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Abstract. One of the main aims of the present and the next part [15] is to show that the
theory of graphs (its language and results) can be very useful in algebraic investigations.
We characterize, in terms of isomorphisms of some digraphs, all pairs 〈A,L〉, where A is a
finite unary algebra and L a finite lattice such that the subalgebra lattice of A is isomorphic
to L. Moreover, we find necessary and sufficient conditions for two arbitrary finite unary
algebras to have isomorphic subalgebra lattices. We solve these two problems in the more
general case of partial unary algebras.
In the next part [15] we will use these results to describe connections between various

kinds of lattices of (partial) subalgebras of a finite unary algebra.
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One of the important concerns of universal algebra and the theory of partial alge-
bras is the connection between algebras and their subalgebra lattices. For instance,

characterizations of subalgebra lattices for algebras in a given variety or of a given
type are this kind of problems (see e.g. [10]). Moreover, several results (see e.g. [6],

[17], [18]) describe algebras or varieties of algebras which have special subalgebra lat-
tices (i.e.modular, distributive, etc.). For example, T. Evans and B.Ganter proved in

[6] that an arbitrary subalgebra modular variety (i.e. a variety in which every algebra
has a modular subalgebra lattice) is Hamiltonian (i.e. any subalgebra is a congruence

class of a suitable congruence). Hence and by [11], it is Abelian. Moreover, J. Shapiro
showed in [17] that every subalgebra distributive variety (i.e. each of its algebras has

a distributive subalgebra lattice) is strongly Abelian. Note that some of such results
concern also classical algebras—Boolean algebras, groups, modules (see e.g. [12], [16]

or [7], [8]). For example, D. Sachs showed in [16] that two Boolean algebras are
isomorphic iff their lattices of subalgebras are isomorphic. E. Lukács and P.P.Pálfy
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proved in [12] that the modularity of the subgroup lattice of the direct square of any

group implies that G is commutative.
In the present part, and also in the next [15], we show that the theory of directed

and undirected graphs can be very useful in algebraic investigations of connections
between finite unary algebras and their subalgebra lattices. We do not restrict our

attention to total algebras only, and we consider also the more general case of partial
algebras. More precisely, we use some results of graph theory and also some of

universal algebra to characterize, in terms of isomorphisms of some digraphs, all pairs
〈A,L〉, where A is a finite partial unary algebra and L a finite lattice, such that the
strong subalgebra lattice of A is isomorphic to L. Moreover, we find necessary and
sufficient conditions for two arbitrary finite partial unary algebras to have isomorphic

strong subalgebra lattices. Although in this part we use only the classical kind
of subalgebras they will be called strong as opposed to the other kinds of partial

subalgebras considered in the theory of partial algebras (see [3] or [5]).

In the next part [15] we will apply the solutions of these problems to describe con-
nections between lattices of weak, relative, strong subalgebras and initial segments

of the finite unary partial algebra.

For basic notions concerning partial algebras see e.g. [3] or [5], concerning (total)
algebras and lattices of subalgebras see e.g. [10], concerning digraphs (i.e. directed

graphs) and (undirected) graphs see e.g. [4]. For any partial unary algebra A =
〈A, (kA)k∈K〉, the complete and algebraic lattice of all strong subalgebras of A under
(strong subalgebra) inclusion �s will be denoted by Ss(A). For any digraph D, by
V D and ED we denote its sets of vertices and edges, respectively. In the present
paper we investigate only finite algebras. Since we use digraphs to represent partial
unary algebras, all digraphs considered are also finite, i.e. the sets of vertices and
edges are finite. Recall (see [2]) that each partial unary algebra A = 〈A, (kA)k∈K〉
can be represented by a digraph D(A) obtained from A by omitting the names
of all operations. More formally, A is the set of all vertices of D(A),

{
〈a, k, b〉 ∈

A × K × A : 〈a, b〉 ∈ kA}
is the set of all edges of D(A), and for each edge 〈a, k, b〉,

a is its initial vertex and b is its final vertex. Note that this construction is a very

particular case of the Grothendieck construction (see [1], section 4.2 and 11.2), but
applied to models of digraphs (in the category of sets and partial functions) rather

than to functors.

In [14] we defined a special kind of subdigraphs which correspond to strong subal-
gebras, and therefore we called them strong. More precisely, a digraph H is a strong
subdigraph of a digraph D (H �s D) iff H is an ordinary subdigraph of D and for
each edge e of D, if the initial vertex of e belongs to H, then e belongs to H, in
particular, the final vertex of e also belongs to H. It is easy to see that for any
two strong subdigraphs H and K of D, they are equal iff V H = V K; H is a strong
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subdigraph of K iff V H ⊆ V K. It is also easy to verify that for a partial unary
algebra A and its strong subalgebra B, the digraph D(B) representing B is indeed
a strong subdigraph of D(A). Moreover, it can be shown, in a similar way as for
partial unary algebras (see also [14], where the precise proof is given) that the set of

all strong subdigraphs of a digraph D forms a complete and algebraic lattice Ss(D)
under (strong subdigraph) inclusion �s. In the same paper we proved the following

result (� denotes isomorphisms of algebras, digraphs, graphs, lattices, etc.):

Theorem 1. For each partial unary algebra A, Ss(A) � Ss

(
D(A)

)
.

�����. The proof is obtained by a verification that the function assigning to
each strong subalgebra B of A its digraph D(B), which is a strong subdigraph of
D(A), forms this isomorphism, i.e. it is a bijection and preserves the lattice ordering
�s of Ss(A) and Ss

(
D(A)

)
. �

Let D be a digraph and W ⊆ V D a subset of vertices. The contraction of W (see
[4], chapter 3) is an operation on G defined as follows:
(a) W is replaced by a single point which will be denoted often by w,

(b) all directed edges with endpoints in W are replaced by a single loop in w,

(c) each directed edge going into W (or out of W ) is replaced by the directed edge

with the same initial vertex (or final vertex) ending in w (or starting from w).

The digraph obtained from D by the contraction of W will be denoted by D/W .
We will also use the convention that D/∅ : = D. Obviously, if D is connected, then
D/W is also connected. Moreover, by simple verification we obtain that for each
subdigraph H of D, H/(V H ∩ W ) is a subdigraph of D/W .

The contraction of a set of vertices in a digraph need not preserve the strong
subdigraph lattice. For instance, from every non-empty digraph we can obtain a

trivial digraph, i.e.with exactly one vertex, by contracting the set of all vertices. It
is also easy to show that this operation even need not preserve strong subdigraphs.

Now we prove the first important fact which shows that for a special kind of sets

of vertices, the contraction of these sets preserves the strong subdigraph lattices.
Recall first (see [4], chapter 3) that a digraph D is strongly connected iff for any two
distinct vertices v, w, there is a path going from v to w. Secondly (see also [4]), D is
strongly connected iff D is connected and every edge lies on a cycle. Here we assume
that no path encounters the same vertex twice, and analogously for a cycle except
its first and its last vertex which coincide. Each loop forms a cycle, called trivial.

Next, for each digraph D and its subset W ⊆ V D, by [W ]D we denote the subdi-
graph spanned on W , i.e.W is its set of vertices and all edges of D with endpoints
in W form its set of edges.
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Theorem 2. Let D be a digraph and let W ⊆ V D be a set such that [W ]D is
strongly connected. Then

Ss(D) � Ss(D/W ).

�����. Observe that for each strong subdigraph H �s D, H and W are

disjoint or H contains W . Indeed, if v is a common vertex of H and W , then for
each w ∈ W \ {v} there is a path (e1, . . . , en) going from v to w. Using a simple

induction we obtain that e1, . . . , en belong to H, so w ∈ V H.
Further, by simple verification we obtain that for each H �s D, if W and H

are disjoint, then H is a strong subdigraph of D/W . On the other hand, if W is
contained in H, then H/W is a strong subdigraph of D/W .

The above facts imply that

ϕ(H) = H
/
(V H ∩ W ) for each H �s D

is a well-defined function of the set of all strong subdigraphs of D into the set of all
strong subdigraphs of D/W . Of course, ϕ(H) = H or ϕ(H) = H/W .
Take H,K �s D and assume ϕ(H) = ϕ(K). Let w be the vertex of D/W corre-

sponding to W . If w does not belong to ϕ(H), then W is disjoint with H and K,
so H = K. If w belongs to ϕ(H), then W must have common vertices with H and
K. Hence, W is contained in H and in K. This fact easily implies that the sets of
vertices of these digraphs coincide. Because they are strong subdigraphs, it follows

that H = K. Thus ϕ is an injection.
Take a strong subdigraph K of D/W . If w does not belong to K, then obviously

K is also a strong subdigraph of D and ϕ(K) = K. Assume that w belongs to K
and take [U ]D, where U is the set of all vertices of K without w and all vertices of

W , i.e.U =
(
V K \ {w}

)
∪ W . Since K �s D/W , it is easy to show that [U ]D is a

strong subdigraph of D. Hence, [U ]D/W is also a strong subdigraph of D/W . This

implies [U ]D/W = K, because their vertex sets are, of course, equal. Thus ϕ is also
surjective.

Now we must only prove that ϕ and its inverse preserve the inclusion �s. Take
H,K �s D and recall that H �s K iff V H ⊆ V K. Analogously ϕ(H) �s ϕ(K) iff
V ϕ(H) ⊆ V ϕ(K). Thus it is enough to show that the vertex set of H is contained in K
iff ϕ(K) contains the vertex set of ϕ(H). This fact easily follows from the definition
of the contraction, because each of these two digraphs contains W or is disjoint with
W . Thus ϕ is the desired lattice isomorphism. �

Note (see [4], chapter 3) that for a digraph D, strongly connected components can
be considered. More precisely, for each vertex v ∈ V D we take all vertices w such
that w = v or there is a path going from v to w and also a path going from w to v.
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Next we take the subdigraph spanned on this set. Obviously these subdigraphs are

pairwise disjoint and strongly connected and maximal.
Let D be a finite digraph andW1, W2, . . . , Wn the family of all non-trivial strongly

connected components of D. Then we can consider the digraph T (D) obtained from
D by contracting these sets. More precisely, we first contract W1 (then, of course,
W2, . . . , Wn are all non-trivial strongly connected components of D/W1). Secondly,

we contract W2 in D/W1, and so on. We repeat this procedure n times to obtain
our digraph. It is easy to see that the order of the contraction of these sets is not

important, so T (D) is uniquely determined.
It is well-known (see [4], chapter 3) that T (D) has no non-trivial cycles. By

Theorem 2 we also have that for each 1 � i � n − 1,

Ss

(
(. . . (D/W1)/ . . .)/Wi

)
� Ss

((
(. . . (D/W1)/ . . .)/Wi

)
/Wi+1

)
,

in particular we obtain Ss(D) � Ss

(
T (D)

)
.

Summarizing, for a given finite digraph D we have constructed the digraph T (D)
without non-trivial cycles but with the same strong subdigraph lattice. Now we show
that this digraph can be simplified further. We start with the following auxiliary

Lemma 3. Let D be a finite and simple digraph without cycles. Then for every
edge e, there is a path (f1, f2, . . . , fn) going from the initial vertex of e to the final

vertex of e and f1, . . . , fn are isthmi.

Recall that a digraph is simple iff it has not loops and for any two distinct vertices

v, w there is at most one edge from v to w. Moreover, (see [4]) an edge e is an isthmus
iff e is regular (i.e. e is not a loop) and e is the only path from its initial vertex to its

final vertex.

�����. Take an edge e and let v, w be its initial and its final vertex, respectively.

Note that each edge is regular, because D is simple. Observe that, because e forms a
one-element path from v to w, the family of all paths going from v to w is non-empty.
It is also finite, because D is a finite digraph. Thus we can choose in this family a
path p = (f1, . . . , fn) with maximal length. Assume now that for some 1 � i � n,
fi is not an isthmus. Then there is a path (g1, . . . , gk) going from the initial vertex

of fi to the final vertex of fi. First, this path has at least two edges, because D
is simple. Secondly, (f1, . . . , fi−1, g1, . . . , gk, fi+1, . . . , fn) is a path, since D has no
cycles. Thus there is a path going from v to w with length greater than p. This
contradiction shows that f1, . . . , fn are isthmi. �

Lemma 4. Let D be a finite and simple digraph without cycles and let H be its
subdigraph consisting of all vertices of D and all isthmi of D. Then Ss(H) � Ss(D).
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�����. Observe first that, because H is a subdigraph of D, for each strong
subdigraph K �s D, [V K]H is a strong subdigraph of H.
Secondly, if K is a strong subdigraph of H, then [V K]D is a strong subdigraph of

D. To see this take an edge e of D starting from V K. Then by Lemma 3 there is a
path (f1, . . . , fn) of isthmi in D (thus, in particular, f1, . . . , fn belong to H) going
from the initial vertex of e to the final vertex of e. Hence, using a simple induction

and the fact that K is a strong subdigraph of H, we obtain that this path belong to
K. Thus, in particular, the final vertex of e belongs to V K, so e is an edge of [V K]D.
Having the above facts it is sufficient to assign the subdigraph [V K]H of H to each

K �s D to obtain a well-defined function from the set of all strong subdigraphs of D
into the set of all strong subdigraphs of H. Moreover, the function assigning [V K]D
to each K �s H is its inverse. It is also easy to see that these two functions preserve
the strong subdigraph inclusion �s. This completes the proof. �

Let D be an arbitrary finite digraph and take T (D). Observe first that we can
remove all loops in T (D). The digraph H so obtained has its strong subdigraph
lattice isomorphic to Ss

(
T (D)

)
, and consequently, isomorphic to Ss(D). H has no

cycles and is finite.

Secondly, let K be a simple digraph containing all vertices of H and for any two
distinct vertices v and w, let there be an edge in K from v to w iff there is an edge

in H from v to w. Then the strong subdigraph lattices of H and K are isomorphic.
Note that this isomorphism is given by assigning to eachM �s H the digraph [V M]K
which is, of course, a strong subdigraph of K. Hence, Ss(K) � Ss(D).
Thirdly, take the subdigraph of K consisting of all its vertices and all its isthmi.

This digraph (observe that it is constructed from D in four steps) will be denoted
by Tis(D).
By the above definitions, results and Lemma 4 we obtain the following important

Theorem 5. Let D be a finite digraph. Then Ss(D) � Ss

(
Tis(D)

)
.

Now take a finite partial unary algebra A and set Tis(A) : = Tis
(
D(A)

)
. Theo-

rems 1 and 5 imply

Corollary 6. For each finite partial unary algebra A, Ss(A) � Ss

(
Tis(A)

)
.

Now we show that Tis(A) uniquely determines the strong subalgebra lattice Ss(A)
for any finite algebra A. Recall (see [9] or [10]) that a lattice L = 〈L, �L〉 is isomor-
phic to the strong subalgebra lattice for some partial unary algebra iff L is algebraic,
distributive and every element of L is the join of completely join-irreducible elements.
l ∈ L is completely join-irreducible iff for any subset K of L, l =

∨
K implies l ∈ K;

l is join-irreducible, if the condition holds for all two-element subsets K. A partial
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unary algebra A = 〈(A, (kA)k∈K〉 such that Ss(A) � L can be constructed (see also
[10]) as follows: the set CI(L) of all completely join-irreducible elements of L is its
carrier, i.e.A = CI(L), and CI(L) is its unary type, i.e.K = CI(L), and for all
a ∈ A, k ∈ K, if k �L a and k 	= a, then kA(a) = k; otherwise the unary partial

operation kA on a is not defined. Of course, A can be completed to a total algebra
A of type K (for a ∈ A and k ∈ K, if k is not less than a, we set kA(a) = a), but

then the digraph corresponding to this algebra has loops. Note that D(A) is a simple
digraph and has no cycles.

Obviously if L is finite, then A is also finite. It is also well-known that a finite
lattice is algebraic and each of its elements is the join of completely join-irreducible

elements. Thus a lattice L is isomorphic to the strong subalgebra lattice for some
finite unary algebra iff L is finite and distributive.
With each finite and distributive lattice L = 〈L, �L〉 we can associate a digraph

D(L) in the following way: We first consider the finite partial unary algebraA defined
above. Secondly, we take D(A). Next, D(L) is the subdigraph of D(A) consisting
of all vertices and all isthmi. Observe also that D(A) can be constructed from L as
follows: CI(L) is its set of all vertices, and

{
〈p, q〉 ∈ CI(L)× CI(L) : q �L p

}
is its

set of all edges, and for any edge 〈p, q〉, p is its initial vertex and q is its final vertex.

Moreover, an edge 〈p, q〉 is an isthmus in D(A) iff q ≺ p, where ≺ is the covering
relation on CI(L), i.e. q ≺ p iff q �L p and for any z ∈ CI(L), q �L z �L p implies

z = q or z = p. These two facts imply that the digraph D(L) can be constructed
from L as follows: CI(L) is its set of all vertices, and the set of all pairs 〈p, q〉 such
that p, q ∈ CI(L) and q ≺ p is its set of all edges, and for each edge 〈p, q〉 of D(L), p
is its initial vertex and q is its final vertex. Note also that in the case of finite lattices

CI(L) is just the set of all non-zero join-irreducible elements.

Theorem 7. For each finite and distributive lattice L, Ss

(
D(L)

)
� L.

�����. Take the algebra A constructed above such that Ss(A) � L. Then
Ss

(
D(A)

)
� L by Theorem 1. By Lemma 4 we deduce Ss

(
D(L)

)
� Ss

(
D(A)

)
,

because D(A) is simple and without cycles. This two facts complete the proof. �

Proposition 8. Let K and L be finite and distributive lattices. Then

K � L iff D(K) � D(L).

�����. Observe that if two finite and distributive lattices K and L are isomor-
phic, then also their digraphs D(K) and D(L) also isomorphic. This follows from the
facts that non-zero join-irreducible elements and the covering relation on the set of
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such elements are preserved by a lattice isomorphism. On the other hand, isomorphic

digraphs have isomorphic strong subdigraph lattices. Thus by Theorem 7 we obtain
K � Ss

(
D(K)

)
� Ss

(
D(L)

)
� L. �

Now we prove an important technical fact needed in the sequel.

Lemma 9. Let D be a finite digraph without cycles such that each of its edges
is isthmus. Then

D
(
Ss(D)

)
� D,

i.e. the digraph obtained from the strong subdigraph lattice of D is isomorphic to D.

�����. First, since Ss(D) is a complete lattice, for every set W ⊆ V D there
is the least strong subdigraph containing W which will be denoted by 〈W 〉sD. It is
a simple graph-theoretical generalization of the classical result on the generation of
strong subalgebras (its precise proof is given in [14]) that any vertex v of D belongs
to 〈W 〉sD iff v ∈ W or there is a path going from W to v. Hence, in particular, if
there is a path going from v to u, then the vertex set of 〈u〉sD is contained in 〈v〉sD.
Since they are strong subdigraphs, it follows that 〈u〉sD �s 〈v〉sD.
Secondly, in the same way as for unary (total) algebras (see e.g. [10]) we obtain

that a strong subdigraph H of D is a completely join-irreducible element of Ss(D)
iff H = 〈v〉sD for some vertex of D.
Thirdly, take two vertices v and w of D and assume that 〈v〉sD = 〈w〉sD. Then

v = w or there is a path going from v to w and a path going from w to v, but the

latter case implies that D has cycles, which is impossible. Thus v = w.
Let v and w be vertices of D such that there is an edge going from v to w.

Then 〈w〉sD �s 〈v〉sD, because this edge forms a path from v to w. Assume that
〈w〉sD �s 〈u〉sD �s 〈v〉sD for some vertex u different from w and v. Then there is a

path going from v to u and a path going from u to w. Since D has no cycles, these
two paths form another path, with at least three elements, from v to w. But this

is impossible, because each edge of D is an isthmus. Thus u = w or u = v, which
implies that 〈v〉sD covers 〈w〉sD , of course, in the set CI

(
Ss(D)

)
of all completely

join-irreducible elements of Ss(D).
Now take two completely join-irreducible elements 〈v〉sD and 〈w〉sD of Ss(D) such

that 〈w〉sD is covered by 〈v〉sD , again in CI
(
Ss(D)

)
. In particular, w belongs to 〈v〉sD,

so there is a path going from v to w. Assume that this path has a vertex u different
from v and w. Then there is a path going from v to u and a path going from u to

w, so 〈w〉sD �s 〈u〉sD �s 〈v〉sD and these three strong subdigraphs of D are pairwise
distinct. This contradiction proves that this path is an edge from v to w.

Summarizing, the function

ϕ(v) = 〈v〉sD for each v ∈ V D
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is a bijection of V D onto the set of all completely join-irreducible elements of Ss(D).
Moreover, for any two different vertices v, w, there is an edge in D from v to w

iff there is an edge in D
(
Ss(D)

)
from 〈v〉sD to 〈w〉sD , i.e. 〈v〉sD covers 〈w〉sD . Hence,

ϕ induces the required digraph isomorphism, because D and D
(
Ss(D)

)
are simple

digraphs. �

Theorem 10. Let D be a finite digraph. Then D(Ss(D)) � Tis(D).

�����. By Theorem 5 Ss(D) and Ss

(
Tis(D)

)
are isomorphic, so D

(
Ss(D)

)
and

D
(
Ss

(
Tis(D)

))
are isomorphic. Thus by Lemma 9 we obtain our assertion. �

Corollary 11. For each finite partial unary algebra A, D
(
Ss(A)

)
� Tis(A).

�����. By Theorems 1 and 10 we have Ss(A) � Ss

(
D(A)

)
and D

(
Ss

(
D(A)

))
�

Tis
(
D(A)

)
. Hence, D

(
Ss(A)

)
� Tis

(
D(A)

)
= Tis(A). �

Having the above results we can formulate our two main algebraic results:

Theorem 12. Let A and B be finite partial unary algebras (which can be of
different types). Then

Ss(A) � Ss(B) iff Tis(A) � Tis(B).

�����. By Proposition 8 and Corollary 11, we have the following two equiv-
alences: Ss(A) � Ss(B) iff D

(
Ss(A)

)
� D

(
Ss(B)

)
iff Tis(A) � Tis(B). Hence we

obtain our result. �

Theorem 13. Let A be a finite partial unary algebra and L a finite and distrib-
utive lattice. Then

Ss(A) � L iff Tis(A) � D(L).

�����. By Proposition 8 and Corollary 11, Ss(A) � L iff D
(
Ss(A)

)
� D(L) iff

Tis(A) � D(L). �

������ 1. Obviously we can also formulate and prove (in the same way) ana-

logous results for finite digraphs and their finite strong subdigraph lattices.

������ 2. Theorems 2, 5, 7 and 13 (formulated for digraphs), Lemma 4 and

remarks before Theorem 5 imply that for each finite and distributive lattice L, an
arbitrary digraph with its strong subdigraph lattice isomorphic to L can be con-
structed as follows: First, we take D(L). Secondly, we add edges in such a way that
for each additional edge there is a path in D(L) going from its initial vertex to its
final vertex. In the third step we insert arbitrary strongly connected digraphs in the
place of some vertices.
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Observe also that having this construction and Theorem 1 we can build an arbi-

trary finite partial unary algebra with its strong subalgebra lattice isomorphic to L.
First, we take a digraph D such that Ss(D) � L, and next we construct (details of
this simple construction can be found in [14]) a finite partial unary algebra A such
that its digraph D(A) is isomorphic to D.
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