WEAK σ -DISTRIBUTIVITY OF LATTICE ORDERED GROUPS

JÁN JAKUBÍK, Košice

(Received April 8, 1999)

Abstract. In this paper we prove that the collection of all weakly distributive lattice ordered groups is a radical class and that it fails to be a torsion class.

Keywords: lattice ordered group, weak σ -distributivity, radical class

MSC 2000: 06F20

The notion of weak σ -distributivity was applied by Riečan and Neubrunn in the monograph [10] to MV-algebras and to lattice ordered groups; in Chapter 9 of [10] it was systematically used in developing the probability theory in MV-algebras. For a Dedekind complete Riesz space the notion of weak σ -distributivity has been applied by A. Boccuto [2].

It is well known that each MV-algebra \mathcal{A} can be constructed by means of an appropriately chosen abelian lattice ordered group G with a strong unit (this result is due to Mundici [9]). In [10] it was proved that \mathcal{A} is weakly σ -distributive if and only if G is weakly σ -distributive.

For the notions of a radical class and a torsion class of a lattice ordered groups cf., e.g., [1], [3], [5], [8]. Radical classes of MV-algebras were dealt with in [7].

In the present paper we prove that the collection of all weakly σ -distributive lattice ordered groups is a radical class and that it fails to be a torsion class. Consequently, it fails to be a variety.

Supported by Grant 2/6087/99.

Let L be a lattice. If $x \in L$ and $(x_n)_{n \in N}$ is a sequence in L such that $x_n \ge x_{n+1}$ for each $n \in N$ and

$$\bigwedge_{n \in N} x_n = x,$$

then we write $x_n \searrow x$.

For lattice ordered groups we use the standard notation.

1.1. Definition. (Cf. [10], 9.4.4 and 9.4.5.) A lattice ordered group G is called weakly σ -distributive if it satisfies the following conditions:

- (i) G is σ -complete.
- (ii) Whenever $(a_{ij})_{i,j}$ is a bounded double sequence in G such that $a_{ij} \searrow 0$ for each $i \in N$ (where $j \to \infty$), then

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)} = 0.$$

We denote by W the class of all lattice ordered groups which are weakly $\sigma\text{-}$ distributive.

Let \mathcal{G} be the class of all lattice ordered groups. For $G \in \mathcal{G}$ let c(G) be the system of all convex ℓ -subgroups of G; this system is partially ordered by the set-theoretical inclusion. Then c(G) is a complete lattice. The lattice operations in c(G) will be denoted by \bigvee^{c} and \bigwedge^{c} . If $\{H_i\}_{i \in I}$ is a nonempty subsystem of c(G), then

$$\bigwedge_{i\in I} H_i = \bigcap_{i\in I} H_i.$$

Further, $\bigvee_{i \in I} H_i$ is the subgroup of the group H (where we do not consider the lattice operations) which is generated by the set $\bigcup H_i$.

1.2. Definition. A nonempty class $X \subseteq \mathcal{G}$ which is closed with respect to isomorphisms is called a radical class if it satisfies the following conditions:

- 1) If $G_1 \in X$ and $G_2 \in c(G_1)$, then $G_2 \in X$.
- 2) If $H \in G$ and $\emptyset \neq \{G_i\}_{i \in I} \subseteq c(H) \cap X$, then $\bigvee_{i \in I}^c G_i \in X$.

A radical class which is closed with respect to homomorphisms is called a torsion class.

In view of 1.2, for each radical class X and each $G \in \mathcal{G}$ there exists the largest element of the set $\{G_i \in c(G): G_i \text{ belongs to } X\}$; we denote it by X(G). It is said to be the radical of G with respect to X.

1.3. Definition. Let G be a σ -complete lattice ordered group. We denote by B(G) the set of all elements $b \in G$ such that the following conditions are valid:

- (i) b > 0.
- (ii) There exists a bounded double sequence $(a_{ij})_{i,j}$ in G such that $a_{ij} \searrow 0$ for each $i \in N$ (where $j \to \infty$) and

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)} = b$$

1.4. Lemma. Let G be a σ -complete lattice ordered group. Then the following conditions are equivalent:

(i) G is weakly σ -distributive.

(ii) $B(G) = \emptyset$.

Proof. In view of 1.1 we have (i) \Rightarrow (ii). Suppose that (ii) holds. By way of contradiction, assume that G is not weakly distributive. Then there exists a bounded double sequence $(a_{ij})_{i,j}$ in G such that $a_{ij} \searrow 0$ for each $i \in N$ (where $j \to \infty$) and the relation

(1)
$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^c a_{i\varphi(i)} = 0$$

fails to be valid.

Since G is σ -complete, for each $\varphi \in N^N$ there exists an element x_{φ} in G such that

$$x_{\varphi} = \bigvee_{i=1}^{\infty} a_{i\varphi(i)}.$$

For each $i, j \in N$ we have $a_{ij} \ge 0$, whence $x_{\varphi} \ge 0$ for each $\varphi \in N^N$. Since the relation (1) does not hold, there exists $z \in G$ such that $x_{\varphi} \ge z$ for each $\varphi \in N^N$ and $z \nleq 0$. Denote $y = z \lor 0$. Then

$$0 < y \leq x_{\varphi}$$
 for each $\varphi \in N^N$.

Put $a'_{ij} = a_{ij} \wedge y$ for each $i, j \in N$. Then $a'_{ij} \searrow 0$ for each $i \in I$ (where $y \to \infty$). Further, for each $\varphi \in N^N$ we have

$$y = y \wedge x_{\varphi} = y \wedge \bigvee_{i=1}^{\infty} a_{i\varphi(i)} = \bigvee_{i=1}^{\infty} (y \wedge a_{i\varphi(i)}) = \bigvee_{i=1}^{\infty} a'_{i\varphi(i)}.$$

Thus we obtain

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a'_{i\varphi(i)} = y$$

which contradicts the assumption (ii) in 1.1.

1.5. Lemma. Let G be as in 1.4. Suppose that $b \in B(G)$ and $b_1 \in G$, $0 < b_1 \leq b$. Then $b_1 \in B(G)$.

Proof. In view of 1.3 we have

$$b_1 = b_1 \wedge b = b_1 \wedge \left(\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)}\right) = \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} (b_1 \wedge a_{i\varphi(i)}).$$

Put $b_1 \wedge a_{ij} = a'_{ij}$ for each $i, j \in N$. Then the double sequence $(a'_{ij})_{ij}$ is bounded in G and $a'_{ij} \searrow 0$ for each $i \in N$ (where $j \to \infty$). Hence $b_1 \in B$.

From the definition of W we immediately obtain

1.6. Lemma. W satisfies condition 1) from 1.2.

1.7. Lemma. W satisfies condition 2) from 1.2.

Proof. Let $H \in \mathcal{G}$ and $\emptyset \neq \{G_i\}_{i \in I} \subseteq c(H) \cap W$. Put

$$\bigvee_{i\in I}^c G_i = K.$$

By way of contradiction, suppose that K does not belong to W. It is clear that K is σ -complete. Thus in view of 1.4, $B(K) \neq \emptyset$. Choose $b \in B(K)$.

It is well-known that for each element $k \in K^+$ there exist $n \in N, i_1, i_2, \ldots, i_n \in I$ and $x_n \in G_{i_1}^+, x_2 \in G_{i_2}^+, \ldots, x_n \in G_{i_n}^+$ such that

$$k = x_1 + x_2 + \ldots + x_n.$$

Put k = b. Since b > 0, at least one of the elements x_1, x_2, \ldots, x_n is strictly positive. Let $x_i > 0$ for some $i \in \{1, 2, \ldots, n\}$. In view of 1.5 we have $x_i \in B(G)$. This yields $x_i \in B(G_i)$, a contradiction.

154

In view of 1.6 and 1.7 we have

1.8. Proposition. *W* is a radical class of lattice ordered groups.

1.9. Example. Let us denote by R^+ the set of all non-negative reals and let F be the set of all real functions defined on the set R^+ . The partial order and the operation + on F are defined coordinate-wise. Then F is a complete lattice ordered group. Moreover, F is completely distributive. Hence, in particular, F is weakly σ -distributive. Thus F belongs to W. Let H be the system of all $f \in F$ such that the set

$$\{x \in R^+ \colon f(x) \neq 0\}$$

is finite. Then H is an ℓ -ideal of F. It is easy to verify that the factor lattice ordered group F/H fails to be archimedean, hence it is not σ -complete. Thus W is not closed with respect to homomorphisms. Consequently, it fails to be a torsion class.

Radical classes which satisfy some additional conditions were investigated in [11]. In connection with W let us mention two such properties. First, it is obvious that the class W is closed with respect to direct products.

For a subset X of a lattice ordered group G the polar X^{δ} of X in G is defined by

 $X^{\delta} = \left\{ g \in G \colon |g| \land |x| = 0 \quad \text{for each } x \in X \right\}.$

We say that a class \mathcal{C} of lattice ordered groups is closed with respect to double polars if, whenever $G \in \mathcal{G}$ and $H \in c(G) \cap \mathcal{C}$, then $H^{\delta\delta} \in \mathcal{C}$.

1.10. Proposition. The class W is closed with respect to double polars.

Proof. Let $G \in \mathcal{G}$ and $H \in c(G) \cap W$. Put $H^{\delta\delta} = K$. By way of contradiction, assume that K does not belong to W. Thus in view of 1.4, $B(K) \neq \emptyset$. Let $b \in B(K)$. Then b > 0. If $h \wedge b = 0$ for each $h \in H^+$, then $b \in H^{\delta}$; since $H^{\delta} \cap H^{\delta\delta} = \{0\}$, we would obtain b = 0, which is impossible. Therefore there is $h \in H^+$ such that $h \wedge b > 0$. Thus in view of 1.5, $h \wedge b \in B(K)$. Consequently, $h \wedge b \in B(H)$ and therefore $B(H) \neq \emptyset$. In view of 1.4 we arrived at a contradiction.

1.11. Corollary. $(W(G))^{\delta\delta} = W(G)$ for each lattice ordered group G.

1.12. Corollary. Let G be a strongly projectable lattice ordered group. Then W(G) is a direct factor of G.

The assertion of 1.12 is valid, in particular, for each complete lattice ordered group.

2. A modification of weak σ -distributivity

In this section we deal with a modification of the notion of weak σ -distributivity; this can be applied also to lattice ordered groups which are not σ -complete.

Let L be a lattice. We say that L satisfies the condition (α) if, whenever $(a_{ij})_{i,j}$ is a bounded double sequence in L such that

- (a) $a_{ij} \ge a_{i,j+1}$ for each $i, j \in N$;
- (b) all the joins and meets in the expressions

(*)
$$\bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} a_{ij}, \ \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)}$$

exist in L, then the expressions in (*) are equal.

It is obvious that σ -distributivity of L implies that condition (α) is valid for L.

2.1. Proposition. Let G be a σ -complete lattice ordered group. Then G is weakly σ -distributive if and only if it satisfies condition (α).

Proof. i) Assume that G is weakly σ -distributive. Let $(a_{ij})_{i,j}$ be a bounded double sequence in G such that conditions (a) and (b) are satisfied. Put

$$u = \bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} a_{ij}, \quad v = \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)}.$$

Denote $a'_{ij} = (a_{ij} \lor u) \land v$. Since G is infinitely distributive, we get

(1)
$$u = \bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} a'_{ij}, \quad v = \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a'_{i\varphi(i)}$$

Also, for each $i, j \in N$ the relations $a'_{ij} \ge a'_{i,j+1}$ and $a'_{ij} \in [u, v]$ are valid. Thus

$$\bigwedge_{j=1}^{\infty} a'_{ij} \ge u \quad \text{for each } i \in N.$$

Hence by the first of the relations (1) we get

(2)
$$\bigwedge_{j=1}^{\infty} a'_{ij} = u.$$

Further, we denote $a_{ij}'' = a_{ij}' - u$ for all $i, j \in N$. Then $a_{ij}'' \ge a_{i,j+1}''$ for all $i, j \in N$, whence according to (2)

$$a_{ij}^{\prime\prime} \searrow 0 \quad (\text{as } j \to \infty) \text{ for each } i \in I.$$

Since G is weakly σ -distributive, we obtain

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)}'' = 0.$$

This yields

$$u = \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} (a''_{i\varphi(i)} + u) = \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a'_{i\varphi(i)} = v.$$

Therefore G satisfies condition (α) .

ii) Conversely, assume that condition (α) is valid for G. Let $(a_{ij})_{i,j}$ be a bounded double sequence in G such that, for each $i \in N$, we have $a_{ij} \searrow 0$ (where $j \to \infty$). Thus

$$\bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} a_{ij} = 0.$$

Since G is σ -complete, in view of condition (α) we obtain

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)} = 0,$$

whence G is weakly σ -distributive.

We denote by W_1 the class of all lattice ordered groups G such that G satisfies condition (α).

In view of 2.1 we have $W \subseteq W_1$. The following example shows that $W \neq W_1$.

Let Q be the additive group of all rationals with the natural linear order. Then Q is a completely distributive lattice ordered group, whence $Q \in W_1$. Since Q fails to be σ -complete, it does not belong to W.

We obviously have

2.2. Lemma. Let L be a lattice. Suppose that condition (α) is not valid for L. Then there exists a bounded double sequence $(a_{ij})_{i,j}$ in L such that assumptions (a), (b) of (α) are satisfied and there are $u, v \in L$ with

$$u < v, \quad u = \bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} a_{ij}, \quad v = \bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)}.$$

157

2.3. Corollary. Let L be as in 2.2. Assume that L is infinitely distributive. Then there are $u, v \in L$, u < v such that condition (α) is not satisfied for the interval [u, v] of L.

Proof. It suffices to consider the double sequence $(a'_{ij})_{i,j}$, where $a'_{ij} = (a_{ij} \lor u) \land v$ for each $i, j \in N$.

2.4. Lemma. Let L, u and v be as in 2.3. Assume that $u_1, v_1 \in L, u \leq u_1 < v_1 \leq v$. Then the interval $[u_1, v_1]$ does not satisfy condition (α) .

Proof. Let $(a'_{ij})_{i,j}$ be as in the proof of 2.3. Now it suffices to take into account the double sequence $(a''_{ij})_{i,j}$, where

$$a_{ij}^{\prime\prime} = (a_{ij}^{\prime} \lor u_1) \land v_1$$

for each $i, j \in N$.

Since each lattice ordered group G is infinitely distributive, from 2.3, 2.4 and by using a translation we obtain

2.5. Corollary. Let G be a lattice ordered group which does not satisfy condition (α). Then there is $v \in G$ with 0 < v such that, whenever $v_1 \in G$, $0 < v_1 \leq v$, then the interval $[0, v_1]$ of G does not satisfy condition (α).

Now by an analogous argument as in the proofs of 1.6 and 1.7 and by applying 2.5 we infer

2.6. Proposition. W_1 is a radical class of lattice ordered groups.

Also, similarly as in the case of W, the class W_1 is closed with respect to direct products and with respect to double polars.

We conclude by the following remarks on MV-algebras.

Let \mathcal{A} be an MV-algebra with the underlying set A. We apply the notation from [5]. There exists an abelian lattice ordered group G with a strong unit u such that $\mathcal{A} = \mathcal{A}_0(G, u)$ (cf. Mundici [9]). In particular, A is the interval [0, u] of G. Hence we can consider the lattice operations \vee and \wedge on A; thus we can apply the notion of weak σ -distributivity and the condition (α) for the case when instead of a lattice ordered group we have an MV-algebra. We denote by W^m and W_1^m the classes of all MV-algebras which satisfy the condition of weak σ -distributivity or the condition (α), respectively. The notion of a radical class of MV-algebras was introduced and studied in [7].

In [10], (9.4.5) it was proved that \mathcal{A} is weakly σ -distributive if and only if G is weakly σ -distributive. By a similar argument we can show that \mathcal{A} satisfies the

158

condition (α) if and only if G satisfies this condition. Thus we obtain from 1.8, 2.6 and from [7], Lemma 3.4 that both W^m and W_1^m are radical classes of MV-algebras.

References

- P. Conrad: K-radical classes of lattice ordered groups. Algebra, Proc. Conf. Carbondale 1980, Lecture Notes Math. vol. 848, 1981, pp. 186–207.
- [2] A. Boccuto: Integration in Riesz spaces with respect to (D)-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54.
- [3] M. Darnel: Closure operations on radicals of lattice ordered groups. Czechoslovak Math. J. 37 (1987), 51–64.
- [4] D. Gluschankof: Cyclic ordered groups and MV-algebras. Czechoslovak Math. J. 43 (1993), 249–263.
- [5] J. Jakubik: Radical mappings and radical classes of lattice ordered groups. Symposia Math. vol. 21, Academic Press, New York-London, 1977, pp. 451–477.
- [6] J. Jakubik: Direct product decompositions of MV-algebras. Czechoslovak Math. J. 44 (1994), 725–739.
- [7] J. Jakubik: Radical classes of MV-algebras. Czechoslovak Math. J. 49 (1999), 191-211.
- [8] J. Martinez: Torsion theory for lattice-ordered groups. Czechoslovak Math. J. 25 (1975), 284–299.
- D. Mundici: Interpretation of AFC*-algebras in Łukasziewicz sentential calculus. J. Functional Anal. 65 (1986), 15–53.
- [10] B. Riečan, T. Neubrunn: Integral, Measure and Ordering. Kluwer Publ., Dordrecht, 1997.
- [11] Dao-Rong Ton: Product radical classes of l-groups. Czechoslovak Math. J. 43 (1992), 129–142.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail: musavke@mail.saske.sk.