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Abstract. We prove that a set of weak solutions of the nonlinear Volterra integral equa-
tion has the Kneser property. The main condition in our result is formulated in terms of
axiomatic measures of weak noncompactness.
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1. INTRODUCTION

The notion of the measure of weak noncompactness was introduced by De Blasi
in 1977 ([6]). This index has found applications in fixed point theorems (cf. [7]) and
many existence results for weak solutions of differential and integral equations in
Banach spaces (cf. [3], [4], [5] and other). Recall that weak solutions of the Cauchy
problem in reflexive Banach spaces were investigated by Szép ([11]) and weak solu-
tions of nonlinear integral equations in these spaces by O’Regan ([10]). But, it is not
easy to construct some formulas which allow to express the measure of weak non-
compactness in a convenient form. This was the reason for introducing the notion of
axiomatic measures of weak noncompactness, see [2]. In that paper several examples
of axiomatic measures of weak noncompactness in Banach spaces were constructed.

The aim of this paper is to investigate weak solutions (more precisely: weakly
continuous solutions) of the nonlinear Volterra integral equation by using this ax-
iomatic index. Our method of proving is more sophisticated then in the case when
one applies the classical measure of weak noncompactness. As a corollary of our
main theorem we obtain a similar result for the Cauchy problem.

183



2. PRELIMINARIES

Denote by Mg the family of all bounded subsets of a given Banach space F, and
by Wg the family of all weakly relatively compact subsets of E (shortly: M and W,
respectively).

Definition 1 ([2]). A function v: M — [0,+00) is said to be an axiomatic
measure of weak noncompactness if it satisfies the following conditions:

1° the family kery = {X € M: v(X) = 0} is nonempty and kery C W;

2° X CY = (X)) <y(Y);

3° y(convX) = v(X), where convX denotes the closed convex hull of X;

42° YAX + (1 -NY) < M(X)+ (1= A)y(Y) for XA € [0,1];

5° if X,, € M™¢, where M"™¢ denotes the family of all weakly closed subsets of F,

Xpi1 CXpy,n=1,2,..., and nh_}n;o v(X,) = 0, then

Xoo =[] Xn #0.
n=1

The family kery described in 1° is called the kernel of the measure . It can be
easily verified that the measure ~ satisfies

where X" denotes the weak closure of X.

Definition 2. If
6° (X UY) = max{y(X),v(Y)} for any X,Y € M, then we say that ~ has the
maximum property.

Notice that if v: M — [0, 400) satisfies

1°,2°, 6° and y({z}) = 0 for any x € E, then ~ satisfies 5° (see [2]).

By using similar arguments as in [1] and by Th. 3 ([2]) one can prove the following
Ambrosetti’s type lemma which will be useful in the sequel.

Lemma. Assume that vy has the maximum property and V is a uniformly
bounded and strongly uniformly equicontinuous subset of the space C,, (A, E), where
A is a compact interval in R" and C,,(A, E) denotes the space of all weakly contin-
uous functions A — E with the topology of weak uniform convergence. Then for
every compact subset T' C A we have

y(V(T)) = fggv(V(t)),
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where V(t) = {z(t): x e V}, V(T)={z(t): x €V, teT}.

3. MAIN RESULT

In this section we investigate topological structure of the set of weakly continuous
solutions of the nonlinear Volterra integral equation

(1) x(t):g(t)—l—/f(t,s,x(s))ds, te A
Alt)

where A = [0,a1] X [0,a2] X ... x [0,a,] (a; > 0,i=1,...,n), A(t) ={s € R": 0 <
s; <t;,i=1,...,n} and the symbol “[” stands for the weak Riemann integral.

Assume that E is a weakly sequentially complete Banach space and

1) g: A — E is a weakly continuous function;

2) f: A°xE—E
is a weakly-weakly continuous function such that

i) for every r > 0 there exists m, > 0 such that || f(¢,s,z)|| < m, for all t,s € A
and ||z|| < r;

ii) for every € > 0 there exists 6 > 0 such that for all t,7 € A, ||t — 7] < § =
| f(t,s,x) — f(7,s,2)|| <e whenever (s,z) € A x E.

The main result of our paper is given by the following Kneser type

Theorem. Suppose that 1), 2) are satisfied. If the measure v has the maximum
property and

7° v(Y) <diam Y for every Y € M,

8° Y(g(T)+Y) < ~(Y) for every compact subset T C A and every Y € M,

9° Y (X +Y)<A(Y) for all X € kery and Y € M,
and there exists a continuous function h: I x Ry — Ry which is nondecreasing in
the second variable and such that the function identically equal to zero is the unique
continuous solution of the inequality

u(t) < / h(s,u(s))ds, te A,
A(t)

and

(2) V(T x X)) < h(t,7(X))
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for t € A and for all bounded subsets T C A and X C E, then there exists a set
J =10,d1] x [0,d2] X ... x [0,d,] C A such that the set S of all weakly continuous
solutions of (1), defined on J, is nonempty, compact and connected in C(J, E).

Proof. Letc=suplg(t)| and o = sup ==. Choose positive numbers e < g and
teA r>0 "

b in such a way that c4+mpe < b. Then choose numbers d;, i =1, ..., n, such that 0 <
di S a;, 1= 1,...,nandd1d2...dn < min(e, 1) Set J = [O,dl]X[O,dQ]X...X[O,dn].
In the space R” we introduce a norm defined by the formula

dy dy
|HH:nmx<Hﬂigﬁﬂw.qa—Hﬂ> for t = (t1,ta,. .., 1n).
n

Then J = {t € R*: t > Oand || < di}. Denote by B the set of all weakly
continuous functions J — By, where B, = {z € E: ||z|| < b}. We shall consider B
as a topological subspace of Cy,(J, E). Define G(z)(t) = g(t) + F(z)(¢t), where

F@my:/f@&a@m& teJ xebB.
(t)

It is clear from the inequalities

HF@xw—F@XﬂHé/WU@J@@D—fﬁww@»kb+mwﬂau%W—TW
A(t)
| F(2)(t)|| < mpdads . .. dn|t]| (z € B,t,7 € J)

that G(B) C B and F(B) is strongly equiuniformly continuous. In view of a
Krasnosel’skij-Krein-type lemma (cf. [9]), we infer that G is continuous.
Further, for any number > 0 put J, = {t € J: ||t| < n}. For any positive

0, if £ € Jy ),
ri(t) = L .
(1—W)t, lftEJ\Jl/k

It can be easily verified that ||ry(t) —t|| < 1/k, [|rx(t)|| <t (t € J) and 7% (J(i41)) C
Jip for i = 0,1,...,k — 1. Next, for any positive integer k define Gy(z)(t) =
g(t) + Fr(x)(t), where

integer k define

F(x)(t) = / f(t,s,2(s)) ds, zeB, tel

A(re(t))

Analogously to the case of GG, the mappings Gj map continuously B into itself.
Moreover,

(3) |WM@@—G@WW<%mm@%”dmerJEJ
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Further, it can be easily verified that there exists a unique element x; € B such that
xr = Gi(zk). From the above it is clear that there exists a sequence (uy,) such that
u, € B for n € N and

(4) lim sup [, (t) — Glun)(8)] = 0.

Let V.= {u,: n € N}, W = F(V) and w(t) = v(W(t)) for t € J. We have
Up = Gp(un) = g+ Fn(uy), n € N and therefore, by (4),

lim sup [lun(t) — G(un)(t)] = nlgrolo [ En(un) — F(un)lle =0,

=0 teg

where || - || denotes the supremum norm in the classical space C(J, E) of all contin-
uous functions J — E with the topology of uniform convergence. Hence the family
(I — G)(V), where T denotes the identity map, is strongly relatively compact.

Now, we prove that

(5) v((I = G)(V)(T)) = 0 for every compact subset T C J.

Fix t € J and € > 0. By (4) there exists k& € N such that [Ju,(t) — G(u,)(®)|| < &/2
for every k > n. In view of the property 6° and 7° we have

I =G (V)(@B) = (I = G)(Ve)(t)) < diam [|(I = G)(Vi)(#)]| <.

Since € > 0 has been arbitrary, we obtain y((I — G)(V)(¢)) = 0. Because (I — G)(V)
is strongly uniformly equicontinuous, by Ambrosetti’s type lemma we infer that (5)
holds.

Since un(t) = (un(t) — G(un)(t)) + Gluy)(t), V(t) € (I — G)(V)(t) + G(V)(¢t).
Now we verify that
(6) vV (t)) < v(W(t)) for every t € J.
Fix t € J. By (5), 9° and 8° we have

YV (1)) <A = G)(V)(1) + G(V)(1)) <1 (G(V)(1) < v(F(V)(1) = v(W (L))

Analogously, we obtain
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Since W is strongly uniformly equicontinuous and uniformly bounded, the function
s — w(s) is continuous on J. Indeed, fix € > 0 and choose § > 0 in such a way that

1 (un)(t) = F(un)(7)|| <€

for t,7 € J such that ||t — 7]| < 6§ and n € N. Since W (t) C W(7) + {F (un)(t) —
F(uy)(7): n €N}, in view of Th. 3 [2] we obtain

YW (1) < ~(W(7)) + sup 1E () (8) = F () (7) [y (K (W (]), 1))

<YW (1)) + ey (K(W(J), 1)),

where K(W(J),1) = U U K(F(un)(t),1) and K(F(un)(t),1) denotes the open
neNteJ
ball centered at F'(u,)(t) and with radius 1. Hence

YW (t) = v(W(r)) < ex(K(W(J),1)),

and analogously
YW (7)) =7 (W (1) < er(K(W(J),1)).

This proves the continuity of w.
Fix t € J and n > 0, and choose § > 0 in such a way that

(8) At w(s)) = h(t, w(T))] <n

for t,s € J such that ||s — 7] < 4

Divide the rectangle A(t) into m rectangles Pi, ..., P, such that A(t) = U P,
diam P; < 0 and u(P,NP;) = 0fori,j =1,...,m, i # j (here p denotes the
Lebesgue measure in R™). By Ambrosetti’s type lemma and by the continuity of w,
there exists 7; € P; such that

(9) YW (F)) = w(r), 1=1,...,m.

By the mean value theorem, we have

i/ t,s,x(s dsCZ,u Yeonv(f(t, P, x V(F;))).
=lp,
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Further, by the properties of 7, Th.2 [2], (2), (7) and (9), we obtain

i=1
< S U Px VIR)) < S u(PR(E AV (P))

On the other hand, (8) implies that

W(Ph(tw(r)) < / h(t, w(s)) ds + npu(P,).
P;

Thus
w(t) < / Bt w(s)) ds + nu(A(E).
A(t)
Since the above inequality holds for every 1 > 0, we infer that

w(t) < / h(t,w(s))ds, for t € J.
A(t)

By the assumption on h, it follows from the above inequality that w(t) = 0 for ¢t € J.
Hence, by (6), V (¢) is weakly relatively compact for ¢t € J and therefore by Ascoli’s
theorem ([8], pp.80-81) V is relatively compact in C\(J, E). Hence the sequence
(up) has a limit point u. In view of (4) and the continuity of G it is clear that
u = G(u). This proves that the set S is nonempty.

Further, since G is continuous, S is closed. Because S = G(S), so w(S(t)) <
w(F(S)(t)). Hence, by similar arguments as above we can show that S is a compact
subset of Cy,(J, E).

To prove that S is connected it is enough to apply a similar method as in Th. 3
[3]. The proof of our theorem is complete. O

Corollary. Let I = [tg,tg + a] C R be a compact interval, E a sequentially
complete Banach space, and let f: I x E — E be a weakly-weakly continuous and
locally bounded function. Assume that a measure vy satisfies 6°, 7°, 9° and there
exists a continuous nondecreasing function h: Ry — R; such that the function
identically equal to zero is the unique continuous solution of the inequality
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and

for
tha

V(T % X)) < h(v(X))

any bounded subsets T C I and X C E. Then there exists an interval J C I such
t the set of all weak solutions (see [11] for the definition) of the Cauchy problem

¥ = f(t,z), x(to) = xo,

defined on J, is nonempty, compact and connected in C,(J, E).

The above result with an axiomatic measure of weak noncompactness can be

illustrated by the main theorem from [5].
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2]
3]

[4]

[11]

References

A. Ambrosetti: Un teorema di esistenza per le equazioni differenziali negli spazi di Ba-
nach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.

J. Banas, J. Rivero: On measures of weak noncompactness. Ann. Mat. Pura Appl. 151
(1988), 213-224.

D. Bugajewski: On the existence of weak solutions of integral equations in Banach spaces.
Comment. Math. Univ. Carolin. 85 (1994), 35-41.

D. Bugajewski, S. Szufla: Kneser’s theorem for weak solutions of the Darboux problem
in Banach spaces. Nonlinear Anal. 20 (1993), 169-173.

E. Cramer, V. Lakshmikantham, A.R. Mitchell: On the existence of weak solutions of
differential equations in nonreflexive Banach spaces. Nonlinear Anal. 2 (1978), 169-177.
F. S. De Blasi: On a property of the unit sphere in Banach spaces. Bull. Math. Soc. Sci.
Math. Roum. 21 (1977), 259-262.

G. Emanuelle: Measures of weak noncompactness and fixed point theorems. Bull. Math.
Soc. Sci. Math. Roum. 25 (1981), 353-358.

J. L. Kelley, 1. Namioka: Linear Topological Spaces. Van Nostrand, Princeton, 1963.
M. A. Krasnosel’skij, S. G. Krein: To the theory of ordinary differential equations in
Banach spaces. Trudy Sem. Funk. Anal. Voronezh. Univ. 2 (1956), 3-23. (In Russian.)
D. O’Regan: Integral equations in reflexive Banach spaces and weak topologies. Proc.
Amer. Math. Soc. 124 (1996), 607-614.

A. Szép: Existence theorem for weak solutions of ordinary differential equations in re-
flexive Banach spaces. Studia Sci. Math. Hungarica 6 (1971), 197-203.

Author’s address: Dariusz Bugajewski, Faculty of Mathematics and Computer Sci-

ence, A. Mickiewicz University, Matejki 48/49, 60-769 Poznaii, Poland, e-mail: ddbb@
main.amu.edu.pl.

190



