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SOME SUMS OF LEGENDRE AND JACOBI POLYNOMIALS
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Abstract. We prove identities involving sums of Legendre and Jacobi polynomials. The
identities are related to Green’s functions for powers of the invariant Laplacian and to the
Minakshisundaram-Pleijel zeta function.
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1. INTRODUCTION

In [1] some new identities involving Legendre polynomials are given as applications
of results for Green’s functions for powers of the invariant Laplacian. We intend to
give other proofs.

In Remark 4.3 in [1] a bilinear formula analogous to (4) below is indicated-but not
proved. We give a closed form for

Furthermore, we calulate

(cf. Remark 4.3 in [1]).
For m > 4 the sums
s 2n+1
— P, (x
2 T s+
seem to be rather complicated and it seems unlikely that they can be expressed with
the help of polylogarithms.
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2. PRELIMARIES

The sums in [1] for which we will give alternative proofs are

= o2n+1
1 — P, =log2—1—1log(l—ux),
(1) ;n(wrl) (z) = log og(1 — z)
[e’s) v+1
2n+v+1 1 1—=x
9 (0,v) - _ g | ,
2) Y oy = s
i 2n +1 (@)
- 2 aln+ 1) "
1—=x 2 9 . 1—=a
=1 log — — =1 — +L — 1
g 81tz 2% 14 + l2< 1—|—ac>+7
= 2n+1
> < Pu(2)Paly)
(4) i+l

=2log2—-1—-log(l—z)(1+y) if —l<z<y<l.

For some simplifications we will need Landau’s functional equation

(5) Lia(2) + iy (— ) :—%logQ(l—z)

and an equation by Euler

2
(6) Lis(2) 4+ Lis(1 — 2) = % —log z - log(1 — 2),

see [2].
If we use (5) and (6) with z = 15% we get

11—z 2 1. 5 2 11—z
] Jog —— — Zlog? —2— 4 Liy(— 1
og 1 logy —glog o Lb(- )+
11—z 1+ 2 1. 45 2 . 1l—x
=1 —1 ).] | 2 L
(Og 2 %65 BTrr 2% 1rs T2
1. ,14=x 1—=z 2 1—x 2 1+2
— 2 1=1 Jog —— — L 1=1-% +Li .
508 —p - Tl=leg g rleg T — M o 6 T2y

Thus we have simplified the right hand side of (3).
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From [3] we have some basic facts for Jacobi polynomials. The defining equation
is

d dP*? (z)

(8
(7) E(u—ﬁ)T)ﬂﬁ—a—(A—m)M

pla.B) —
e +n(n+A) PP (x) =0

where A\ =a+ §+ 1.
Suppose formally that

Fa) =3 e P a).
n=0

Then
1
(8) Cn = hi/ f(x)P,(Lo"ﬁ) (2)(1 —2)*(1 4 2)’ dz
n J-1
where
() L 2 T(n+a+ 1)I(n+B+1)
" (2n+ AN)n!T'(n 4+ )
We will also need
o (a+D)(a+2) ... - (a+n)
(10) Pl (1) = 2 .

3. SOME SUMS

Proof of (1) and (2). Combining (7) and (8) yields

L4 aP{"(z) o
—nnt Newho = [ 2o (00=a) Y 1@ 1 - 0) (14 ) da
dP? (@)

g f@)(1 =)+ z)? de.

1
(11) +[1(ﬁ—a—(A—1)x)

Integration by parts transforms the first integral to

ar*? (z) 1

(-t =2 (@)1 = 2)" (1 + )]

(a,8)
- /1 df (@) ") (f'(z) 1 —2)*T (1 +2) ) de

—1 dz
(e, 8)
- /_11 IO (1) (8- 0 (A~ D)1 - )1+ 2)7) d
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Combining the two integrals in (11) yields

(a,83)
—n(n+ Necphy, = — /1 Mf’(x)(l — x)a-s-l(l + x)[“rl dx

1 dx

(12) = — [P (@) f (2) (1 — 2)° T (1 + 7)1

+ /11 Pr(la,ﬁ)(x)d;i(f/(x)(l _ x)a+1(l n $)5+1) de.

To prove (1) we specify

1—
f(z)=1log2—1—log(l —z)=—-1—log 233, and a=pF=0.

Then q
L @ -ora sy =1

and the second integral in (12) vanishes for n > 1. Since

[PED(@)f @)1 =) (14 2)" ], = Pa(1)-2=2

and 5
hy, =
2n+1
we have 5 )
¢, = L, n>1
n(n+1)

(see (9) and (10)). It remains to determine ¢y. However,

/11 f(z)dz =0.

Thus ¢o = 0 and we have proved (1).
In order to prove (2) we start with a redefinition of

Furthermore, put « = 0 and 8 = v. Then—see (12)—

(@0 - 1+ = (F@ - D)0+ 0 = @+ )+
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and the second integral in (12) vanishes for n > 1. Since

[P @) @)1= 2) ™ L+ 2], = PO (1) 24 = 24

and
2l/+1

" n4r+1

we have ot 1
=T p>1

nn+v+1)
To complete the proof of (2) we evaluate

S L R T
13 Y1+ ) - — lo 1+ 2)" da.
w [ s +1;y/1g2()

In the last integral in (13) we make the substitution z = }—jﬂf Then

1
1—
/ log
—1

T o t v+l
1 ta)yde= [ 1 : dt
(1+2)" dz /0 1t Lt

< logt * log(1 +1t)
— 2l/+1 / _/
( s aroe i) Troe at)

1 K1 1 grtl ¥y
14 :zvﬂ(_ L ):_ 1
(14) 1/—|—1j;j (v+1)2 V—i—l;j

where we have used the fact that

v

1 logt 1
_ L logi—log(l+t
y+1< (1+t)”+1+z g Tlost —loe(l+ )

is a primitive function to log! . Combining (13) and (14) we get

1
coho = / fl@)1+2)"dx = 0.
-1

We have proved (2).

Remark 1. The technique is also applicable to sums involving other Jacobi

polynomials, e.g.

oo

2n+3 )(n+2)
n(n+ 3) "

n=1

145



Proof of (3). To simplify the notation we define—or redefine—some functions:

f(#) = —1-log 2L,
F(a)= (1 - 2)log 15,
o) =

Gla )_1—%+le1;$

Then F'(z) = f(z) and G'(z) = g(z). According to (1) we have

ntl, / fa — [F@)Pa(2)]", - / F(x)P)(z) da

n—|—1 . . J_

. / 9(2)(@? — )Pl (x)dz = — [ G()(@® — 1) Po(x)] ",

—0 as x—=+1

1
/ G(x (z* —1)P(x ))dxzn(n+l)/71G(x)P z)dx

We have proved that

2n+1 .
h / G de m if n—1,2,...

After integration by parts we can complete the proof with

/_11 G(z)dx =

An extension of (3). We intend to prove that

= 2n+l
7;1 (n+1)) Pr()
72 l—2 . 1—2x D l+zx L l—z
(15) —€—2+2C(3)+log 5 - Liy 5 — Liy 5 —2Lig 5

We use the same technique as above.
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Redefine

2 S
f(x)—l_g"f'ng 2 y
2
1
F(x):—%(l—i—x)—i—(l—i—x)ng ;x—(l—x)log x,
_ F(z)
9(2) = 57
2 1— 1 1
Gle) = = —24+2((3) + log 2”“" Lis 2”“" Lis '2”" 9Liz —

Then F'(z) = f(z) and G'(z) = g(z). According to (3) we have

2n + 1 e B ! ,
st = [ @R e = [F@P), [ F(@)P; (o) ds
=0
- [ s - VP de = ~[G@)a® - ) )]
! —0 as x—=+1
+ [ 6@ FH (@ =P dr =+ 1) [ GE@P)
n(n+1)P, (z)
Since

1 1
/ G(z)dz = [(z — 1)G(z)]*, —/ Flz) dx

1 ,1.134-1
2 ! n2 142 11—z 1—=x
=Ly (—— Li - 1 )d
3 /,1 6 R Ty Tty )Y
71:2 TC2 TC2 TC2
R e
3 T3 \3 A

we get ¢ = 0. We have proved (15).
Proof of (4). Now we redefine f as

_1_10g(1—T”31+Ty) if —1<2<y
f(x):{_l_log(H‘TTfl;_y) if y<z<l1.
If 0
f(@) = cnPu(z)
n=0

dx.
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then cg = %fil f(z)dz =0 and for n > 1

B = —/Ul (1+log<1;xHTy>>Pn(x)dx

o

—ﬁ/ <1+log(

2
o) S
Thus integration by parts yields
e

+/_y1(x+1) ' (z) dx — [<1+10g (HTxl_Ty>>($2—1)Pr/z($)r

Y

Y

1
+ / (x — )P () dz = [z + 1) Pa(@)]’, + (& — 1) Pa(a)]?

1
— / P,(x)dz = 2P,(y).

-1

We have proved that
(2n +1)P(y)

= n(n+1)

which completes the proof of (4).
An extension of (4). We intend to prove that

= 2n+1
1—10g1+y log(TT)—l—Ll%—Ligl;—y if —1l<z<g
1—10g1+”3 log(_ _)—I—ngl—LigHTr if —1<y<

A formula like this is wanted in Remark 4.3 in [1].

In this proof we will recognize the pattern of the above proofs. However, first we
need the notation
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Fla) Fi(z)=(1-2)logi5% — (x+1)logE¥  if —1<uz
) =
F(z)=—(1+2)log42 — (2 - 1)log 52 if y<z<1

. Bl i —1<a<y
g(r) =
BE i y<aogl,

Gla) = {1—1og1+y log (L5245%) + Lia 142 —Li ¥ if -1<z<y
-log(%%y) +Li2% —LigHTz if y<z<1l.
Then the functions f, F,g and G are continuous at x = y and furthermore F’ = f
and G/ = g.
Again integration by parts is useful. We get

/_ 11 G(x)dz = 0.

Finally, (4) yields

2n + 1 B n_/ fa [F(Jj)Pn(JJ)]iI

n(n+1) , ,
=0 because Fy(—1)=F>(1)=0

- [ s@)@ - DPia) do = - [G@)E? — ) P
- —0 as x—=+1

1 d /
+ /71 G(z) a((ac2 —1)P(x)) dz.

n(n+1)P,(z)
We complete the proof with
2n+1
— G(x x)de = —————= P, (y).
i Lo " ey Y
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