126 (2001) MATHEMATICA BOHEMICA No. 1, 119-140

REACTION-DIFFUSION SYSTEMS: DESTABILIZING EFFECT OF
CONDITIONS GIVEN BY INCLUSIONS II, EXAMPLES

JAN EISNER, Praha

(Received March 9, 1999; revised September 22, 2000)

Abstract. The destabilizing effect of four different types of multivalued conditions de-
scribing the influence of semipermeable membranes or of unilateral inner sources to the
reaction-diffusion system is investigated. The validity of the assumptions sufficient for the
destabilization which were stated in the first part is verified for these cases. Thus the
existence of points at which the spatial patterns bifurcate from trivial solutions is proved.
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9. AUXILIARY ASSERTIONS

This paper is a continuation of [1]. We study the bifurcation points s; € R at
which nontrivial solutions to

o1(8)u — by Au — bio Av — Ni(u,v) =0

9.1

( ) 02(8)1) — b1 Au — bog Av — Ng(u, ’U) € —Mg(v)
bifurcate from the trivial solution. Recall that solutions to (9.1) for M> defined by
(2.9) are weak solutions to

o1(s)u+ biiu+ biov +nyi(u,v) =0
9.2) 1(s) 11 12 1(u, v) o Q
02(8)v + baru + baav + na(u,v) =0
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with the boundary conditions

v m(v) onFU,@z@zo on I'y

on On

8u:0

(93) u=v=0 onFD,% ’8_6_02(3)

(see Section 12). In the main result of [1]—Theorem 4.1—the existence of such bifur-
cation points is proved under certain assumptions on the multivalued mapping M.
Here we shall concentrate on a verification of these assumptions for some important
particular examples of the mapping M (related to a multivalued function m) to show
the existence of bifurcation points of spatial patterns to (9.2).

Let us note that the references to Sections 1-8 correspond to [1].

In the sequel, we need the following assertions and the corresponding

Notation 9.1.

HL(Q) = {p € W3(Q); Ap € L*(Q)},

H=H.(Q)NV,

H 2 (99)—the space of traces of functions from W (),

H~ 2 (99)—the dual space of Hz (0),

D(2)—the space of C*°—smooth functions with compact support in Q.

Observation 9.1. There is a uniquely defined continuous mapping ¥:

H}(Q) — H~7(09) such that Tu = 2% if u € O (c1Q)—see [5].

Let m: R — 2% be a multivalued function. Let m(€) := inf{m(&)}, m(¢) :=
sup{m(&)} for £ € R. If uw € V then u on 9N is understood in the sense of traces
and g—z is understood as a functional ¥ from H~2(9€2). This means that g—Z(a@) €
—m(u(z)) stands for

- / mua)o@ ar < [ Lpdr< - / m(u())(z) AT
I'y

ry on Iy
for any ¢ € H%(FU),¢ >0 a.e.on Iy.

Lemma 9.1 (Cf.[6], Theorem 3.2.). Let G C R, meas; G < +oc0. Let up,u €
L?(G) be a sequence of functions, u,, — u in L?(G). Let g,,, g be continuous functions
on R. Let h,, h be Nemytskii operators corresponding to the functions g,,g. Let
C > 0 be a constant such that |g,(£)] < C(1+€]), [9(§)] < C(1+ [€]) for all € € R.
Let g, (u,) — g(u) everywhere on G. Then hy,(u,) — h(u) in L*(G).

Proof. We have h,(u,)(z) = gn(un(z)), h(u)(z) = g(u(x)) for all z € G.
We can choose a subsequence (let us denote it {u,} again) that is Cauchy. We
can choose again a subsequence {uy,} such that

1
(94) Hunj - unj+l||L2(G) < 2_1
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The convergence of g, ensures hy, (un;) — h(u) a.e.on G. The growth of g, and g
together with (9.4) gives

i 1, )| < O [t @))€ C (1D ftny (@) =t )] + [y (2)])
= f(z) € L*(G).

It follows from the Lebesgue theorem that

([ (uny) = h(w) 2@y — 0.

Therefore every subsequence of the original sequence {u,} contains a subsequence
for which hy,, (uy,) converges to h(u) in L*(G). Our assertion is proved. O

10. EXAMPLES

Example 10.1. We shall investigate the Model Example from [1]. The multi-
valued mapping M is given here by a function m: R — 2® which is singlevalued,
real and continuous on R\ {0} and multivalued at £ = 0—see (2.9).

The set 02 is Lipschitz. Thus there exist a system of positive constants a;, b;,
a system of sets U; C R" covering Iy, a system of balls B; C R*~! centered at 0
and a system of bi-Lipschitzian homeomorphisms @Q;: U; — B; x (—a;, b;) such that
Q:(U;inQ) = B; x (0,b;) and Q;(U; N(R*\ clQ)) = B; x (—a;,0),i=1,..., M. Let

(10.1) Q1,0

be a C!- smooth partition of unity on Iy subordinated to the covering U; and

aprgq i=1— Z a;. Then supp apy1Nelly = (. For Gg := QU U U, we have dy :=
i=1
dist(I'y, R" \ Go) > 0. For the Lipschitz cut-off function n: x +— [1 - = dlst(ac Q)
and for the continuous extension E: V — W12(R") ensured e.g. by Theorem 2.3.10
from [5] we take G = R" and define E := nE (cf. [1], Notation 4.1). Let us recall the
mollification operator ®°: V — W12(G) N C(clQ) introduced in Notation 4.1.
In the sequel we will need

Proposition 10.1.

(i) For any v € V, ®°(v) is a continuous finction on cl ).
(ii) Ifvn,v €V, v, — v inV and § > 0 is fixed then ®(v,) — ®°(v) in C°(cl Q).
(iii) Letv €V, 6, — 0,. Then ®° (v) — Ev in Wy *(G).
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(iv) Let v, — v weakly in V and 6, — 0,. Then ®°(v,) — FEv weakly in
We2(G).

(v) Ifv, — v weakly in V and §,, — 0, then ®°~(v,) — v in L%(09).

(vi) For any ¢ € V, 1 > 0 a.e.on I'y there are w, = w,(¥)) € V and 6,, > 0 such
that w, — 1 strongly in V and <I>5(wn) >0 on Iy for any 6 € (0,4,).

Proof. (i)and (ii) are obvious.

(iii) It follows from the definition of ®° and [5], Theorem 2.1.2 that ®°~ (v) — Ev
and 3 <I>5"( )= <I>5“( 2,1’) — %Ev in L?(G) for any j = 1,...,n. (For the proof
of the 1dent1ty <I>5(f).: @5(8%7]”) see [5], Theorem 2.2.1.) Therefore, ®°(v) —
Ev in Wy 2(G).

(iv): If v, — v weakly in V then v, — v strongly in L?(2) and 3 Uy — aiv
weakly in L?(Q) for any j = 1,...,n by the embedding theorems. "Let T, To:
L*(G) — L3(G), T,f := ®(f), Tof := Ef for any f € L*(Q). It follows from
[5], Theorem 2.1.2 that T}, f — Tof in L?(G) for any f € L*(Q). T,,To are linear
continuous operators, therefore they are uniformly bounded by the Banach-Steinhaus
theorem. We obtain

HTnUn — TOU”L? < |T vy, — 1, UHL2(G) + ||T v — TOU”L?
<

|
|Tnllz(z2(c).22(G)) * lvn — vllL2(a) + HT v —Tovl|2(q) — 0.
Now, let f, — f weakly in L?(Q) and let g € W12(Q) be arbitrary. We have by
using the Fubini theorem that

(Tofn —Tof, Eg)r2cy = (Tnfn — Tuf  Eg) 2y + (Tnf — Tof, Eg)r2(c)
= (Efn —Ef,Thg)r2c) + (Tnf —Tof, Eg)r2(c) — 0.

By the choice f, := vn, f= 57V in the second part and due to the fact that

T nf = Tna - f for any j=1,...,n the proof is completed.

( ) follows from the embeddmg theorems and (iv).

(vi): We decompose ¢ = 1) —1)~, where )™, 1)~ denotes the positive and negative
parts, respectively. We have ¢+ 4~ € V by [3]. The “bad” term is 9)~. Therefore,
we can assume without loss of generality that 1) € V is such that ¢ < 0 in Q and
¥ =0 a.e.on I'y. Let us denote g; = o; Ev, ; from (10.1), ¢ =1,..., M. Since the
boundary of Iy is Lipschitz with respect to 992, we can assume that Q; (U NIy)is
starshaped! in B; with respect to 0 € R"!. Let us denote g7 (2) := ¢;(Q; *(rQ(z)))
for any 7 € (0,1) and z € U;. Let Iy be the extension of I such that g7 (z) =0 for
any r € I'U Thus we have constructed FU such that dist(Iy, 002\ I'U) =60 > 0.

LA set X C R¥ is called starshaped with respect to a set Y, Y C X, if any ray with its
origin in Y has a unique common point with 0 X—see [4].
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We have g — g; in W(}’Z(Ui) for r — 1_ (this fact can be proved in a similar way
as (iii) or [5], Theorem 2.1.1). For i =1,..., M let O;, j = 1,..., k; be a covering of

~ . ki ~
Vi i= {z € R"; dist(x, I'y Nsupp ;) < 6@} in U; such that |J O; N (0Q\ I'y) =0
j=1

and 6 € (min{%,dist(suppai, R*\U)}),i=1,...,M. Let B14,...,0k. be a
C'-smooth partition of unity on V; subordinated to the covering {O;; j = 1,...,k;},
ki
Bri+1,i =1~ > Bji. Then supp B, +1,, N Vi = 0.
; Js ;
j=1
We have 3,97 € Wy'> (0; N Q). Therefore there are %7 which are C'-smooth
with supp @77 C (0;N€) and such that "7 — 3, g7 in Wy > (0;0Q) for n — o0,

j=1,...,k andi=1,..., M—see [5]. We can choose r, — 1_ and
M k;
wy = ( 0" 4 Brit1i 95) +an+1¥ — Y inV
i=1  j=1

for n — +o00 and there are §,, > 0 such that w,, = 0 in a §,-neighbourhood of I';. [

With help of Proposition 10.1 we verify all assumptions of Theorem 4.1 (the ver-
ification is contained in Section 12) and as a consequence of [1], Theorem 4.1 and
Remark 4.2 for Example 10.1 we obtain

Theorem 10.1. Let (SIGN) and (1.1) hold, let o(s) be a differentiable curve
satisfying (4.15), let d° € C,, and let (4.16) hold. Let m be the multivalued function
from Model Example and let us assume that there exists an eigenfunction e, corre-
sponding to the eigenvalue k, of the Laplacian with (1.3) such that (4.13) is fulfilled
with e = ep,. Then stationary spatially nonconstant weak solutions (spatial patterns)
of (SRD), (1.2) with diffusion parameters di = o1(s) and dy = o2(s) (i.e.of (9.2),
(9.3)) bifurcate at some sy € (so, §].

This is actually [1], Corollary 4.1 and the proof follows from [1], Theorem 4.1 and
Remark 4.2 and the fact that no nontrivial constant function can satisfy (1.3).

Example 10.2. Let us consider the same multivalued function m as in Model
Example and define the corresponding mapping M: V? — 2V by M(U) =

[{0}, Ma(v)],

Ms(v) = {z eV; /Q m(v)pde

1

< (2, 9) </

m(v)pdz for all p € V,p > 0 a.e.in Ql}
Q1
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for any v € V, where ; C 2 is a given domain such that a dg-neighbourhood of 4
(with some dp > 0) belongs to . Then a solution of (9.1) is a weak solution of the
problem

d1Au + by1u + biav + ny(u,v) =0 in Q,
(102) doAv + boru + bogv + ng(u, ’U) =0 in Q \ Qq,
daAv + baru + bagv + na(u,v) € m(v)  in

with the boundary conditions (1.3). Such a model describes a similar situation as in
Example 10.1 with a source in the interior of the domain €.
Let us define the corresponding homogeneous mapping M, by

Mo(U) = [{0}, Mo2(v)]
with

Moa(v) ={z€V; (z,v) =0, (z,p) <O0forall p eV, > 0in 21} if v > 0 in Oy,
=0

Moa(v) if v < 0 in a subset of €7 of a positive measure.

Then a solution of (2.11) is a weak solution of

diAu +bjju+bpv=0 in Q,
(103) dgA’U + bglu + b22’U =0 in Q \ Ql,
do Av + boyu + baov < 0, v >0, (dgA’U + bo1u + bgg’l]) v=0 in O

with boundary conditions (1.3). Note that in this example, the problem (2.11) is
equivalent to (2.13) with K =V x {p € V; ¢ > 01in Q4 }.

Remark 10.1. Let v be a solution to (2.11) with (10.3). Let us denote Q} :=
{z € Qq; v(z) > 0} and Q0 := {z € Qy; v(x) = 0}. If 902 is a Lipschitzian manifold
then we have

ov . +
—=v=0 indQ; Ny
on
(for the proof of this fact see Section 12).
Proposition 10.2. Ifv, — v weakly in V and 6,, — 0 then v3» — v in L?().

Moreover, for any ¢ € V, ¥ > 0 a.e.in Q; there are w, = w,(¢)) € V and §,, > 0
small such that w,, — v strongly in V and ®°(w,) > 0 in Q, for any ¢ € (0,6,).

Proof. The first assertion follows from the embedding theorems and Proposi-
tion 10.1, (iv).
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Similarly as in the proof of Proposition 10.1 we can assume without loss of gen-
erality that ¢ € V is such that ¢ < 0 in © and ¥ = 0 a.e.in 3. Therefore,
Ey € W01’2(é \ cl€y) with G = supp E¢) U Q and there exist Cl-smooth func-
tions ¢, with supp@, C G\ cl€ (this implies ¢, € V) such that ¢, — Ei in
W&’Q(é)—see [5]. We take wy, := ¢,, and there are §,, > 0 such that w, = 0 in a
dn-neighbourhood of 2. O

Now we define M° and Mg in the same way as in Notation 4.1 with Iy replaced
by . Propositions 10.1 and 10.2 ensure the assumptions of Theorem 4.1 hold also
for such M, My, M?, Mg corresponding to the problem (10.2).

Theorem 10.2. Let (SIGN) hold, let o(s) be a differentiable curve satisfying
(4.15), Iet d° € C,, and (4.16) hold. Let m be the multivalued function from Model
Example and let us assume that there exists an eigenfunction e, corresponding to an
eigenvalue k,, of the Laplacian with (1.3) such that e, < —e in a dp-neighbourhood
of Q1 with some € > 0. Then stationary spatially nonconstant weak solutions of the
problem (10.2), (1.3) with diffusion parameters di = o1(s) and da = 02(s) bifurcate
at some sy € (o, §).

Again, this follows from Theorem 4.1 and Remark 4.2 from [1] and the fact that
no nontrivial constant function can satisfy (1.3).

Example 10.3. Let a be a positive constant and for any ¢ € V let us denote
@::a/ o(x)drI.
I'y

Here e.g.a := (meas,_; [7)"! can be taken. Let m: R — 2% be the function
from Model Example. Let us define the corresponding mapping M: VZ — 2V’ by
M(U) = [{0}, Ma(v)],

(10.4) Ma(w)={z€V; m@) g <(z,¢) <mM(v) P forall peV,p >0}

for any v € V. Then a solution of (9.1) is a weak solution of (9.2) with the boundary

conditions

u=v=0 on Ip,

ou ov m(7)

— =0, —= t e — I
(10.5) on “om O™ o2(s) onsu

ou  Ov

o I'y.

on On 0 on Iy
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The corresponding homogeneous mapping is My(U) = [{0}, Mo2(v)] with

Moa(v) ={z€V; (z,0) =0, (z,p) <O0for o eV, >0} if 7 >0,
MOQ(U) = (Z) if v < 0.

The associated convex cone is K = VX Ko, Ko = {0 € V; > 0} with () # int K» =
{¢ €V; ©>0}. Again, (2.11) is equivalent to (2.13).

Theorem 10.3. Let (SIGN) hold, let o(s) be a differentiable curve satisfying
(4.15), let d° € C,, and (4.16) hold. Let m be the multivalued function from Model
Example and let us assume that there exists an eigenfunction e, corresponding to an
eigenvalue k), of the Laplacian with (1.3) satisfying | r, €p A" < 0. Then stationary
spatially nonconstant weak solutions of (9.2), (10.5) bifurcate at some sy € (so, 3.

This follows from Theorem 4.1 and Remark 4.2 from [1] and the fact that no
nontrivial constant function can satisfy (1.3).

Remark 10.2. We have int K # (), therefore no regularization is necessary; we
can define M? := M, Mg := My and we have K’ = K, P} = P,.

11. ANOTHER EXAMPLE, WHERE SENSOR AND SOURCE ARE AT DIFFERENT
POINTS

In the situation of Examples 10.1-10.3, the homogeneous problem (2.11) is equi-
valent to the variational inequality (2.13). In the next example we will consider a
boundary condition such that the corresponding weak homogeneous problem (2.11)
is not equivalent to (2.13).

Example 11.1. (Cf.[2], Section 5.) Let Q = (0,1), V= {p € W5(0,1); »(0) =
0}. Let 2o € (0,1) be fixed. Let us consider the multivalued function m: R — 2%
and the corresponding singlevalued functions m and 7 as in Model Example. Define
the related mapping M: V2 — 2V°, M(U) = [{0}, My(v)] for U = [u, v] by
(11.1) My(v) = {z € V; m(v(z0))p(1) < (2, %) < M(v(20))p(1), 0 € V,0(1) = 0}

for any v € V. Then a solution of (9.1) is a weak solution of the problem (9.2) with
the boundary conditions

(11.2) u(0) =v(0) = uy(1) =0, v,(1) € —————==
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The multivalued condition in (11.2) describes e.g. a semipermeable membrane on the
boundary like in Model Example but with a sensor in the interior of the domain,
i.e.the sensor is located at a different point than the source. In the situation of
Example 10.1, we had zp = 1 (in the case n = 1 and Q = (0,1)), i.e.the sensor
was at the same point as the source (membrane). From this point of view, the
multivalued condition in Example 11.1 is more general.

Let us define convex cones K, = {¢ € V; ¢(z9) > 0} and K1 = {p € V; ¢(1) >
0}. The corresponding homogeneous mapping My is Mo(U) = [{0}, Mo2(v)], U =
[u, v] with

Moa(v) = {0} if v(zg) >0,
Moz (v) ={z€V; (z,¢) <0forall p € Ky} if v(zxg) =0,
Moa(v) =0

if w(zo) < 0.

Then the set K from (2.14) is V x K,,. A solution of (2.11) is a weak solution of
(2.12), i.e. of

d1Uuze +b11u + b12v =0,  dovgy + baru + baov =0

with the boundary conditions

(11.3)
v:(1) 2 0, v(z) 2 0, vx(1) - v(zo) =0.

A suitable penalty operator for M is P, (U) = [0, Py 2(v)] with

(Pr2(v), ) = pr(v(20))p(1)

for all v, ¢ € V, where p, are the same functions as in Model Example. Set K =
V x (K1 N K,,) and consider the condition

(11.4) —Up € Eg(d°) Nint K

instead of (4.14). Here, int K =V x {p € K; ¢(z¢) > 0,(1) > 0} # 0. Therefore,
we can define M°® := M, Mg := My, P? := P, for any § > 0 small. It is easy to see
by using Observation 3.3 from [1] that the condition (11.4) is fulfilled for d° € C,
and Uy = [a(d®)ep, ep], a(d®) > 0, provided the eigenfunction e, corresponding to

the eigenvalue k, of Laplacian with the boundary conditions

(11.5) w(0) = ug (1) =0
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satisfies ep(z0) < 0 and ep(1) < 0. Note that the eigenvalues x; are simple in the
one-dimensional case. Therefore the operator Ls from (5.9) plays a role only in the
case when d° = o(sg) is an intersection point of two different hyperbolas. Replacing
K by K at the appropriate places and (4.14) by (11.4), we can go through the whole
procedure used in [1], Sections 6 and 7 and prove the assertion of Theorem 11.1
below also in this situation.

The proofs of all assertions from Sections 6 and 7 in [1] can be done analogously
with the exception of the proof of the boundedness of the branch of triplets of solu-
tions to penalty equation in s (see [1], (7.6) and Lemmas 6.5—6.7) where the condi-
tions (4.5) and (4.10) are used. However, now (4.5) and (4.10) are not satisfied for
all U € V2. We have to strengthen the condition (4.15) by

(11.6) lim o1(s) = o0, lim o3(s) = 40
§——+00 s——+o00
and prove the fact s < sg 4+ (1 < 400 with some (; > 0 in the following way.
Let us assume by contradiction that there exist s, and U, = [uy,v,] such that
Sn — 00, |[Upnll — 0, W, = [wy, 2,] = ﬁ —~W = [w, z] and
Tn
147,

D(o(sn))

(11.7) D(0(s,))Un — BAU, — T

N(Un) + Lé(sn)Un + P‘rn(Un) =0
holds. The embedding theorem gives w,, — w, z, — z in C°([0, 1]). Writing (11.7) in
the components and multiplying the first equation of (11.7) by w,||U,||~! we obtain
(11.8)

' <N1(Un) >

o1 (sn)llwn||* = br1(Awy, wy) — bia(Azy, wy)

T It N\ UL
+ <%S:ZL5(sn)wn,wn> =0.

We have Ls(s,) = 0 for s, > sg + n directly from the definition of Ls. If we had
w # 0 then the left hand side of (11.8) would tend to infinity by the assumption
(11.6).

Multiplying the second equation of (11.7) by ¢||U,|~! with ¢ € K1, p(1) = 0 we
obtain

n <N2(Un) >

(11.9) 02(8n){zn, @) = ba1 (Awn, ) — ba2(Azn, ) — 1\ U Y
. O'Q(Sn) _
+ <1 + 7n Lé(sn)zn7@> -

(recall that K1 = {p € V; (1) > 0}). We have Ls(s,) = 0 for s, > so + n again.
Dividing (11.9) by o2(s,) and letting n — +oo we obtain (z,,¢) — 0 by using
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(11.6). We have z, — z and it follows that (z,¢) = 0 for arbitrary ¢ € V, ¢(1) = 0.
Thus 2z, = 0, which implies z(z) = k- z with some k € R. Note that the embedding
theorem ensures z € C([0,1]) and z € V gives z(0) = 0.

Multiplying the second equation of (11.7) by 5 * (5,)v,||Un|| =2 and passing to the
limit we obtain

1
. P, (Un(20))2n (1) Pr,, (Un(20))
(11.10) 0< / 2dr=k*=— lim - =k T VS
0 n—too  a(sn)|Unll n—+00 3 (sn)||Un|

This together with the sign of p,, implies & > 0. If K = 0 then z = 0 in [0,1]. If
k > 0 then z(x¢) = kzo > 0 and the C%-convergence of z,, implies v, (x¢) > 0 for n
large enough. But p,, (v, (x0)) = 0 and we obtain from (11.10) that

. Pr, (’Un(xO))
k=—- lim ——= =0.
n—+o0 3 (sn)||Un|

This contradicts & > 0. Therefore z = 0, which is a contradiction with the fact that
W] = |[w,2]|| =1.

We obtain

Theorem 11.1. Let (SIGN) hold, let o(s) be a differentiable curve satisfying
(4.15) and (11.6), Iet d° € C, and (4.16) hold. Let m be the multivalued function
from Model Example and let us assume that there exists an eigenfunction e, corre-
sponding to an eigenvalue k, of the Laplacian with (11.5) satisfying e,(x¢) < 0 and
ep(1) < 0. Then stationary spatially nonconstant weak solutions (spatial patterns)
of (9.2), (11.2) bifurcate at some sy € (sg,+00).

This follows from [1], Theorem 4.1 and Remark 4.2 and from the considerations
above. Let us note that in this situation we have no information like s; < 3.

12. VALIDITY OF PROPOSITIONS 4.1-4.5 FOR THE EXAMPLES INVESTIGATED
ABOVE

Let us consider the mappings as in Model Example. Recall that Ko = {¢ € V; ¢ >
0 a.e.on Iy }. First, we need to show that a solution of (9.1) is a weak solution of
the problem (9.2), (9.3). For the sake of simplicity we will write dy,ds instead of
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01(8), 02(s). The inclusion (9.1) is equivalent to the following couple of formulae:

(12.1) / dq Zur @o; — (b11u + b12v + n1(u,v))pdr =0 for any p €V,

(12.2) —/ m(v)wdf'g/ngv%w% (ba1u + baov + na(u, v))y da
I'y

< —/ m(v)ydl’  for any ¥ € Ko.
I'y

Moreover,
/ dq Z Ug P, — (br1u 4 b1ov + n1(u,v))pdz =0 for any ¢ € D(Q),
/ do Zv% Ve, — b21u + baov + na(u, v))w dz =0 for any ¢y € D(Q),

i.e.(9.2) is satisfied in the sense of distributions. Therefore the equations

(123) dlAU + b11u + b121} +ny (u, U) = 0,
(124) dQAU + b21u + bQQU + ’I’Lg(u, U) =0

are satisfied a.e.in 2, where all terms are represented by functions from L?({). For
any u, v € H we can use Green’s formula for (12.1), (12.2) to obtain

(125)/ (dlAu + b11u + biov + nl(u,v))godx —d; Tu (de =0 V(,O ev,
Q o0

(12.6) /F m(v)ydl < /Q (d2Av + baru + bogv + na(u,v))1p da

—dy | Tvydl < / m)dl, Y € Ks.
9] I'y

With help of (12.3) and (12.4) in (12.5) and (12.6) we obtain Tu =0 on Iy U Iy
and
(12.7)

/ m(v)ypdI < —dg/ Tv wdrg/ m(v)y dl’ for all ¥ € K.
I'u oQ I'u

It follows from the definition of V that ©w = v = 0 on I'p in the sense of traces.
The choice ¢ = 0 on Iy in (12.7) gives Tv = 0 on I'y while » > 0 on [y gives
—da%v € m(v) on Iy.
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In a similar way we can show that (9.1) is a weak formulation of (10.2) with (1.3)
or of (9.2) with (10.5) in the situation of Example 10.2 or 10.3, respectively.

Now we shall prove Propositions 4.1-4.5, i.e. we shall verify the conditions (4.1)—
(4.6) and (4.11)-(4.12) for M°, M and P? under the situation from Examples
10.1-10.3 and/or 11.1. For the sake of simplicity, we will write v° instead of ®°(v).

In the situation of Example 10.1 (i.e. Model Example in the sense of [1]) we define
for 7 > 0 the functions p, by

0 £20,

pr(&) =< 7€ £ €[6,0) &= A
E(r)m(§) € <& k(1) = Rty

The definitions of M? MJ, P} include the triviality of their first components.
Hence only the second components are essential. Definition of M yields that K° =
{U = [u,v] € V?; v > 0 on I'y} and (4.1)—(4.6) are satisfied. It is easy to see that
int K9 = {U = [u,v] € V% v® >0 on cl Iy}

Proof of Proposition 4.1. Let U, — 0, W,, = [&,, w,] = HILJ[—:H - W =

€,w), Zon = [y zn] — Z = [1,2], dn — d € RZ, D(dyp)Wn + Zn € — M Wn) i
+ M0

yields for the first coordinate that di¢, = —mn, and immediately &, — £ because

7, — 1. For the second coordinate the inclusion gives

5 = (1,0
_ m(v,) [ 5]+ 4 m(Un) [(p‘s] dr > ( 5 W, + Zn, ®)
(12.8) rollUal rullUnl
. — 5 1
> m(vy) [<p5] tar + m(vp) [(pé]_ dI’ for all p € V.
rllUl rollUnll

We obtain by using the appropriate part of (12.8) that

5 ——
(12.9) dy(wy, wy) < — m(v,) [w? ] far + () (W] ™Al — (2, wy),
rullUnll rullUnll
—— 5
(12.10) d(wy,w) > —/ () [w5]+df+/ m(v,) [0’ Al = (2, w).
ry Unl ry [Un]l

We have

(12.11) m(vi)[w5]+= 0, m(vd)[wl] "< 0, m(v

n n n

3 >
B
&
+
n
=
E
<
(=11
B
&
|
n
o

on I'y. The embedding theorem gives v, — 0, w, — w and v — 0 in L?(0Q) and
consequently v) — 0 and w? — w? in C°(cl Q).
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Now we will show that w® > 0 on I'y. Let us assume by contradiction that there is

an g9 > 0 and a set £ C I'y with meas,_1 € > 0 such that w® < —eg on €. We have

s
2)—>m0<0and%—>+oo

n

v? < 0 on & for n large enough, consequently 7 (v
on £. Furthermore, there are ng and ¢ < 0 such that for all n > ng we have wfl <c
on £. Then the Fatou lemma yields

— s 71,0
limsup/ G [w‘s]_ dr < limsup/ m(vy) [w‘s]_df
I'y &

n—-+o0o ||Un|| " n—-+o0o

glimsup/ mn 5 [w‘s]_dF—>—oo,
n—+oo JE Up,
which contradicts (12.9) because (z,,w,) — (z,w) € R. Therefore w® > 0 on Iy

and the second integral in (12.10) vanishes. This together with (12.9) and (12.11)
gives

(12.12)

The assumptions dj — dy > 0, z, — 2 together with (12.12) imply |w|? >

lim sup ||w,||?, hence w,, — w in V.
n—-+o0o

Now, (12.8) implies

= (1,0
(dywp, + 2, p) = —/F m((;}])go‘de)Ofor allgpe\/,gza‘S >0on Iy
U n

and it follows that (dyw + 2, ) > 0 for all p € V, % > 0 on I'y. By choosing ¢ := w
we have

)
(dow + z,w) = lim (dywy, + zp, w) = —/ m(v")w‘S dI">0
n—-too ro U]l

and on the other hand, the last two inequalities in (12.12) give

-
(dow + z,w) = lim (d5wy, + 2n, wn) </ () [wl] ™ dI <0.
n—-+oo ry Ul

It follows that (daw + z,w) = 0 and, by the definition of Mgy, dow + 2z € — My (w).
(]
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Proof of Proposition 4.2.  We shall prove lirf |(D’l(aln)PT‘SmQ(Un)7

U, —U)| = 0. If v, = v in WH2(Q) then v, — v in L?(9Q) and also vS — ©v° in
L2(09Q).

Let 7, — 7. Let us suppose first that 7 < +o0c0. Lemma 9.1 gives p,, (v]) — p,(v?)
in L2(I'y), which implies that p,, (v3) are bounded in L?(I). We have

lim {(me2(vn),vn—v>} < lim Ipr, (V2) (V] — %) dIl

n—-+o0o n—-+oo Iy

< nhl}rloo lp™ (v ’I(’SL)||L2(FU) : va - U5||L2(FU) =0.

Now, let 7 = +00. We take a certain sufficiently small ¢ > 0 and define a continuous

function m_: R — R such that m_(£) = m(&) for any € € (—oc, 0]U[e, +00) and m,_ is
)

continuous and negative on (0,¢). The Nemytskii theorem implies m_(v3) — m,_(v°)

in L?(Iy) for n — +oo with ¢ fixed. We have

I pd N - 1 ‘ - - r
o KPr 2(vn), v —v)] = Jim / pra(tn) (e~ v7)d
(12.13) < lim [ |mo(vd) (@) — %) dr

n—-+o0o I'y

. 5 5 5
< nllgloo Hma(vn)”LQ(Fu) vy, — v ||L2(FU) = 0.

The second part of (4.12) can be proved by the same considerations by using w,,,

5
w and \IU(ﬁn) instead of v,,, v and meg(vn) and with help of the assumption that
)
%(H) are bounded. O

Proof of Proposition 43. A:Ifv, ~vinV and 7, — 7 € [0,400), then
vp, — v in L2(09). Lemma 9.1 gives p,, (v)) — p,(v°) in L?(I'y). We have

n

sup (P2, 5(00) = Po(0): ) = swp [ [pr,(u2) = po(D)] 67l = .
llell<1 lell<1J
Let 7 — 4o00. For any sufficiently small € > 0 we define a function m,: R — R
such that m_(§) = m(§) for any € (—o0,0]Ue, +00), m, is continuous and negative
n (0,e), m., <m, for e; > &3 and m_ — m with ¢ — 0. Similarly, let us define
continuous functions m.: R — R by m. := p;/.. Then m.(£) = m(§) for £ > 0
me(&) = m(§) for £ <0, M, > M., for 1 > 3 and M. — M with € — 0. Therefore,
for all € > 0 we have p,, < m. on R for n large enough. For such n we have

/F m. ()] ar - [ )] ar

I'y

< /F (D[] ar - /F (D[] AT = (P2 o(wn), )
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o) — m(v°), M (vy) — e (v°)
in L?(I'y) for n — 400 with ¢ fixed. If P? ,(vn) — 1 in V then the limiting process
n — 400 gives

for any ¢ € V. The Nemytskii theorem implies m, (2

m ()] T ar — [ m.(0*)[$°] Al < (2, )
I'y I'y

for any ¢ € V. The Levi theorem gives

(12.14)
/ m(v°) [gp‘s]Jr dr — / m(v°®) [gp‘s] “dr
I'y I'y
— eli%l m (v‘s)[<p5]+ dr — mg(v‘s)[@‘s]f dI’ < (z,¢)
+Jry Iy
for any ¢ € V.

In a similar way we can prove

(12.15) /Fm(vé)[gaéﬁdf—/F m(v))[@®]” Al > (2, ¢)

for any ¢ € V. The inequalities in (12.14) and (12.15) imply z € M{(v).
B: The assumptions v,, — 0 in V, w, = H;}—:H — w in V and 7, — 0 together
with the embedding theorem give that v, — 0 and w,, — w in L?(9Q) and w? — w°®

in C%(cl I'yy). For a fixed 79 and n large enough we have v% > &, on Iy and

5 5
pT’;}(:”) TZ?“ —0 only.
We obtain
Pé Un T, T, i
‘ sup < r 2 ),@>‘ _ ‘ sup / P, (v (de‘ _ ‘ sup / P n(ﬁvn)wiwadp
lel<t N U] lel<i/ry Ul lel<i/ry  vn
< sup 7 wp ey - €02y — 0.
llell<1
C: Let U, — 0, W,, = HILJ[—:H - W, 1, = 7 € [0,+0). The embedding theorem

gives that v, — 0, w, = A7 — w in L?(09) and v) — 0, wd — w® in C°(clONQ).
0, €&£=0,
7§, §<0.
i.e.pro=p, for £ > & . Hence from the C°-convergence of vg we have

)

Set £ := {z € Iy; w < 0} and for 7 > 0 introduce p,o: £ — {

P (v
‘ sup <L(")_p;§w 0.2(w), @ < sup ’/ p“ —w ]gp dF’
lel<t N [1Unll ; lell<1
an(Un) 5 5 s
<sup‘7w —T~w‘ ez, — 0.
S L*(I'y) I llzery)
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P! (Un . . .
Let now 7, — +00 and T\Irb(n\l ), Z. By the same considerations as in the proof

%) instead of 7(v3)) we can show that w? > 0 on I'y:

of Proposition 4.1 (using p-, (v
Let us suppose that there is an g > 0 and a set £ C [y with meas,_; £ > 0 such
that w® < —go on £. The C%-convergence of v ensures the existence of 7o € R and
ng € N such that vfl € (&+,0) on & for all n > ng. Then p’"y#i) =7, — +oo for

n

n — 400 on €. The Fatou lemma gives

§ § §

. Pr, (Un) 5 : Pr, (Un) Un, )

(12.16) hmsup/ ———=p dI’ < hmsup/ p°dl' = —o0
n—+oo J Iy ||Un|| n—+oo Jg Ug ||Un||

for any ¢ € V such that ¢® > 0 on I'y and ¢° > 0 on &, which is the contradiction

with

§
(12.17) / Pro(V) s ap (5 0.
ro 1Unll

This implies w® > 0 on Iy, i.e.w € KJ. Moreover, (12.17) and the sign of p, give
(z,) <0 for all p € K§ and for ¢ := w we obtain (z,w) < 0. On the other hand,
the choice ¢ := w,, implies

§
(z,w) = lim / pT"(”")widF>o,
n—+oo I'u ||UnH

because the signs of p,, (v2) and w$ are the same on Iy;. We obtain (z,w) = 0,
therefore z € MJ,(w) by definition. O

Proof of Proposition 44. A: Let U, — 0, W,, = ”g_u -~ W ¢ K9,
Tn — 70 > 0 and V € int K°. The embedding theorems give v, — 0 and w, — w in
L?(09) and v) — v, w) — w’ in C°(clIy). The assumption W ¢ K? ensures the
existence of an gy > 0 and a set £ C Iy with meas,_1 £ > 0 such that w® < —¢g on

£. Then there exist 79 € R and ng € N such that v? € (&,,,0) on & for all n > no.
The assumption V = [y, 2] € int K° means z° > 0 on Iy. For &, — 04 we obtain

P? (U, P? ,(vn (0
limsup<M,V> = limsup<L(U),z> = limsup/ d "(U")z‘sdf

i 70 i S T/ I My 7
(12.18) (1o — €n) - V2
0 —¢n) Uy

)
5 wy 2’ dl" < 0.
vn

5
n \U .
< limsup/ wwiz‘s dl' < hmsup/
£ £

n—-+o0o vg n—-+o0o

B: The proof of the second part is similar—in the final line of (12.18) we use the
fact that
an(rU;’sl) _ Tnv;sl =1
08 Tl

on & for n large enough. O
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Proof of Proposition 4.5, (4.11). Let 6, — 04, U, = [up,v,] = U,
Zn =, 2n) = Z, dy, — d € RL, D(dp)U, + Z,, € —M?%(U,). The first part of the
inclusion is the equation

diun + 1, =0

and we have immediately u,, — u because 7, — 1. The second part of the inclusion
gives
(12.19)

— | m(d) [ ] ar + [ m(wd)[o*] AL > (v + 20, o)

n
FU FU

> — ﬁ(vi")[gp‘s'L]+dF + [ mui)[p™] Al forall p € V.
FU FU

The embedding theorem together with Proposition 10.1, (iv) give v, — v and vo» —
v in L?(9€2). By using the appropriate part of (12.19) we obtain that

(12.20) (d3vp + 2n,vp) < — m(vi")[vfl"]—s_df—k ﬁ(vfﬁ)[vfﬁ]_dﬂ

FU FU

(12.21)  d3{(vp + 2z, v) > —/ ﬁ(viﬂ')[vé"]+df+/ m(vi")[v‘s”]_df.
FU FU

The terms have the following signs on [:

N
=
3|
2l
<
>
=
=
>
5
n
Ao
54
<
=2
3
SN—
=
>
A
(e

(12.22) m(vd) [0 ] "= 0, m(vd")[vi"]~

n n n

For any fixed € > 0 small let us define continuous functions m_,m.: R — R such
that m_(€) = m(€) for any £ € (—o00,0] U [e,+00) and m,_ is negative on (0,¢), and
me (&) = m(§) for any & € (—oo, —e]U[0, +00) and T, is negative on (—¢, 0) and such
that they converge monotonously to m or 7, respectively, for ¢ — 0. It follows
from (12.20), (12.21), (12.22) and from the above definitions of m_ and 7. that

(12.23)(d3 v, + 2y va) < [ T(0) [03r] 7L,
I'u

(12.24) d5{v, + zp,v) = — ms(vfﬁ)[v‘s"]+ dr + m, (v3)[v*] " dT.
FU FU

The limiting process for n — +oco in (12.23), (12.24) by using the Nemytskii theorem
gives

lim sup(dy vy, + zn, vn) < [ M (v)v~dI,

n—-4o0o I'y

d2HU||2 + (z,v) > — me(v)vT dl + m_(v)v~ dl’
Iy I'y
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and the limiting process for € — 04 by using the Levi theorem implies

do limsup ||v, || + (z,v) < / m(v)v~ dI,

(12.25) e T
dol|v]|® + (z,v) > —/ m(v)vt dl —|—/ m(v)v~ dr.
I'y I'y
We have m(v)vt = 0, m(v)v- = m(v)v™ and therefore (12.25) gives ||v]|?> >
lim sup ||vy,||?, which implies v, — v strongly in V.
n—-+o0o

Similarly as above, we can estimate (12.19) both from below and above by using
m, and M. to obtain

(12.26)
— [ m (v3) [go‘s"rdf + [ m(vd) [@5"]7d1“ > (dSvn + 2n, )
I'y I'y
>— [ m.(u)) [ ar +/ m, (v3)[¢°"] " dl forall p € V.
I'y I'y

The “double” limiting process in (12.26) (first for n — +o00, then for € — 04) gives
(12.27)

—/m(v)<p+df—|— m(v)e~dl = {dov + z, )
FU FU

>— [ m)ptdl + | m(v)e~dl’  forall p €V,
I I

which is equivalent to

—/ m(v)pdll = (dev + 2, p) > —/ m(v)edl’ for all p € K»
I'y I'y

and we have D(d)U + Z € —M(U) by definition. O

Proof of Proposition 4.5, (4.12). Let §,, — 04+, U, — U, Z, — Z,
dn — d e R, D(d,)U, +Z, € — M (U,). Again, as in the proof of (4.11), the first
part of the inclusion gives u,, — u strongly. The second part of the inclusion gives

(12.28) (d5vp + 2n,vn) =0,
(12.29) (A3 + 2n,0) 20 forall o €V, ©°* > 0on Iy.

The embedding theorem gives v, — v and v2» — v in L?(99). We have v2» > 0 on
I'y and therefore also v > 0 on I'y. We can choose a subsequence (let us denote it
vy, again) and Proposition 10.1, (vi) ensures the existence of w,, = w,(v) € V such
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that wl» > 0 on Iy and w, — v strongly in V. We can put ¢ := w, in (12.29) to
obtain with help of (12.28) that

(dS v + 2n, wn) 2 0 = (dyv, + 2, Un).

The assumptions dj — da > 0, z, — 2 and the fact w,, — v imply limsup ||v,[|? <

n—-+o0o

|v||?, therefore v,, — v strongly in V.

Now, let ¥ € V be arbitrary such that ¥ > 0 a.e.on Iy. Let w, = w,(¥)
be the functions from Proposition 10.1, (vi) corresponding to 1. Then the choice
¢ = wyp () in (12.29) and the limiting process in (12.28) and (12.29) (we have
wp (1) — ) gives dov + 2 € —Mop2(v). O

In the situation of Example 10.2, the verification of validity of Propositions 4.1-4.5
can be done analogously as in Model Example.

Proof of Remark 10.1. It follows from the last part of (10.3) that
doAv + bo1u +bav =0 in Qj

Multiplying this equation by an arbitrary ¢ € V, ¢ > 0 in Qy, integrating over ;-
and using Green’s formula we obtain
(12.30)

0= da%vp dI’ —|—/

a0t Qi _d2 Z Vz; 90% b21u + bggv)gp dz

= / do%vp dI' + / —ds Z Uz Pz, + (ba1u 4 baov)p da
BQj Q1
— / —ds Z Vg, Pz, + b21u + bggv)go dz.
It follows from (2.11) and the definition of Mya(v) that
/ —ds ZU"E @o; + (b21u + bav)pdr <0 forany ¢ € V, > 0in ;.

This fact together with (12.30) implies

(12.31) ot dySvep dI" — / 0 —d Z Vz; P, + (bo1u + bagv)pdz >0

for any ¢ € V, > 0 in ;.
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Clearly, we have Vv = 0 in 0 and the second term in (12.31) vanishes. As a test
function in (12.31) we can choose ¢, € V, ¢, = 0in Qy, p, = 1in clQF, ¢, =0 in
Qr C QY meas(Q9 \ Q7) — 0 for n — +oo to get

Tuvdl > 0.
o
But Tv < 0 on 99 by the second condition in the last part of (10.3). Therefore
faﬂv* Tvp dI' < 0 and, consequently, fan Tvp dI' = 0 for any ¢ > 0 in ;. Thus
we obtain Tv = 0 on 9Q; . Finally, it is easy to see that v =0 on 9Q. O

In the situation of Example 10.3 we have int K # @ and there is no need to
regularize via ®°.

Proof of the fact 3% = const on I from (10.5), i.e.of I, Tvp dI' = C 7 for
some C' € R. In a similar way as at the beginning of Section 12 we can prove that
(9.1) is a weak solution of (9.2) with (10.5) and we obtain

(12.32) m(D)g < —do Tvp dI' < m(v)P forallp e V,5 >0

I'y
(cf. (12.7)). The choice ¢ € V, T = 0 gives fFU Tvp dI" = 0. If Tv were nonconstant
on Iy then we would find 1,92 € V, §; = @, and C1,Cs € R such that

/ Tvp; dl' = Cj @ja j=12.
I'y

Then fFU Tu(p1 — o) dI' = (C1 — C2)py # 0, which is a contradiction. O

The verification of validity of Propositions 4.1-4.5 can be done analogously as in
Model Example by using the functional @ instead of ¢°.

In the situation of Example 11.1 (where © = (0,1)) the embedding theorem guar-
antees nonempty interiors of the sets K, K1 and K, so we need not regularize (9.1).

Proof of Proposition 4.1. Let U, — 0, W,, = [{,, wy,] = ”5—2” -~ W =

7w7 n:nnazn_> :7772’» n S an mn n+ ne_—n'
&), Z Z d, — d € R and D(d,)W, + Z L

Analogously to the proof of Proposition 4.1 for Example 10.1 performed earlier we can
prove w(zg) > 0. Let us define a linear continuous functional £ on V by Ly = ¢(1)
and V = Ker £ & Vg with dim Vg = 1. It follows from the definition of M that
(12.33)
m(vn(20))

——mry e() = (dgwn + Zn, ) > -

(0 (0))
A @

for all p € K;.
1Un |

Therefore (d5w, + 2, ) = 0 for any ¢ € Ker L, i.e. djw,, + z, € Vo. This together
with the assumed convergences gives w,, — w in V.
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In the case w(zg) > 0 the embedding theorem yields wy(z9) > 0 for n large
enough. Then (12.33) is equivalent to djw, + z, = 0 and by the limiting process for
n — 400 we obtain dow + z = 0, i.e.dow + 2z € —Mpa(w). In the case w(zg) = 0 it
follows from (12.33) and the sign of m that (dow + 2, ¢) = nll&l@(dgwn + zn,0) 20

for any ¢ € K1, i.e. we have daw + z € —Mp2(w) again. O

The verification of validity of Propositions 4.1-4.5 can be done analogously as in
Model Example.
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