u+v)+v=u+v=u$; and, by Axiom (B), $u=v$. Hence (3) holds.

Let $\Gamma=(W,+)$ be a tree groupoid, and let G be a graph. We will say that G is associated with Γ if $V(G)=W$ and

$$
E(G)=\{\{u, v\} ; u, v \in V(G) \text { such that } u+v=v \neq u\} .
$$

As follows from (2), for every tree groupoid Γ there exists exactly one graph associated with Γ.

Lemma 3. Let $\Gamma=(W,+)$ be a tree groupoid, let G be the graph associated with Γ, and let H be a component of G. Then

$$
\begin{equation*}
A_{H}(x, y)=\{x+y\} \text { for all distinct } x, y \in V(H) . \tag{4}
\end{equation*}
$$

Proof. If H is trivial, then (4) holds. Let H be nontrivial. Consider arbitrary distinct $x, y \in V(H)$. We will prove that $A_{H}(x, y)=\{x+y\}$. Put $n=d_{H}(x, y)$. Then $n \geqslant 1$. We proceed by induction on n. The case when $n=1$ is obvious. Let $n \geqslant 2$. Assume that
(5) $\quad A_{H}(u, v)=\{u+v\}$ for all $u, v \in V(H)$ such that $d(u, v)=n-1$.

Obviously, $A_{H}(x, y) \neq \emptyset$. Consider an arbitrary $z \in A_{H}(x, y)$. Then $\{x, z\} \in E(H)$. Since $d_{H}(z, y)=n-1$, (5) implies that $x \neq z+y$. By virtue of Axiom (C), $z=x+y$. Hence $A_{H}(x, y)=\{x+y\}$.

Lemma 4. Let $\Gamma=(W,+)$ be a tree groupoid, and let G be the graph associated with Γ. Then G is a tree and + is the proper operation of G.

Proof. Consider an arbitrary component H of G. Combining (1) with Lemma 3, we get that H is a geodetic graph. Assume that H contains a cycle of odd length. It is routine to prove that there exist $u, v, w \in V(H)$ such that $d_{H}(u, v)=d_{H}(u, w) \geqslant 1$ and $d_{H}(v, w)=1$. By Axiom (C), either $v+u=w$ or $w+u=v$, which contradicts (4). Thus H contains no cycle of odd length. Since H is a geodetic graph, we get that H is a tree.

Assume that G has at least two components. Then there exists $y \in W-V(H)$. Consider an arbitrary $x \in V(H)$. We construct an infinite sequence ($x_{1}, x_{2}, x_{3}, \ldots$) of vertices in G as follows: $x_{1}=x$ and

$$
x_{n+1}=x_{n}+y \text { for all } n=1,2,3 \ldots
$$

Since G is associated with Γ, we get

$$
\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{3}, x_{4}\right\}, \ldots \in E(G)
$$

Hence $x_{1}, x_{2}, x_{3}, \ldots \in V(H)$. Note that $y \notin V(H)$. Axiom (B) implies that

$$
x_{1} \neq x_{3}, x_{2} \neq x_{4}, x_{3} \neq x_{5}, \ldots
$$

Since $V(H)$ is finite, we conclude that H contains a cycle, which is a contradiction. Thus H is the only component of G. We get that G is a tree.

By virtue of (3) and Lemma 3, + is the proper operation of G.
Let W be a finite nonempty set. We denote by $\mathbf{H}(W)$ the set of all trees T such that $V(T)=W$. Moreover, we denote by $\mathbf{D}(W)$ the set of all tree groupoids Γ such that $V(\Gamma)=W$.

We will now present the main result of this note.

Theorem. Let W be a finite nonempty set. Then there exists a one-to-one mapping φ of $\mathbf{H}(W)$ onto $\mathbf{D}(W)$ such that

$$
\varphi(T)=(W,+), \quad \text { where }+ \text { is the proper operation of } T
$$

for each $T \in \mathbf{H}(W)$.
Proof. Combining Lemmas 1 and 4, we get the theorem.

References

[1] G. Chartrand, L. Lesniak: Graphs \& Digraphs. Third edition. Chapman \& Hall, London, 1996.
[2] L. Nebeský: An algebraic characterization of geodetic graphs. Czechoslovak Math. J. 48 (1998), 701-710.

Author's address: Ladislav Nebeský, Filozofická fakulta Univerzity Karlovy, nám. J. Palacha 2, 11638 Praha 1, Czech Republic, e-mail: ladislav.nebesky@ff.cuni.cz.

