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Abstract. The destabilizing effect of four different types of multivalued conditions de-
scribing the influence of semipermeable membranes or of unilateral inner sources to the
reaction-diffusion system is investigated. The validity of the assumptions sufficient for the
destabilization which were stated in the first part is verified for these cases. Thus the
existence of points at which the spatial patterns bifurcate from trivial solutions is proved.
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9. Auxiliary assertions

This paper is a continuation of [1]. We study the bifurcation points sI ∈ � at
which nontrivial solutions to

(9.1)
σ1(s)u − b11Au− b12Av −N1(u, v) = 0

σ2(s)v − b21Au − b22Av −N2(u, v) ∈ −M2(v)

bifurcate from the trivial solution. Recall that solutions to (9.1) for M2 defined by
(2.9) are weak solutions to

(9.2)
σ1(s)u+ b11u+ b12v + n1(u, v) = 0

σ2(s)v + b21u+ b22v + n2(u, v) = 0
in Ω

The support of this work by the Grant Agency of the Czech Republic under the grant
No. 201/98/1453 and by the Ministry of Education of the Czech Republic under the grant
VS 97156 is gratefully acknowledged.

119



with the boundary conditions

(9.3) u = v = 0 on ΓD,
∂u

∂n
= 0,

∂v

∂n
∈ −m(v)

σ2(s)
on ΓU ,

∂u

∂n
=
∂v

∂n
= 0 on ΓN

(see Section 12). In the main result of [1]—Theorem 4.1—the existence of such bifur-
cation points is proved under certain assumptions on the multivalued mapping M .
Here we shall concentrate on a verification of these assumptions for some important
particular examples of the mappingM (related to a multivalued function m) to show
the existence of bifurcation points of spatial patterns to (9.2).
Let us note that the references to Sections 1–8 correspond to [1].
In the sequel, we need the following assertions and the corresponding

�������� 9.1.
H1L(Ω) = {ϕ ∈W 1

2 (Ω); ∆ϕ ∈ L2(Ω)},
� = H1L(Ω) ∩ �,
H

1
2 (∂Ω)—the space of traces of functions from W 1

2 (Ω),
H− 1

2 (∂Ω)—the dual space of H
1
2 (∂Ω),

D(Ω)—the space of C∞—smooth functions with compact support in Ω.

���	
������ 9.1. There is a uniquely defined continuous mapping T :
H1L(Ω)→ H− 1

2 (∂Ω) such that Tu = ∂u
∂n if u ∈ C1(cl Ω)—see [5].

Let m : � → 2� be a multivalued function. Let m(ξ) := inf{m(ξ)}, m(ξ) :=
sup{m(ξ)} for ξ ∈ �. If u ∈ � then u on ∂Ω is understood in the sense of traces
and ∂u

∂n is understood as a functional T from H− 1
2 (∂Ω). This means that ∂u

∂n (x) ∈
−m(u(x)) stands for

−
∫

ΓU

m(u(x))ψ(x) dΓ �
∫

ΓU

∂u

∂n
ψ dΓ � −

∫
ΓU

m(u(x))ψ(x) dΓ

for any ψ ∈ H
1
2 (ΓU ), ψ � 0 a.e. on ΓU .

Lemma 9.1 (Cf. [6], Theorem 3.2.). Let G ⊂ �
k , meask G < +∞. Let un, u ∈

L2(G) be a sequence of functions, un → u in L2(G). Let gn, g be continuous functions
on �. Let hn, h be Nemytskii operators corresponding to the functions gn, g. Let
C > 0 be a constant such that |gn(ξ)| � C(1 + |ξ|), |g(ξ)| � C(1 + |ξ|) for all ξ ∈ �.
Let gn(un)→ g(u) everywhere on G. Then hn(un)→ h(u) in L2(G).

�
��
. We have hn(un)(x) = gn(un(x)), h(u)(x) = g(u(x)) for all x ∈ G.
We can choose a subsequence (let us denote it {un} again) that is Cauchy. We

can choose again a subsequence {unj} such that

(9.4) ‖unj − unj+1‖L2(G) <
1
2j
.
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The convergence of gn ensures hnj (unj ) → h(u) a.e. on G. The growth of gn and g
together with (9.4) gives

|hnj (unj )(x)| � C(1 + |unj (x)|) � C
(
1 +

∞∑
j=1

|unj+1(x)− unj (x)|+ |un1(x)|
)

=: f(x) ∈ L2(G).

It follows from the Lebesgue theorem that

‖hnj (unj )− h(u)‖L2(G) → 0.

Therefore every subsequence of the original sequence {un} contains a subsequence
for which hnj (unj ) converges to h(u) in L

2(G). Our assertion is proved. �

10. Examples

������	 10.1. We shall investigate the Model Example from [1]. The multi-
valued mapping M is given here by a function m : � → 2� which is singlevalued,
real and continuous on � \ {0} and multivalued at ξ = 0—see (2.9).
The set ∂Ω is Lipschitz. Thus there exist a system of positive constants ai, bi,

a system of sets Ui ⊂ �
n covering ΓU , a system of balls Bi ⊂ �

n−1 centered at 0
and a system of bi-Lipschitzian homeomorphisms Qi : Ui → Bi × (−ai, bi) such that
Qi(Ui ∩Ω) = Bi × (0, bi) and Qi(Ui ∩ (�n \ cl Ω)) = Bi × (−ai, 0), i = 1, . . . ,M . Let

(10.1) α1, . . . , αM

be a C1-smooth partition of unity on ΓU subordinated to the covering Ui and

αM+1 := 1−
M∑
i=1

αi. Then suppαM+1∩clΓU = ∅. For G0 := Ω∪
M⋃
i=1

Ui we have d0 :=

dist(ΓU ,�
n \G0) > 0. For the Lipschitz cut-off function η : x 	→ [1− 2

d0
dist(x,Ω)]+

and for the continuous extension Ẽ : � →W 1,2(�n) ensured e.g. by Theorem 2.3.10
from [5] we take G = �

n and define E := ηẼ (cf. [1], Notation 4.1). Let us recall the
mollification operator Φδ : � →W 1,2(G) ∩C0(cl Ω) introduced in Notation 4.1.
In the sequel we will need

Proposition 10.1.

(i) For any v ∈ �, Φδ(v) is a continuous function on cl Ω.
(ii) If vn, v ∈ �, vn → v in � and δ > 0 is fixed then Φδ(vn)→ Φδ(v) in C0(cl Ω).
(iii) Let v ∈ �, δn → 0+. Then Φδn(v)→ Ev in W 1,2

0 (G).
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(iv) Let vn ⇀ v weakly in � and δn → 0+. Then Φδn(vn) ⇀ Ev weakly in
W 1,2
0 (G).

(v) If vn ⇀ v weakly in � and δn → 0+ then Φδn(vn)→ v in L2(∂Ω).
(vi) For any ψ ∈ �, ψ � 0 a.e. on ΓU there are wn = wn(ψ) ∈ � and δn > 0 such

that wn → ψ strongly in � and Φδ(wn) � 0 on ΓU for any δ ∈ (0, δn).

�
��
. (i) and (ii) are obvious.
(iii): It follows from the definition of Φδ and [5], Theorem 2.1.2 that Φδn(v)→ Ev

and ∂
∂xj
Φδn(v) = Φδn( ∂

∂xj
v)→ ∂

∂xj
Ev in L2(G) for any j = 1, . . . , n. (For the proof

of the identity ∂
∂xj
Φδ(f) = Φδ( ∂

∂xj
f) see [5], Theorem 2.2.1.) Therefore, Φδn(v) →

Ev in W 1,2
0 (G).

(iv): If vn ⇀ v weakly in � then vn → v strongly in L2(Ω) and ∂
∂xj

vn ⇀ ∂
∂xj

v

weakly in L2(Ω) for any j = 1, . . . , n by the embedding theorems. Let Tn, T0 :
L2(G) → L2(G), Tnf := Φδn(f), T0f := Ef for any f ∈ L2(Ω). It follows from
[5], Theorem 2.1.2 that Tnf → T0f in L2(G) for any f ∈ L2(Ω). Tn, T0 are linear
continuous operators, therefore they are uniformly bounded by the Banach-Steinhaus
theorem. We obtain

‖Tnvn − T0v‖L2(G) � ‖Tnvn − Tnv‖L2(G) + ‖Tnv − T0v‖L2(G)

� ‖Tn‖L(L2(G),L2(G)) · ‖vn − v‖L2(Ω) + ‖Tnv − T0v‖L2(G) → 0.

Now, let fn ⇀ f weakly in L2(Ω) and let g ∈ W 1,2(Ω) be arbitrary. We have by
using the Fubini theorem that

(Tnfn − T0f,Eg)L2(G) = (Tnfn − Tnf,Eg)L2(G) + (Tnf − T0f,Eg)L2(G)

= (Efn − Ef, Tng)L2(G) + (Tnf − T0f,Eg)L2(G) → 0.

By the choice fn := ∂
∂xj

vn, f := ∂
∂xj

v in the second part and due to the fact that
∂

∂xj
Tnf = Tn

∂
∂xj

f for any j = 1, . . . , n the proof is completed.
(v) follows from the embedding theorems and (iv).
(vi): We decompose ψ = ψ+−ψ−, where ψ+, ψ− denotes the positive and negative

parts, respectively. We have ψ+, ψ− ∈ � by [3]. The “bad” term is ψ−. Therefore,
we can assume without loss of generality that ψ ∈ � is such that ψ � 0 in Ω and
ψ = 0 a.e. on ΓU . Let us denote gi = αiEψ, αi from (10.1), i = 1, . . . ,M . Since the
boundary of ΓU is Lipschitz with respect to ∂Ω, we can assume that Qi(Ui ∩ ΓU ) is
starshaped1 in Bi with respect to 0 ∈ �

n−1 . Let us denote gr
i (x) := gi(Q

−1
i (rQ(x)))

for any r ∈ (0, 1) and x ∈ Ui. Let Γ̃U be the extension of ΓU such that gr
i (x) = 0 for

any x ∈ Γ̃U . Thus we have constructed Γ̃U such that dist(ΓU , ∂Ω \ Γ̃U ) = δ(0) > 0.

1A set X ⊂ �
k is called starshaped with respect to a set Y , Y ⊂ X, if any ray with its

origin in Y has a unique common point with ∂X—see [4].
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We have gr
i → gi in W

1,2
0 (Ui) for r → 1− (this fact can be proved in a similar way

as (iii) or [5], Theorem 2.1.1). For i = 1, . . . ,M let Oj , j = 1, . . . , ki be a covering of

Vi := {x ∈ �
n ; dist(x, Γ̃U ∩ suppαi) � δ(i)} in Ui such that

ki⋃
j=1

Oj ∩ (∂Ω \ Γ̃U ) = ∅

and δ(i) ∈ (min{ δ(0)

2 , dist(suppαi,�
n \ Ui)}), i = 1, . . . ,M . Let β1,i, . . . , βki,i be a

C1-smooth partition of unity on Vi subordinated to the covering {Oj; j = 1, . . . , ki},
βki+1,i := 1−

ki∑
j=1

βj,i. Then suppβki+1,i ∩ Vi = ∅.

We have βj,ig
r
i ∈ W 1,2

0 (Oj ∩Ω). Therefore there are ϕr,i,j
n which are C1-smooth

with suppϕr,i,j
n ⊂ (Oj∩Ω) and such that ϕr,i,j

n → βj,ig
r
i inW

1,2
0 (Oj∩Ω) for n→ +∞,

j = 1, . . . , ki and i = 1, . . . ,M—see [5]. We can choose rn → 1− and

wn :=
M∑
i=1

( ki∑
j=1

ϕrn,i,j
n + βki+1,i g

r
i

)
+ αM+1ψ → ψ in �

for n→ +∞ and there are δn > 0 such that wn = 0 in a δn-neighbourhood of ΓU . �

With help of Proposition 10.1 we verify all assumptions of Theorem 4.1 (the ver-
ification is contained in Section 12) and as a consequence of [1], Theorem 4.1 and
Remark 4.2 for Example 10.1 we obtain

Theorem 10.1. Let (SIGN) and (1.1) hold, let σ(s) be a differentiable curve
satisfying (4.15), let d0 ∈ Cp and let (4.16) hold. Let m be the multivalued function
from Model Example and let us assume that there exists an eigenfunction ep corre-
sponding to the eigenvalue κp of the Laplacian with (1.3) such that (4.13) is fulfilled
with e = ep. Then stationary spatially nonconstant weak solutions (spatial patterns)
of (SRD), (1.2) with diffusion parameters d1 = σ1(s) and d2 = σ2(s) (i.e. of (9.2),
(9.3)) bifurcate at some sI ∈ (s0, s̃].

This is actually [1], Corollary 4.1 and the proof follows from [1], Theorem 4.1 and
Remark 4.2 and the fact that no nontrivial constant function can satisfy (1.3).

������	 10.2. Let us consider the same multivalued function m as in Model
Example and define the corresponding mapping M : �2 → 2�

2
by M(U) =

[{0},M2(v)],

M2(v) =
{
z ∈ �;

∫
Ω1

m(v)ϕdx

� 〈z, ϕ〉 �
∫
Ω1

m(v)ϕdx for all ϕ ∈ �, ϕ � 0 a.e. in Ω1
}
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for any v ∈ �, where Ω1 ⊂ Ω is a given domain such that a δ0-neighbourhood of Ω1
(with some δ0 > 0) belongs to Ω. Then a solution of (9.1) is a weak solution of the
problem

d1∆u+ b11u+ b12v + n1(u, v) = 0 in Ω,

d2∆v + b21u+ b22v + n2(u, v) = 0 in Ω \ Ω1,(10.2)

d2∆v + b21u+ b22v + n2(u, v) ∈ m(v) in Ω1

with the boundary conditions (1.3). Such a model describes a similar situation as in
Example 10.1 with a source in the interior of the domain Ω.
Let us define the corresponding homogeneous mapping M0 by

M0(U) = [{0},M02(v)]

with

M02(v) = {z ∈ � ; 〈z, v〉 = 0, 〈z, ϕ〉 � 0 for all ϕ ∈ �, ϕ � 0 in Ω1} if v � 0 in Ω1,
M02(v) = ∅ if v < 0 in a subset of Ω1 of a positive measure.

Then a solution of (2.11) is a weak solution of

(10.3)

d1∆u+ b11u+ b12v = 0 in Ω,

d2∆v + b21u+ b22v = 0 in Ω \ Ω1,
d2∆v + b21u+ b22v � 0, v � 0, (d2∆v + b21u+ b22v) v = 0 in Ω1

with boundary conditions (1.3). Note that in this example, the problem (2.11) is
equivalent to (2.13) with K = � × {ϕ ∈ �; ϕ � 0 in Ω1}.
�	��
� 10.1. Let v be a solution to (2.11) with (10.3). Let us denote Ω+v :=

{x ∈ Ω1; v(x) > 0} and Ω0v := {x ∈ Ω1; v(x) = 0}. If ∂Ω0v is a Lipschitzian manifold
then we have

∂v

∂n
= v = 0 in ∂Ω+v ∩ Ω1

(for the proof of this fact see Section 12).

Proposition 10.2. If vn ⇀ v weakly in � and δn → 0+ then vδn
n → v in L2(Ω1).

Moreover, for any ψ ∈ �, ψ � 0 a.e. in Ω1 there are wn = wn(ψ) ∈ � and δn > 0
small such that wn → ψ strongly in � and Φδ(wn) � 0 in Ω1 for any δ ∈ (0, δn).
�
��
. The first assertion follows from the embedding theorems and Proposi-

tion 10.1, (iv).
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Similarly as in the proof of Proposition 10.1 we can assume without loss of gen-
erality that ψ ∈ � is such that ψ � 0 in Ω and ψ = 0 a.e. in Ω1. Therefore,
Eψ ∈ W 1,2

0 (G̃ \ cl Ω1) with G̃ := suppEψ ∪ Ω and there exist C1-smooth func-
tions ϕn with suppϕn ⊂ G̃ \ cl Ω1 (this implies ϕn ∈ �) such that ϕn → Eψ in
W 1,2
0 (G̃)—see [5]. We take wn := ϕn and there are δn > 0 such that wn = 0 in a

δn-neighbourhood of Ω1. �

Now we define M δ and M δ
0 in the same way as in Notation 4.1 with ΓU replaced

by Ω1. Propositions 10.1 and 10.2 ensure the assumptions of Theorem 4.1 hold also
for such M , M0, M δ, M δ

0 corresponding to the problem (10.2).

Theorem 10.2. Let (SIGN) hold, let σ(s) be a differentiable curve satisfying
(4.15), let d0 ∈ Cp and (4.16) hold. Let m be the multivalued function from Model
Example and let us assume that there exists an eigenfunction ep corresponding to an
eigenvalue κp of the Laplacian with (1.3) such that ep � −ε in a δ0-neighbourhood
of Ω1 with some ε > 0. Then stationary spatially nonconstant weak solutions of the
problem (10.2), (1.3) with diffusion parameters d1 = σ1(s) and d2 = σ2(s) bifurcate
at some sI ∈ (s0, s̃].

Again, this follows from Theorem 4.1 and Remark 4.2 from [1] and the fact that
no nontrivial constant function can satisfy (1.3).

������	 10.3. Let a be a positive constant and for any ϕ ∈ � let us denote

ϕ := a
∫

ΓU

ϕ(x) dΓ.

Here e.g.a := (measn−1 ΓU )−1 can be taken. Let m : � → 2� be the function
from Model Example. Let us define the corresponding mapping M : �2 → 2�2 by
M(U) = [{0},M2(v)],

(10.4) M2(v) = {z ∈ �; m(v) ϕ � 〈z, ϕ〉 � m(v) ϕ for all ϕ ∈ �, ϕ � 0}

for any v ∈ �. Then a solution of (9.1) is a weak solution of (9.2) with the boundary
conditions

(10.5)

u = v = 0 on ΓD,

∂u

∂n
= 0,

∂v

∂n
= const ∈ −m(v)

σ2(s)
on ΓU ,

∂u

∂n
=
∂v

∂n
= 0 on ΓN .
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The corresponding homogeneous mapping is M0(U) = [{0},M02(v)] with

M02(v) = {z ∈ �; 〈z, v〉 = 0, 〈z, ϕ〉 � 0 for ϕ ∈ �, ϕ � 0} if v � 0,
M02(v) = ∅ if v < 0.

The associated convex cone is K = �×K2, K2 = {ϕ ∈ �; ϕ � 0} with ∅ �= intK2 =
{ϕ ∈ �; ϕ > 0}. Again, (2.11) is equivalent to (2.13).

Theorem 10.3. Let (SIGN) hold, let σ(s) be a differentiable curve satisfying
(4.15), let d0 ∈ Cp and (4.16) hold. Let m be the multivalued function from Model
Example and let us assume that there exists an eigenfunction ep corresponding to an
eigenvalue κp of the Laplacian with (1.3) satisfying

∫
ΓU
ep dΓ < 0. Then stationary

spatially nonconstant weak solutions of (9.2), (10.5) bifurcate at some sI ∈ (s0, s̃].
This follows from Theorem 4.1 and Remark 4.2 from [1] and the fact that no

nontrivial constant function can satisfy (1.3).

�	��
� 10.2. We have intK �= ∅, therefore no regularization is necessary; we
can define M δ :=M , M δ

0 :=M0 and we have K
δ = K, P δ

τ = Pτ .

11. Another example, where sensor and source are at different
points

In the situation of Examples 10.1–10.3, the homogeneous problem (2.11) is equi-
valent to the variational inequality (2.13). In the next example we will consider a
boundary condition such that the corresponding weak homogeneous problem (2.11)
is not equivalent to (2.13).

������	 11.1. (Cf. [2], Section 5.) Let Ω = (0, 1), � = {ϕ ∈ W 1
2 (0, 1); ϕ(0) =

0}. Let x0 ∈ (0, 1) be fixed. Let us consider the multivalued function m : � → 2�
and the corresponding singlevalued functions m and m as in Model Example. Define
the related mapping M : �2 → 2�2, M(U) = [{0},M2(v)] for U = [u, v] by

(11.1) M2(v) = {z ∈ �; m(v(x0))ϕ(1) � 〈z, ϕ〉 � m(v(x0))ϕ(1), ϕ ∈ �, ϕ(1) � 0}

for any v ∈ �. Then a solution of (9.1) is a weak solution of the problem (9.2) with
the boundary conditions

(11.2) u(0) = v(0) = ux(1) = 0, vx(1) ∈ −m(v(x0))
σ2(s)

.
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The multivalued condition in (11.2) describes e.g. a semipermeable membrane on the
boundary like in Model Example but with a sensor in the interior of the domain,
i.e. the sensor is located at a different point than the source. In the situation of
Example 10.1, we had x0 = 1 (in the case n = 1 and Ω = (0, 1)), i.e. the sensor
was at the same point as the source (membrane). From this point of view, the
multivalued condition in Example 11.1 is more general.
Let us define convex cones Kx0 = {ϕ ∈ �; ϕ(x0) � 0} and K1 = {ϕ ∈ �; ϕ(1) �

0}. The corresponding homogeneous mapping M0 is M0(U) = [{0},M02(v)], U =
[u, v] with

M02(v) = {0} if v(x0) > 0,

M02(v) = {z ∈ �; 〈z, ϕ〉 � 0 for all ϕ ∈ K1} if v(x0) = 0,
M02(v) = ∅ if v(x0) < 0.

Then the set K from (2.14) is � × Kx0. A solution of (2.11) is a weak solution of
(2.12), i.e. of

d1uxx + b11u+ b12v = 0, d2vxx + b21u+ b22v = 0

with the boundary conditions

(11.3)
u(0) = v(0) = ux(1) = 0,

vx(1) � 0, v(x0) � 0, vx(1) · v(x0) = 0.

A suitable penalty operator for M is Pτ (U) = [0, Pτ,2(v)] with

〈Pτ,2(v), ϕ〉 := pτ (v(x0))ϕ(1)

for all v, ϕ ∈ �, where pτ are the same functions as in Model Example. Set K =
� × (K1 ∩Kx0) and consider the condition

(11.4) −U0 ∈ EB(d
0) ∩ intK

instead of (4.14). Here, intK = � × {ϕ ∈ K; ϕ(x0) > 0, ϕ(1) > 0} �= ∅. Therefore,
we can define M δ :=M , M δ

0 := M0, P δ
τ := Pτ for any δ > 0 small. It is easy to see

by using Observation 3.3 from [1] that the condition (11.4) is fulfilled for d0 ∈ Cp

and U0 = [α(d0)ep, ep], α(d0) > 0, provided the eigenfunction ep corresponding to
the eigenvalue κp of Laplacian with the boundary conditions

(11.5) u(0) = ux(1) = 0
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satisfies ep(x0) < 0 and ep(1) < 0. Note that the eigenvalues κj are simple in the
one-dimensional case. Therefore the operator Lδ from (5.9) plays a role only in the
case when d0 = σ(s0) is an intersection point of two different hyperbolas. Replacing
K by K at the appropriate places and (4.14) by (11.4), we can go through the whole
procedure used in [1], Sections 6 and 7 and prove the assertion of Theorem 11.1
below also in this situation.
The proofs of all assertions from Sections 6 and 7 in [1] can be done analogously

with the exception of the proof of the boundedness of the branch of triplets of solu-
tions to penalty equation in s (see [1], (7.6) and Lemmas 6.5–6.7) where the condi-
tions (4.5) and (4.10) are used. However, now (4.5) and (4.10) are not satisfied for
all U ∈ �

2. We have to strengthen the condition (4.15) by

(11.6) lim
s→+∞σ1(s) = +∞, lim

s→+∞σ2(s) = +∞

and prove the fact s < s0 + ζ1 < +∞ with some ζ1 > 0 in the following way.
Let us assume by contradiction that there exist sn and Un = [un, vn] such that

sn → +∞, ‖Un‖ → 0, Wn = [wn, zn] = Un

‖Un‖ ⇀W = [w, z] and

(11.7) D(σ(sn))Un −BAUn − τn
1 + τn

N(Un) +
D(σ(sn))
1 + τn

Lδ(sn)Un + Pτn(Un) = 0

holds. The embedding theorem gives wn → w, zn → z in C0([0, 1]). Writing (11.7) in
the components and multiplying the first equation of (11.7) by wn‖Un‖−1 we obtain
(11.8)

σ1(sn)‖wn‖2 − b11〈Awn, wn〉 − b12〈Azn, wn〉 − τn
1 + τn

〈N1(Un)
‖Un‖ , wn

〉
+

〈σ1(sn)
1 + τn

Lδ(sn)wn, wn

〉
= 0.

We have Lδ(sn) ≡ 0 for sn > s0 + η directly from the definition of Lδ. If we had
w �= 0 then the left hand side of (11.8) would tend to infinity by the assumption
(11.6).
Multiplying the second equation of (11.7) by ϕ‖Un‖−1 with ϕ ∈ K1, ϕ(1) = 0 we

obtain

(11.9)
σ2(sn)〈zn, ϕ〉 − b21〈Awn, ϕ〉 − b22〈Azn, ϕ〉 − τn

1 + τn

〈N2(Un)
‖Un‖ , ϕ

〉
+

〈σ2(sn)
1 + τn

Lδ(sn)zn, ϕ
〉
= 0

(recall that K1 = {ϕ ∈ �; ϕ(1) � 0}). We have Lδ(sn) ≡ 0 for sn > s0 + η again.
Dividing (11.9) by σ2(sn) and letting n → +∞ we obtain 〈zn, ϕ〉 → 0 by using

128



(11.6). We have zn ⇀ z and it follows that 〈z, ϕ〉 = 0 for arbitrary ϕ ∈ �, ϕ(1) = 0.
Thus zxx = 0, which implies z(x) = k ·x with some k ∈ �. Note that the embedding
theorem ensures z ∈ C([0, 1]) and z ∈ � gives z(0) = 0.

Multiplying the second equation of (11.7) by σ−1
2 (sn)vn‖Un‖−2 and passing to the

limit we obtain

(11.10) 0 �
∫ 1

0
z2x dx = k

2 = − lim
n→+∞

pτn(vn(x0))zn(1)
σ2(sn)‖Un‖ = −k lim

n→+∞
pτn(vn(x0))
σ2(sn)‖Un‖ .

This together with the sign of pτn implies k � 0. If k = 0 then z = 0 in [0, 1]. If
k > 0 then z(x0) = kx0 > 0 and the C0-convergence of zn implies vn(x0) > 0 for n
large enough. But pτn(vn(x0)) = 0 and we obtain from (11.10) that

k = − lim
n→+∞

pτn(vn(x0))
σ2(sn)‖Un‖ = 0.

This contradicts k > 0. Therefore z = 0, which is a contradiction with the fact that
‖W‖ = ‖[w, z]‖ = 1.

We obtain

Theorem 11.1. Let (SIGN) hold, let σ(s) be a differentiable curve satisfying
(4.15) and (11.6), let d0 ∈ Cp and (4.16) hold. Let m be the multivalued function
from Model Example and let us assume that there exists an eigenfunction ep corre-
sponding to an eigenvalue κp of the Laplacian with (11.5) satisfying ep(x0) < 0 and
ep(1) < 0. Then stationary spatially nonconstant weak solutions (spatial patterns)
of (9.2), (11.2) bifurcate at some sI ∈ (s0,+∞).

This follows from [1], Theorem 4.1 and Remark 4.2 and from the considerations
above. Let us note that in this situation we have no information like sI < s̃.

12. Validity of Propositions 4.1–4.5 for the examples investigated
above

Let us consider the mappings as in Model Example. Recall that K2 = {ϕ ∈ �;ϕ �
0 a.e. on ΓU}. First, we need to show that a solution of (9.1) is a weak solution of
the problem (9.2), (9.3). For the sake of simplicity we will write d1, d2 instead of
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σ1(s), σ2(s). The inclusion (9.1) is equivalent to the following couple of formulae:∫
Ω
d1

n∑
j=1

uxjϕxj − (b11u+ b12v + n1(u, v))ϕdx = 0 for any ϕ ∈ �,(12.1)

−
∫

ΓU

m(v)ψ dΓ �
∫
Ω
d2

n∑
j=1

vxjψxj − (b21u+ b22v + n2(u, v))ψ dx(12.2)

� −
∫

ΓU

m(v)ψ dΓ for any ψ ∈ K2.

Moreover,∫
Ω
d1

n∑
j=1

uxjϕxj −
(
b11u+ b12v + n1(u, v)

)
ϕdx = 0 for any ϕ ∈ D(Ω),

∫
Ω
d2

n∑
j=1

vxjψxj −
(
b21u+ b22v + n2(u, v)

)
ψ dx = 0 for any ψ ∈ D(Ω),

i.e. (9.2) is satisfied in the sense of distributions. Therefore the equations

d1∆u+ b11u+ b12v + n1(u, v) = 0,(12.3)

d2∆v + b21u+ b22v + n2(u, v) = 0(12.4)

are satisfied a.e. in Ω, where all terms are represented by functions from L2(Ω). For
any u, v ∈ � we can use Green’s formula for (12.1), (12.2) to obtain∫

Ω

(
d1∆u+ b11u+ b12v + n1(u, v)

)
ϕdx− d1

∫
∂Ω

Tu ϕdΓ = 0 ∀ϕ ∈ �,(12.5) ∫
ΓU

m(v)ψ dΓ �
∫
Ω

(
d2∆v + b21u+ b22v + n2(u, v)

)
ψ dx(12.6)

− d2

∫
∂Ω

Tv ψ dΓ �
∫

ΓU

m(v)ψ dΓ, ∀ψ ∈ K2.

With help of (12.3) and (12.4) in (12.5) and (12.6) we obtain Tu = 0 on ΓU ∪ ΓN

and
(12.7)∫

ΓU

m(v)ψ dΓ � − d2

∫
∂Ω

Tv ψ dΓ �
∫

ΓU

m(v)ψ dΓ for all ψ ∈ K2.

It follows from the definition of � that u = v = 0 on ΓD in the sense of traces.
The choice ψ = 0 on ΓU in (12.7) gives Tv = 0 on ΓN while ψ � 0 on ΓU gives
−d2Tv ∈ m(v) on ΓU .
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In a similar way we can show that (9.1) is a weak formulation of (10.2) with (1.3)
or of (9.2) with (10.5) in the situation of Example 10.2 or 10.3, respectively.

Now we shall prove Propositions 4.1–4.5, i.e. we shall verify the conditions (4.1)–
(4.6) and (4.11)–(4.12) for M δ, M δ

0 and P
δ
τ under the situation from Examples

10.1–10.3 and/or 11.1. For the sake of simplicity, we will write vδ instead of Φδ(v).

In the situation of Example 10.1 (i.e.Model Example in the sense of [1]) we define
for τ � 0 the functions pτ by

pτ (ξ) :=


0 ξ � 0,
τξ ξ ∈ [ξτ , 0) ξτ := m0√

1+τ2
,

k(τ)m(ξ) ξ < ξτ k(τ) := m0

m(ξτ )
τ√
1+τ2

.

The definitions of M δ,M δ
0 , P

δ
τ include the triviality of their first components.

Hence only the second components are essential. Definition of M δ
0 yields that K

δ =
{U = [u, v] ∈ �

2; vδ � 0 on ΓU} and (4.1)–(4.6) are satisfied. It is easy to see that
intKδ = {U = [u, v] ∈ �

2; vδ > 0 on clΓU}.
�
��
 �
 �
��������� 4.1. Let Un → 0, Wn = [ξn, wn] = Un

‖Un‖ ⇀ W =

[ξ, w], Zn = [ηn, zn] → Z = [η, z], dn → d ∈ �
2
+ , D(dn)Wn + Zn ∈ −Mδ(Un)

‖Un‖ . This
yields for the first coordinate that dn

1 ξn = −ηn and immediately ξn → ξ because
ηn → η. For the second coordinate the inclusion gives

(12.8)

−
∫

ΓU

m(vδ
n)

‖Un‖
[
ϕδ

]+
dΓ +

∫
ΓU

m(vδ
n)

‖Un‖
[
ϕδ

]−
dΓ � 〈dn

2wn + zn, ϕ〉

� −
∫

ΓU

m(vδ
n)

‖Un‖
[
ϕδ

]+
dΓ +

∫
ΓU

m(vδ
n)

‖Un‖
[
ϕδ

]−
dΓ for all ϕ ∈ �.

We obtain by using the appropriate part of (12.8) that

dn
2 〈wn, wn〉 � −

∫
ΓU

m(vδ
n)

‖Un‖
[
wδ

n

]+
dΓ +

∫
ΓU

m(vδ
n)

‖Un‖
[
wδ

n

]−
dΓ − 〈zn, wn〉,(12.9)

dn
2 〈wn, w〉 � −

∫
ΓU

m(vδ
n)

‖Un‖
[
wδ

]+
dΓ +

∫
ΓU

m(vδ
n)

‖Un‖
[
wδ

]−
dΓ − 〈zn, w〉.(12.10)

We have

(12.11) m(vδ
n)

[
wδ

n

]+
= 0, m(vδ

n)
[
wδ

n

]−� 0, m(vδ
n)

[
wδ

]+� 0, m(vδ
n)

[
wδ

]−� 0

on ΓU . The embedding theorem gives vn → 0, wn → w and vδ
n → 0 in L2(∂Ω) and

consequently vδ
n → 0 and wδ

n → wδ in C0(cl ∂Ω).
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Now we will show that wδ � 0 on ΓU . Let us assume by contradiction that there is
an ε0 > 0 and a set E ⊂ ΓU with measn−1 E > 0 such that wδ < −ε0 on E . We have
vδ

n < 0 on E for n large enough, consequently m(vδ
n) → m0 < 0 and m(vδ

n)
vδ

n
→ +∞

on E . Furthermore, there are n0 and c < 0 such that for all n � n0 we have wδ
n < c

on E . Then the Fatou lemma yields

lim sup
n→+∞

∫
ΓU

m(vδ
n)

‖Un‖
[
wδ

n

]−
dΓ � lim sup

n→+∞

∫
E

m(vδ
n)

‖Un‖
[
wδ

n

]−
dΓ

� lim sup
n→+∞

∫
E

m(vδ
n)

vδ
n

vδ
n

‖Un‖
[
wδ

n

]−
dΓ → −∞,

which contradicts (12.9) because 〈zn, wn〉 → 〈z, w〉 ∈ �. Therefore wδ � 0 on ΓU

and the second integral in (12.10) vanishes. This together with (12.9) and (12.11)
gives

(12.12)

dn
2 〈wn + zn, w〉 � −

∫
ΓU

m(vδ
n)

‖Un‖
[
wδ

]+
dΓ � 0

�
∫

ΓU

m(vδ
n)

‖Un‖
[
wδ

n

]−
dΓ � dn

2 〈wn + zn, wn〉.

The assumptions dn
2 → d2 > 0, zn → z together with (12.12) imply ‖w‖2 �

lim sup
n→+∞

‖wn‖2, hence wn → w in �.

Now, (12.8) implies

〈dn
2wn + zn, ϕ〉 � −

∫
ΓU

m(vδ
n)

‖Un‖ ϕ
δ dΓ � 0 for all ϕ ∈ �, ϕδ � 0 on ΓU

and it follows that 〈d2w+ z, ϕ〉 � 0 for all ϕ ∈ �, ϕδ � 0 on ΓU . By choosing ϕ := w
we have

〈d2w + z, w〉 = lim
n→+∞〈dn

2wn + zn, w〉 � −
∫

ΓU

m(vδ
n)

‖Un‖ w
δ dΓ � 0

and on the other hand, the last two inequalities in (12.12) give

〈d2w + z, w〉 = lim
n→+∞〈dn

2wn + zn, wn〉 �
∫

ΓU

m(vδ
n)

‖Un‖
[
wδ

n

]−
dΓ � 0.

It follows that 〈d2w + z, w〉 = 0 and, by the definition of M δ
02, d2w + z ∈ −M δ

02(w).
�
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�
��
 �
 �
��������� 4.2. We shall prove lim
n→+∞ |〈D−1(dn)P δ

τn,2(Un),

Un − U〉| = 0. If vn ⇀ v in W 1,2(Ω) then vn → v in L2(∂Ω) and also vδ
n → vδ in

L2(∂Ω).
Let τn → τ . Let us suppose first that τ < +∞. Lemma 9.1 gives pτn(v

δ
n)→ pτ (vδ)

in L2(ΓU ), which implies that pτn(v
δ
n) are bounded in L

2(ΓU ). We have

lim
n→+∞

∣∣〈P δ
τn,2(vn), vn − v〉∣∣ � lim

n→+∞

∫
ΓU

|pτn(v
δ
n)(v

δ
n − vδ)| dΓ

� lim
n→+∞ ‖pτn(vδ

n)‖L2(ΓU ) · ‖vδ
n − vδ‖L2(ΓU ) = 0.

Now, let τ = +∞. We take a certain sufficiently small ε > 0 and define a continuous
functionmε : � → � such thatmε(ξ) = m(ξ) for any ξ ∈ (−∞, 0]∪[ε,+∞) andmε is
continuous and negative on (0, ε). The Nemytskii theorem implies mε(v

δ
n)→ mε(v

δ)
in L2(ΓU ) for n→ +∞ with ε fixed. We have

(12.13)

lim
n→+∞ |〈P δ

τn,2(vn), vn − v〉| = lim
n→+∞

∣∣∣ ∫
ΓU

pτn(v
δ
n)(v

δ
n − vδ) dΓ

∣∣∣
� lim

n→+∞

∫
ΓU

|mε(v
δ
n)(v

δ
n − vδ)| dΓ

� lim
n→+∞ ‖mε(v

δ
n)‖L2(ΓU ) · ‖vδ

n − vδ‖L2(ΓU ) = 0.

The second part of (4.12) can be proved by the same considerations by using wn,

w and
P δ

τn,2(vn)
‖Un‖ instead of vn, v and P δ

τn,2(vn) and with help of the assumption that
P δ

τn,2(vn)
‖Un‖ are bounded. �

�
��
 �
 �
��������� 4.3. A: If vn ⇀ v in � and τn → τ ∈ [0,+∞), then
vn → v in L2(∂Ω). Lemma 9.1 gives pτn(v

δ
n)→ pτ (vδ) in L2(ΓU ). We have

sup
‖ϕ‖�1

〈P δ
τn,2(vn)− P δ

τ,2(v), ϕ〉 = sup
‖ϕ‖�1

∫
ΓU

[
pτn(v

δ
n)− pτ (vδ)

]
ϕδ dΓ → 0.

Let τ → +∞. For any sufficiently small ε > 0 we define a function mε : � → �

such thatmε(ξ) = m(ξ) for any ξ ∈ (−∞, 0]∪[ε,+∞), mε is continuous and negative
on (0, ε), mε1 � mε2 for ε1 � ε2 and mε → m with ε → 0. Similarly, let us define
continuous functions mε : � → � by mε := p1/ε. Then mε(ξ) = m(ξ) for ξ � 0,
mε(ξ) � m(ξ) for ξ < 0, mε1 � mε2 for ε1 � ε2 and mε → m with ε→ 0. Therefore,
for all ε > 0 we have pτn � mε on � for n large enough. For such n we have∫

ΓU

mε(v
δ
n)

[
ϕδ

]+
dΓ −

∫
ΓU

mε(vδ
n)

[
ϕδ

]−
dΓ

�
∫

ΓU

pτn(v
δ
n)

[
ϕδ

]+
dΓ −

∫
ΓU

pτn(v
δ
n)

[
ϕδ

]−
dΓ = 〈P δ

τn,2(vn), ϕ〉
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for any ϕ ∈ �. The Nemytskii theorem implies mε(v
δ
n)→ mε(v

δ), mε(vδ
n)→ mε(vδ)

in L2(ΓU ) for n→ +∞ with ε fixed. If P δ
τn,2(vn)→ ψ in � then the limiting process

n→ +∞ gives ∫
ΓU

mε(v
δ)

[
ϕδ

]+
dΓ −

∫
ΓU

mε(vδ)
[
ϕδ

]−
dΓ � 〈z, ϕ〉

for any ϕ ∈ �. The Levi theorem gives
(12.14)∫

ΓU

m(vδ)
[
ϕδ

]+
dΓ −

∫
ΓU

m(vδ)
[
ϕδ

]−
dΓ

= lim
ε→0+

∫
ΓU

mε(v
δ)

[
ϕδ

]+
dΓ −

∫
ΓU

mε(v
δ)

[
ϕδ

]−
dΓ � 〈z, ϕ〉

for any ϕ ∈ �.
In a similar way we can prove

(12.15)

∫
ΓU

m(vδ)[ϕδ]+ dΓ −
∫

ΓU

m(vδ)[ϕδ]− dΓ � 〈z, ϕ〉

for any ϕ ∈ �. The inequalities in (12.14) and (12.15) imply z ∈M δ
2 (v).

B: The assumptions vn → 0 in �, wn :=
vn

‖Un‖ ⇀ w in � and τn → 0 together
with the embedding theorem give that vn → 0 and wn → w in L2(∂Ω) and wδ

n → wδ

in C0(clΓU ). For a fixed τ0 and n large enough we have vδ
n > ξτ0 on ΓU and∣∣∣pτn(v

δ
n)

vδ
n

∣∣∣ �
∣∣∣τnvδ

n

vδ
n

∣∣∣ = τn → 0 on ΓU .

We obtain∣∣∣ sup
‖ϕ‖�1

〈P δ
τn,2(vn)

‖Un‖ , ϕ
〉∣∣∣ = ∣∣∣ sup

‖ϕ‖�1

∫
ΓU

pτn(v
δ
n)

‖Un‖ ϕδ dΓ
∣∣∣ = ∣∣∣ sup

‖ϕ‖�1

∫
ΓU

pτn(v
δ
n)

vδ
n

wδ
nϕ

δ dΓ
∣∣∣

� sup
‖ϕ‖�1

τn · ‖wδ
n‖L2(ΓU ) · ‖ϕδ‖L2(ΓU ) → 0.

C: Let Un → 0, Wn =
Un

‖Un‖ ⇀ W , τn → τ ∈ [0,+∞). The embedding theorem
gives that vn → 0, wn := vn

‖Un‖ → w in L2(∂Ω) and vδ
n → 0, wδ

n → wδ in C0(cl ∂Ω).

Set E := {x ∈ ΓU ; wδ < 0} and for τ � 0 introduce pτ,0 : ξ 	→
{
0, ξ � 0,
τξ, ξ � 0.

,

i.e. pτ,0 = pτ for ξ � ξτ . Hence from the C0-convergence of vδ
n we have∣∣∣ sup

‖ϕ‖�1

〈P δ
τn,2(vn)

‖Un‖ − P δ
τn,0,2(w), ϕ

〉∣∣∣ � sup
‖ϕ‖�1

∣∣∣ ∫
E

[pτn(v
δ
n)

vδ
n

wδ
n − τwδ

]
ϕδ dΓ

∣∣∣
� sup

‖ϕ‖�1

∥∥∥pτn(v
δ
n)

vδ
n

wδ
n − τ · wδ

∥∥∥
L2(ΓU )

· ‖ϕδ‖L2(ΓU ) → 0.
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Let now τn → +∞ and P δ
τn
(Un)

‖Un‖ → Z. By the same considerations as in the proof
of Proposition 4.1 (using pτn(v

δ
n) instead of m(v

δ
n)) we can show that w

δ � 0 on ΓU :
Let us suppose that there is an ε0 > 0 and a set E ⊂ ΓU with measn−1 E > 0 such
that wδ < −ε0 on E . The C0-convergence of vδ

n ensures the existence of τ0 ∈ � and

n0 ∈ � such that vδ
n ∈ (ξτ0 , 0) on E for all n � n0. Then

pτn (v
δ
n)

vδ
n
= τn → +∞ for

n→ +∞ on E . The Fatou lemma gives

(12.16) lim sup
n→+∞

∫
ΓU

pτn(v
δ
n)

‖Un‖ ϕδ dΓ � lim sup
n→+∞

∫
E

pτn(v
δ
n)

vδ
n

vδ
n

‖Un‖ϕ
δ dΓ = −∞

for any ϕ ∈ � such that ϕδ � 0 on ΓU and ϕδ > 0 on E , which is the contradiction
with

(12.17)
∫

ΓU

pτn(v
δ
n)

‖Un‖ ϕδ dΓ → 〈z, ϕ〉.

This implies wδ � 0 on ΓU , i.e.w ∈ Kδ
2 . Moreover, (12.17) and the sign of pτ give

〈z, ϕ〉 � 0 for all ϕ ∈ Kδ
2 and for ϕ := w we obtain 〈z, w〉 � 0. On the other hand,

the choice ϕ := wn implies

〈z, w〉 = lim
n→+∞

∫
ΓU

pτn(v
δ
n)

‖Un‖ wδ
n dΓ � 0,

because the signs of pτn(v
δ
n) and w

δ
n are the same on ΓU . We obtain 〈z, w〉 = 0,

therefore z ∈M δ
02(w) by definition. �

�
��
 �
 �
��������� 4.4. A: Let Un → 0, Wn = Un

‖Un‖ ⇀ W /∈ Kδ,
τn → τ0 > 0 and V ∈ intKδ. The embedding theorems give vn → 0 and wn → w in
L2(∂Ω) and vδ

n → vδ, wδ
n → wδ in C0(clΓU ). The assumption W /∈ Kδ ensures the

existence of an ε0 > 0 and a set E ⊂ ΓU with measn−1 E > 0 such that wδ < −ε0 on
E . Then there exist τ0 ∈ � and n0 ∈ � such that vδ

n ∈ (ξτ0 , 0) on E for all n � n0.
The assumption V = [y, z] ∈ intKδ means zδ > 0 on ΓU . For εn → 0+ we obtain

(12.18)

lim sup
n→+∞

〈P δ
τn
(Un)

‖Un‖ , V
〉
= lim sup

n→+∞

〈P δ
τn,2(vn)

‖Un‖ , z
〉
= lim sup

n→+∞

∫
ΓU

pτn(v
δ
n)

‖Un‖ zδ dΓ

� lim sup
n→+∞

∫
E

pτn(v
δ
n)

vδ
n

wδ
nz

δ dΓ � lim sup
n→+∞

∫
E

(τ0 − εn) · vδ
n

vδ
n

wδ
nz

δ dΓ < 0.

B: The proof of the second part is similar—in the final line of (12.18) we use the
fact that

pτn(v
δ
n)

τnvδ
n

=
τnv

δ
n

τnvδ
n

= 1

on E for n large enough. �
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�
��
 �
 �
��������� 4.5, (4.11). Let δn → 0+, Un = [un, vn] ⇀ U ,
Zn = [ηn, zn]→ Z, dn → d ∈ �

2
+ , D(dn)Un +Zn ∈ −M δn(Un). The first part of the

inclusion is the equation
dn
1un + ηn = 0

and we have immediately un → u because ηn → η. The second part of the inclusion
gives
(12.19)

−
∫

ΓU

m(vδn
n )

[
ϕδn

]+
dΓ +

∫
ΓU

m(vδn
n )

[
ϕδn

]−
dΓ � 〈dn

2 vn + zn, ϕ〉

� −
∫

ΓU

m(vδn
n )

[
ϕδn

]+
dΓ +

∫
ΓU

m(vδn
n )

[
ϕδn

]−
dΓ for all ϕ ∈ �.

The embedding theorem together with Proposition 10.1, (iv) give vn → v and vδn
n →

v in L2(∂Ω). By using the appropriate part of (12.19) we obtain that

〈dn
2 vn + zn, vn〉 � −

∫
ΓU

m(vδn
n )

[
vδn

n

]+
dΓ +

∫
ΓU

m(vδn
n )

[
vδn

n

]−
dΓ,(12.20)

dn
2 〈vn + zn, v〉 � −

∫
ΓU

m(vδn
n )

[
vδn

]+
dΓ +

∫
ΓU

m(vδn
n )

[
vδn

]−
dΓ.(12.21)

The terms have the following signs on ΓU :

(12.22) m(vδn
n )

[
vδn

n

]+
= 0, m(vδn

n )
[
vδn

n

]−� 0, m(vδn
n )

[
vδn

]+� 0, m(vδn
n )

[
vδn

]−� 0.

For any fixed ε > 0 small let us define continuous functions mε,mε : � → � such
that mε(ξ) = m(ξ) for any ξ ∈ (−∞, 0] ∪ [ε,+∞) and mε is negative on (0, ε), and
mε(ξ) = m(ξ) for any ξ ∈ (−∞,−ε]∪ [0,+∞) andmε is negative on (−ε, 0) and such
that they converge monotonously to m or m, respectively, for ε → 0+. It follows
from (12.20), (12.21), (12.22) and from the above definitions of mε and mε that

〈dn
2 vn + zn, vn〉 �

∫
ΓU

mε(vδn
n )

[
vδn

n

]−
dΓ,(12.23)

dn
2 〈vn + zn, v〉 � −

∫
ΓU

mε(vδn
n )

[
vδn

]+
dΓ +

∫
ΓU

mε(v
δn
n )

[
vδn

]−
dΓ.(12.24)

The limiting process for n→ +∞ in (12.23), (12.24) by using the Nemytskii theorem
gives

lim sup
n→+∞

〈dn
2 vn + zn, vn〉 �

∫
ΓU

mε(v)v−dΓ,

d2‖v‖2 + 〈z, v〉 � −
∫

ΓU

mε(v)v+ dΓ +
∫

ΓU

mε(v)v
− dΓ
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and the limiting process for ε→ 0+ by using the Levi theorem implies

(12.25)

d2 lim sup
n→+∞

‖vn‖2 + 〈z, v〉 �
∫

ΓU

m(v)v− dΓ,

d2‖v‖2 + 〈z, v〉 � −
∫

ΓU

m(v)v+ dΓ +
∫

ΓU

m(v)v− dΓ.

We have m(v)v+ = 0, m(v)v− = m(v)v− and therefore (12.25) gives ‖v‖2 �
lim sup
n→+∞

‖vn‖2, which implies vn → v strongly in �.

Similarly as above, we can estimate (12.19) both from below and above by using
mε and mε to obtain
(12.26)

−
∫

ΓU

mε(v
δn
n )

[
ϕδn

]+
dΓ +

∫
ΓU

mε(v
δn
n )

[
ϕδn

]−
dΓ � 〈dn

2 vn + zn, ϕ〉

� −
∫

ΓU

mε(vδn
n )

[
ϕδn

]+
dΓ +

∫
ΓU

mε(v
δn
n )

[
ϕδn

]−
dΓ for all ϕ ∈ �.

The “double” limiting process in (12.26) (first for n→ +∞, then for ε→ 0+) gives
(12.27)

−
∫

ΓU

m(v)ϕ+dΓ +
∫

ΓU

m(v)ϕ−dΓ � 〈d2v + z, ϕ〉

� −
∫

ΓU

m(v)ϕ+dΓ +
∫

ΓU

m(v)ϕ−dΓ for all ϕ ∈ �,

which is equivalent to

−
∫

ΓU

m(v)ϕdΓ � 〈d2v + z, ϕ〉 � −
∫

ΓU

m(v)ϕdΓ for all ϕ ∈ K2

and we have D(d)U + Z ∈ −M(U) by definition. �

�
��
 �
 �
��������� 4.5, (4.12). Let δn → 0+, Un ⇀ U , Zn → Z,
dn → d ∈ �

2
+ , D(dn)Un+Zn ∈ −M δn

0 (Un). Again, as in the proof of (4.11), the first
part of the inclusion gives un → u strongly. The second part of the inclusion gives

〈dn
2 vn + zn, vn〉 = 0,(12.28)

〈dn
2 vn + zn, ϕ〉 � 0 for all ϕ ∈ �, ϕδn � 0 on ΓU .(12.29)

The embedding theorem gives vn → v and vδn
n → v in L2(∂Ω). We have vδn

n � 0 on
ΓU and therefore also v � 0 on ΓU . We can choose a subsequence (let us denote it
vn again) and Proposition 10.1, (vi) ensures the existence of wn = wn(v) ∈ � such
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that wδn
n � 0 on ΓU and wn → v strongly in �. We can put ϕ := wn in (12.29) to

obtain with help of (12.28) that

〈dn
2 vn + zn, wn〉 � 0 = 〈dn

2vn + zn, vn〉.

The assumptions dn
2 → d2 > 0, zn → z and the fact wn → v imply lim sup

n→+∞
‖vn‖2 �

‖v‖2, therefore vn → v strongly in �.
Now, let ψ ∈ � be arbitrary such that ψ � 0 a.e. on ΓU . Let wn = wn(ψ)

be the functions from Proposition 10.1, (vi) corresponding to ψ. Then the choice
ϕ := wn(ψ) in (12.29) and the limiting process in (12.28) and (12.29) (we have
wn(ψ)→ ψ) gives d2v + z ∈ −M02(v). �

In the situation of Example 10.2, the verification of validity of Propositions 4.1–4.5
can be done analogously as in Model Example.

�
��
 �
 �	��
� 10.1. It follows from the last part of (10.3) that

d2∆v + b21u+ b22v = 0 in Ω+v .

Multiplying this equation by an arbitrary ϕ ∈ �, ϕ � 0 in Ω1, integrating over Ω+v
and using Green’s formula we obtain
(12.30)

0 =
∫

∂Ω+v

d2Tvϕ dΓ +
∫
Ω+v

−d2
n∑

j=1

vxjϕxj + (b21u+ b22v)ϕdx

=
∫

∂Ω+v

d2Tvϕ dΓ +
∫
Ω1

−d2
n∑

j=1

vxjϕxj + (b21u+ b22v)ϕdx

−
∫
Ω0v

−d2
n∑

j=1

vxjϕxj + (b21u+ b22v)ϕdx.

It follows from (2.11) and the definition of M02(v) that

∫
Ω1

−d2
n∑

j=1

vxjϕxj + (b21u+ b22v)ϕdx � 0 for any ϕ ∈ �, ϕ � 0 in Ω1.

This fact together with (12.30) implies

(12.31)

∫
∂Ω+v

d2Tvϕ dΓ −
∫
Ω0v

−d2
n∑

j=1

vxjϕxj + (b21u+ b22v)ϕdx � 0

for any ϕ ∈ �, ϕ � 0 in Ω1.
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Clearly, we have ∇v = 0 in Ω0v and the second term in (12.31) vanishes. As a test
function in (12.31) we can choose ϕn ∈ �, ϕn � 0 in Ω1, ϕn = 1 in cl Ω+v , ϕn = 0 in
Ωn

v ⊂ Ω0v, meas(Ω0v \ Ωn
v )→ 0 for n→ +∞ to get∫

∂Ω+v

Tv dΓ � 0.

But Tv � 0 on ∂Ω+v by the second condition in the last part of (10.3). Therefore∫
∂Ω+v

Tvϕ dΓ � 0 and, consequently,
∫

∂Ω+v
Tvϕ dΓ = 0 for any ϕ � 0 in Ω1. Thus

we obtain Tv = 0 on ∂Ω+v . Finally, it is easy to see that v = 0 on ∂Ω
+
v . �

In the situation of Example 10.3 we have intK �= ∅ and there is no need to
regularize via Φδ.

�
��
 of the fact ∂v
∂n = const on ΓU from (10.5), i.e. of

∫
ΓU

Tvϕ dΓ = C ϕ for
some C ∈ �. In a similar way as at the beginning of Section 12 we can prove that
(9.1) is a weak solution of (9.2) with (10.5) and we obtain

(12.32) m(v)ϕ � −d2
∫

ΓU

Tvϕ dΓ � m(v)ϕ for all ϕ ∈ �, ϕ � 0

(cf. (12.7)). The choice ϕ ∈ �, ϕ = 0 gives
∫

ΓU
Tvϕ dΓ = 0. If Tv were nonconstant

on ΓU then we would find ϕ1, ϕ2 ∈ �, ϕ1 = ϕ2 and C1, C2 ∈ � such that∫
ΓU

Tvϕj dΓ = Cj ϕj , j = 1, 2.

Then
∫

ΓU
Tv(ϕ1 − ϕ2) dΓ = (C1 − C2)ϕ1 �= 0, which is a contradiction. �

The verification of validity of Propositions 4.1–4.5 can be done analogously as in
Model Example by using the functional ϕ instead of ϕδ.
In the situation of Example 11.1 (where Ω = (0, 1)) the embedding theorem guar-

antees nonempty interiors of the sets K, K1 and K, so we need not regularize (9.1).
�
��
 �
 �
��������� 4.1. Let Un → 0, Wn = [ξn, wn] = Un

‖Un‖ ⇀ W =

[ξ, w], Zn = [ηn, zn] → Z = [η, z], dn → d ∈ �
2
+ and D(dn)Wn + Zn ∈ −M(Un)

‖Un‖ .
Analogously to the proof of Proposition 4.1 for Example 10.1 performed earlier we can
prove w(x0) � 0. Let us define a linear continuous functional L on � by Lϕ = ϕ(1)
and � = KerL ⊕ �0 with dim�0 = 1. It follows from the definition of M that
(12.33)

−m(vn(x0))
‖Un‖ ϕ(1) � 〈dn

2wn + zn, ϕ〉 � −m(vn(x0))
‖Un‖ ϕ(1) for all ϕ ∈ K1.

Therefore 〈dn
2wn + zn, ϕ〉 = 0 for any ϕ ∈ KerL, i.e. dn

2wn + zn ∈ �0 . This together
with the assumed convergences gives wn → w in �.
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In the case w(x0) > 0 the embedding theorem yields wn(x0) > 0 for n large
enough. Then (12.33) is equivalent to dn

2wn+ zn = 0 and by the limiting process for
n → +∞ we obtain d2w + z = 0, i.e. d2w + z ∈ −M02(w). In the case w(x0) = 0 it
follows from (12.33) and the sign of m that 〈d2w+ z, ϕ〉 = lim

n→+∞〈dn
2wn + zn, ϕ〉 � 0

for any ϕ ∈ K1, i.e. we have d2w + z ∈ −M02(w) again. �

The verification of validity of Propositions 4.1–4.5 can be done analogously as in
Model Example.

�������	��	�	��. I would like to thank Dr. J. Jarušek for his important
and helpful comments and suggestions, Dr.M.Kučera for his remarks and for the
proof of constantness of ∂v

∂n in (10.5) and Dr.D.Medková for her ideas concerning
the limiting process δ → 0.
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